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The temperature-dependent impurity susceptibility for the asymmetric Anderson model is cal-

culated over a broad, physically relevant range of its parameters ed (the energy of impurity orbi-

tal), U (the Coulomb correlation energy), and I {the impurity-level width). Within the context
of renormalization-group theory four fixed points and their associated regimes are identified:

(i) the free-orbital regime which is unstable and flows into (ii) or (iv); (ii) the valence-

fluctuation regime which is characteristic of the asymmetric Anderson model. Properties are
dominated by a temperature-dependent impurity-orbital energy Ed( T) =—ed + (I"/m) ln(U/T).
If Ed(T) is negative and large compared to I as T decreases, the system is unstable with respect

to (iii), otherwise it flows to (iv); (iii) the local-moment regime is similar to that in the sym-

rnetric Anderson model except that it has potential scattering. That is, this regime maps onto
the Kondo model with potential scattering, the latter having little effect on the susceptibility;

(iv) the frozen-impurity regime, into which all the regimes above flow, is stable, having only ir-

relevant operators. Furthermore, in the valence-fluctuation regime nonuniversal properties are
observed for —Ed(T) ( I. These conclusions are supported with extensive analytic and numeri-

cal calculations, the latter based on the numerical renormalization-group approach. Analytic for-

mulas for the impurity susceptibility and free energy in all four regimes are presented, together
with the impurity-specific heat in the frozen-impurity regime.

I. INTRODUCTION

In this paper, we continue the discussion started in
the previous paper, ' hereafter referred to as I, of the
application of Wilson's numerical renormalization-
group techniques to the Anderson model' of dilute
magnetic alloys. "' In I we summarized the basic tech-
niques and discussed in detail their application to the
calculation of the static properties of the symmetric
Anderson model. In this paper we discuss in detail
the static properties of the asymmetric Anderson
model.

The plan of this paper is as follows. In Sec. I A, we

recapitulate the basic results of I. In Sec. I 8 we give
a survey of the susceptibility results of the asym-
metric model, and discuss a simple picture of the
manifold of the states of the model in terms of which
roughly to understand these results. The discussion
is quite qualitative, and essentially serves as a sum-
mary of the results of the present investigation, and
should be intelligibile even to a reader unfamiliar
with the details of I.

The rest of the paper, namely Secs. II and III and
the appendices, contain the quantitative details. This
material depends heavily on the material presented in

I, and is likely to be hard to understand without an

understanding of the details of I. In Sec. II we iden-
tify the fixed points of the asymmetric Anderson
model, and set up the formal renormalization-group
apparatus which is used to analyze the numerical
results. The detailed analysis of the numerical results
and the detailed analytical descriptions of the various
regimes of behavior of the susceptibility are present-
ed in Sec. III. Section III is hence the core of the pa-
per. The appendices mostly contain technical details
concerning the derivation of some results used in the
body of the paper.

A. Recapitulation of the basic results of I

The model Hamiltonian we use throughout the
present investigation is a simplified version of the
Anderson model3 and can be written [cf. Paper I Eq.
(2.4)i

kak„ak„dk + (cd„cd„—1)—
U+ (CdlCdt) (Cdp dP, ) (CdtCdt)

' 1/2
1

+ dk (akpCd&+Cdl, ak~)~D
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The nature of the simplifications has been discussed
in Sec. II A of I. In Eq. (1.1), ak„refers to a
conduction-electron s-wave state (about the impurity)
of energy k (all energies are in units of the
bandwidth D unless otherwise specified); cq~ refers to
a nondegenerate impurity orbital. eq is the energy of
the impurity orbital, U is the Coulomb energy for
putting two electrons into the impurity orbital, and
I'—= rrp~ V~ is the level width of the impurity orbital
arising from its mixing with the conduction band ( V

is the mixing matrix element). In the symmetric case
1

eg = ——U.
2

The logarithmic discretization in terms of the
parameter A ( &I), etc. , as discussed in Secs.
II B —II D of I leads us to the sequence of Hamiltoni-
ans [cf. Paper Eq. (2.18)]

, nW

fine mesh of temperatures in which the susceptibility
and free energy are calculated. In all the calculations
described in this paper, A =3 has been used and the
following values of P were used: 0.400, 0.459, 0.526,
0.604, and 0.692. (See also the discussion in Sec. II E
of I.) Htot refers to the conduction-electron part of
HN, namely

N-1

,
nW

~0
and S ~, and S N, are the spin operators appropriate
to Hg and Hjy.

All the special features of the present calculation
stem from the fact that [Hnj obey the following
renormalization-group recursion relation [which fol-
lows from Eq. (1.2)]

HN+t ——'1[ Hest ]

+&peg„&g„+I' (&y /'p„+ fo &d„). Htt + (N ( fN JN+I „+f.a+I r. fNII. ) (1.8)

First, this recursion relation enables us to set up a
numerical iterative diagonalization scheme to calcu-
late the energy levels of H~, and hence to calculate
numerically X(Ttt) and F(T~). Second, it enables us
to use the machinery of fixed points, linearized
behavior near fixed points etc. , in order to under-
stand the flow (with N) of HN and hence the tem-
perature dependence of X(T~) and F(Ttt). In partic-
ular, for those ranges of Tjy where the corresponding
Htt are near the fixed points of & [where T denotes
the transformation Eq. (1.8)], we can write down ef-
fective Hamiltonians in terms of which we can calcu-
late the temperature dependence of X( T&) and
F( Ttt) analytically using perturbation theory.

The basic picture in terms of which we can qualita-
tively understand the results of the present calcula-
tion is the picture of the manifold of the states of X,t
with I set to zero, when the states of3C~ are just
direct products of the states of the impurity orbital
and of the conduction band. Figure 1 is an attempt.
to draw this picture for the symmetric case. With the
conduction band in its ground state (i.e., a filled Fer-
mi sea), the impurity orbital can be empty (nq =0),
occupied by one electron (nd =1) or completely filled
(nq=2). These states are represented by the thick
lines in Fig. 1. For each of these configurations of
the impurity orbital, the conduction band can also be
in any of its continuum of many-body excited states.
These states are represented by the thin lines in Fig.
1. Turning on 1 causes these states to be mixed up
as indicated in Fig. 1, and the resulting spectrum of
states is very complicated. But when I" is small com-
pared to the separators between the various sub-
spaces (i.e., to ~ed~ and eq+ U), Fig. I still retains
some meaning; and in general helps greatly in under-
standing the properties of 3C,~.

(1.2)+2 Undtnq~

where f„refers to a conduction-electron-shell state,
centered at the impurity and of extent -A"t'/k&, and

2 U2U-=
1+A-' (1.3a)

(1.3b)

2 &d—=Sg —U1+A- D
(1.3c)d=

The notation used above is consistent with I. [See
Eqs. (2.18)—(2.20) in I.]

The important point (for a detailed discussion of this
refer to Sec. II E of I) is that the energy levels of Htt
can be used to calculate the impurity susceptibility
and the impurity free energy at a sequence of tem-
peratures [cf. Eq. (2.39) in I]

(1.4)

This is done using the formulas

(1.5)

F( TN) = —ktt TN( ln Tr exp —PHtt —ln Tr exp —PHN)

(1.6)

Here P is a small parameter. In practice, for a given
value of N, several values of p are used, resulting in

TrSA, exp PHtt TrSta exp PHtt- .
—

kttTttx(Ttt) =-
Tr exp —PHtt Tr exp PH~—
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FIG. 1. Manifold of states of the symmetric Anderson
model when the impurity level width I is zero. The thick

lines represent states in which the conduction band is in its

ground state, but the impurity orbital configuration corre-
sponds to occupancy i~~ =0, 1, or 2. By reference to Eq.
(1.1), we see that the orbital energy ~d represents the differ-

ence of the many-body ground states»& =1 and G. For each

impurity configuration, the conduction band can also be a

continuum of many-body excited states, indicated by the
light lines lying at higher energy. The three sets of states
overlap in energy. The inclusion of I" causes transitions
between the states as indicated by the diagonal arrows.

In I we discussed the symmetric case which occurs
1

when ed = ——Uso that the nd =-0 and nd:=2 sub-
2

1

spaces are both —, U above the nd =1 subspace as in

Fig. I, and X4 is invariant under particle hole
transformation (which corresponds to ffk a k,
cd —cd so that nd~2 —nd, i.e. , the nd =0 andt

nd =2 subspaccs In Flg. 1 aI'c llltcfcllaflgcd). Flgufe
2 shows schematic plots of k~ TX for the symmetric
Anderson' model. When T » max( U, 1'), all the
impurity configurations are equally populated and the
splittings and the couplings between them are ir-

relevant. The situation is as if U and I are both
1

zero, so that TX is close to 8, and this is referred to

as the free-orbital regime. Next soppose I" && U.

Then as T drops well below U, to a first approxima-
tion one can ignore the subspaces f'or which nd =-0 or
2 and set I" =0. Within the subspace in which nq = I,
the impurity degree of freedom looks like a spin-—

object, so that we expect TX= 4. The next level of
approximation is to permit virtual transitions induced
by I, which results in effective interactions between
the impurity spin and the conduction electrons. The
most-dominant of such interactions turns out to be' a
spin-spin interaction of the form

8i= —J ffs(0) S pJ fr=-—
fr

where S; is the impurity spin operator and s (0) the

in (kBTzD)

FIG. 2. Schematic sketch of I'& TX( T)/( g p&) vs

ln(k& T/D) for the symmetric Anderson model. At suffi-

ciently high temperatures (T )& U) all four configurations

nd =0, nd =2, and n~=1 (spin up or spin down) are equally
1

occupied resulting in the free-orbital susceptibility ( TX = —)8

which will persist for all temperatures only if I" = U =0.
Otherwise, as the temperature is lowered the n& =0 and

nd =-2 configurations will tend to be depopulated. For
1I" « U, TX rises toward the local-moment value of 4, At

still lower temperatures (T & T~), the conduction electrons
"freeze out" the local moment so that TX drops to zero. If
I' &) U, this freezing process (the strong-coupling regime)
proceeds directly from the free-orbital regime.

conduction-electron spin density at the impurity site.
This interaction leads to the Kondo effect ' as a

consequence of which TX gradually decreases and
vanishes as T' 0. Furthermore X obeys a scaling
law, namely that TX is a universal function' of
T/Tff (J ff) where the scaling temperature, called the

0.20—

O. I 5—
k BTX

(gP.B)~
O. I 0—

0- I

0 2 3
log (T/TK)

FIG. 3. Universal plot of k~ TX(T)/(pp, ~) vs ln(T/T~)
where X(T) is the impurity susceptibility for the spin-—

2

Kondo Hamiltonian and T& is the Kondo temperature, the
only quantity depending on the details of the model. For
T « T& the local moment is frozen out by the conduction
electrons. The residual interactions between the electrons in

this so-called strong-coupling regime results in a zero-
temperature susceptibility 0.1 ( g p~) k~ T~,
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self with ed replaced by —(ed+ U), as a consequence
of which we have

x[ U, I', ed, T I = x[ U, I', —(~d + U), T] . (1.11)

It is therefore sufficient for us to discuss the region
of the parameter space for which ~~ & —

2
U. %e will

organize this discussion as follows. For each of the
characteristic cases I =0, I && U, and I » U, we
will consider how the TX vs T curve changes as we
sweep ed from —,U through zero to a positive value,
and try to connect this to the picture of states such as
in Fig. 1.

1. Case when I' 0

FIG. 4. Schematic sketch of the various regimes for the
symmetric Anderson model. The separations between the
various regimes, in contrast to the drawing, are actually
quite fuzzy.

Kondo temperature, is given by

TK U
I pJ.rrl expr/t

I pj.rrl

—(I'U)' 'exp—
&I

(1.10)

8. Survey of susceptibility results
for the asymmetric case

In this section, we present a qualitative survey of
the susceptibility results for the asymmetric case.
Quantitative details and proofs of assertions are
presented in the following sections. When
aq A —

2 U, we have a four-parameter (eq, U, I', and
1

8 space which to survey for regimes; we first note
that the particle-hole transformation takes 3C~ to it-

See Fig. 3. The zero-temperature behavior corre-
sponds to the situation in which the impurity degree
of freedom is frozen out, leaving behind only residu-
al interactions between renormalized conduction-
electron degrees of freedom. This leads to a constant
X and a linear specific heat, and is referred to as the
strong-coupling regime. The regime above T~ is re-
ferred to as the local-moment regime, in which X is

approximately Curie-gneiss-like but with a diminished
effective moment. The various regimes are illustrat-
ed in Fig. 4.

Next consider what happens when I is increased
keeping U fixed. The basic effect is that I J,rrl (and
hence Tx) increases, the local-moment regime
shrinks and the strong-coupling regime gro~s, until
when I —U the two transitions merge. When
I » U, there is a direct transition from the free-
orbital regime for T » I to the strong-coupling re-
gime for T ((I.

I

4

kgTX

~gag) [ ~,=o
6

I-ed=~0

«U
ll' = ol

I

8

&U

Jn (i,vr D)

FIG. 5. Plots of k&T&(T)/I'(gpq) vs ln(kg) T/D) for the
asymmetric Anderson model in which the d-level width I' is
zero. The labeled curves A through Fcorrespond to the or-
bital energy e~ being increased from —

2
U to ))U. In the

valence-fluctuation regime, defined by —e~ &( T (( U, the
ny =0 and n& = 1 configurations are essentially equally popu-

lated resulting in a TX value of
6

{cf.curves 8, C, and D).
Note that for positive ~d there is always a temperature below
which the n~ =0 configuration dominates, resulting in a zero
susceptibility (cf. curves D, E, and F). For comparison with
the symmetric case note that curve A is identical to the
curve labeled I =0 in Fig, 2.

First consider the case when I" =0. Then the im-
purity degree of freedom is decoupled from the
conduction-electron degrees of freedom. The suscep-
tibility is just that of the impurity orbital, and it is
easy to verify that

ka TX ] fd/r —(Cg+U)/T)= —(2+e +e
(g/ s)'

For the symmetric (ad = —
t U) case, as we discussed

earlier, we have a transition from the free-orbital re-
gime (in which T„=—, ) for T )& U to the local-

moment regime (in which TX =
4 ) for T (( U, as

indicated by curve 3 of Fig. 5.
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Consider what happens as we steadily decrease —ed

from
2

U. The manifold of the states of .
&

for the

case when —ed « U is depicted in Fig. 6. From this
figure we see that for T && U, the impurity states
wi]1 still be effectively degenerate, so that we still get
the free-orbital regime in which TX =

8
. But now, as

T drops below U, and for temperatures such that
—eq « T « U, we get a whole new regime, in

which the nd =0 and the nd = 1 subspaces are equally
thermally populated and can be regarded as degen-
erate, whereas the nd = 2 subspace is thermally depo-
pulated and can be ignored. This regime, in which
TX has the characteristic value 6, wi11 be referred to

as the valence-fluctuation regime, and turns out to
play an extremely important role in determining the
properties of the asymmetric Anderson model, as we
will see later. Finally, as T drops well below —ed, all

the subspaces except the nd =1 subspace get thermal-
ly depopulated. Hence, we get the local-moment re-
gime in which the impurity degree of freedom is ef-
fectively a spin —, , and TX= 4. %hen I =0, the

1 1

local-moment regime is stable as T 0. All this is
indicated by curve B of Fig. 5.

Clearly, if —ed is decreased to be equal to zero ex-
actly, then nd =1 and nd =0 subspaces are exactly de-
generate, and hence the valence fluctuation regime
will be stable all the way to T =0, as indicated by

cur.ve Cof Fig. 5.
Now consider what happens as ed is driven positive

=2

I/2
&d+ U

FIG. 7. Manifold of states of the asymmetric Anderson
model when the impurity level width I is zero aiid

0«d « U.

but ~eq~ && Ustiii. The picture of the manifold of
the states of H~ for this case is drawn in Fig. 7.
Clearly for T && U, we still have the free-orbital re-
gime, and for ed (& T (& U, we once again have the
valence-fluctuation regime. But now the ground-
state subspace is the one for which nd =0, which car-
ries no moment. As T drops belo~ ed, all subspaces
except nd =0 get thermally depopulated, and as a
result TX drops sharply to zero, as indicated by curve
D of Fig. 5. %e will refer to the low-temperature re-
gime in which TX is zero as the frozen-impurity re-
gime, thereby meaning only that effectively the im-

purity degree of freedom is frozen out.
For ed values other than the characteristic values

considered above, the behavior of TX can be under-
stood by considering how the transition temperatures
of Fig. 5 move around. For example, if e~ is in-
creased to become of order U, the two transitions of
curve D in Fig. 5 merge to give curve E. For
~d && Uwe get curve F.

FIG. 6. Manifold of states of the asymmetric Anderson
model when the impurity level width I is zero and
-~~ && U. Compare with the symmetric case shown in Fig.
2. For finite I this figure can be used to understand the
results of the valence-fluctuation regime (—~d && T && U)
if we replace the relative energy of the r~~ =0 configuration
—ed by —E&(T) = —

~&
—(I jn) ln(U/T),

2. Case when I" && U

Next we discuss the case when I is nonzero, but
I (& U. This is the most interesting of the asym-
metric cases and, as we will see below, exhibits
characteristic new features The schematic TX .plots
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that as T decreases, Ed—(T) decreases slowly, so that
depending on the parameter values, —Ed(T) can be-
come comparable to or less than I', or Ed( T) can go
positive. So, what transitions we get from the
valence-fluctuation regime depends very much on the
relative values of Ed(T) and I .

To start with, suppose that —e~ is sufficiently large
compared to I' that as we decrease T, Eq(T—) still

remains much larger than I. In this case we will

eventually hit a temperature T2' where

FIG. 8. Schematic plots of k~ TX(T')/(gp, g) vs
ln(I.BT'/D) for the case I « Uof the asymmetric Ander-

son model. The extreme curves are easy to understand:
is the symmetric Anderson model result shown in Fig. 2

(I « U curves) while E correspond to such a large, posi-
tive t.& that the susceptibility drops directly from the free-
orbital to the frozen-impurity regime (see ~d = Ucurve in

Fig. 5). The remaining three curves illustrate possible tran-
[

sitions from the valence-fluctuation regime ( TX = —) as ~~6

is increased. In B, since ed &) I, a local-moment develops
before the frozen-impurity regime takes over. Note that the
low-temperature shapes. of A and B have the universal shape
of the Kondo susceptibility. This is no longer true for curve
C where —~d && I. Now the nd =0 and n~ =1 configura-
tions are so strongly hybridized that not only is there no lo-

cal moment but the transition to the frozen-impurity regime
is steeper than the universal curve. Finally, in D, where e&

is positive and « I, the transition is even steeper. See the
discussion in Sec. IB2 for a definition of E& and F&

(1.14)

Then as T drops below T2', we once again see the lo-
cal moment developing due to the thermal depopula-
tion of the nd =0 subspace. As in the symmetric
case, the virtual transitions induced by I from the
nd =1 subspace to the nd =0 subspace give rise to ef-
fective interactions between the impurity and the
conduction-electron degrees of freedom, but now
these interactions include potential scattering in addi-
tion to spin-spin scattering. As is demonstrated in
Sec. III D, we can write

X;„,= —J,ff s (0) S; +E,ffn (0)

where n (0) is the conduction-electron density at the
impurity site, and pJ,ff and pE, fq are given by

2I'
pJeff =—

E(T) =-e ——ln--r U
m T

(1.13)

This feature, which is demonstrated in Sec. III C, ar-
ises due to the virtual transitions induced by I from
the rI~ =1 subspace to the n~ =2 subspace. We note

for this case are shown in Fig. 8, where curve A

represents the symmetric case which has already been
discussed briefly in Sec. 1A.

As we decrease —~q from —, U, the first characteris-

tic case for us to consider is that for which
I « —~~ && U. Then at first glance we expect Fig.
6 to remain a good picture, since I is small compared
to the splittings between the subspaces which it con-
nects. So (as for I =0) we expect to get the free-
orbital regime (in which TX =

&
) for T )) U, and a

transition to the valence-fluctuation regime (in which

TX =
6 ) as T drops below U. This much indeed

turns out to be true; see curve 8 of Fig. 8.
But now, within the valence fluctuation regime (ie.

for T « U) a crucial, new feature appears which is
characteristic of the asymmetric case. This new feature
is that now we can continue to think in terms of Fig.
6 for T « U only if we are prepared to replace ed by

an effective, temperature dependent, impurity -orbital en

ergy Eq( T) given by

1
p+eff =

+ I p~etfll (1.16)

—(I'U) i exp— 2I

Now consider what happens as we decrease —Ed.

As —e~ decreases, so does —E~', and eventually we
reach the situation when —Eq' & I, as happens once

eg & (r/m ) ln( U/I'). Now the nd =0 and nd = I
subspaces get hybridized, which hybridization is hard
to treat analytically. Another way to think about this
situation is to note that as —E~' decreases to become

[These results are basically obtained by considering
the transitions induced by I from the n~ = 1 subspace
to the nd =0 subspace (which is essentially Eq"—
above) in second-order perturbation theory. ] It is
also demonstrated in Sec. III D that potential scatter-
ing has little effect on the temperature dependence of
the susceptibility, in the sense that the TX curve for
this case can be mapped to the same universal Kondo
TX curve as in the symmetric case, as indicated by
curve 8 of Fig. 8. So we get a gradual transition to
the frozen-impurity regime in which TX =0, with the
Kondo temperature being given by

T~ —T~"
I pjeffl'" exp—

I pj.ttl
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of order I', lpj, rrl increases to become of order unity
and T~ rises to become of order T2'. So we get a

direct transition from the valence fluctuation to the
frozen-impurity regime, as indicated by curve C of
Fig. 8.

If —ed is made sufficiently small compared to I or
is driven positive (when I' &0, there is nothing spe-
cial about ed =0), we have the situation that Eq( T)
can be positive and increasing as T decreases within

the valence-fluctuation regime. In this case the pic-
ture to think in terms of is Fig. 7 with ed replaced by

Ed(T). Now we expect a transition to the frozen-
impurity regime as we hit a temperature T3 such that

Ts' = Ed ( Ts' ) = Ed" .

We note that when Ed" & I, the numerical results
for TX display sharp drops in TX as T drops below
T3', reminiscent of the sharp drops in T X for I =0
and a„)0 (cf. curve D of Fig. 5), as indicated by
curve D of Fig. 8. These sharp drops in the TX vs
lnT curves give rise to broad maxima when we plot X

vs T. For more discussion see Sec. IIIE.
When ~~ is positive and increasing, so is Ed".

Eventually when ~d gets to be of order U, so does
Eq", and the two transitions of curve D in Fig. 8

merge, and we get a direct transition from the free
orbital to the frozen-impurity regime, as indicated by

curve E of Fig. 8. The temperature scale determining
this transition is basically set by ed.

3. Case when I' » U

Finally, .we consider the case when I" » U, Now,

as long as
I eel « I' (recall eq ~ —

2
U), I' dominates

l

the show. We have the free-orbital regime as before
for T » I". But for T « I, the impurity degree of
freedom dissolves into the conduction-electron con-
tinuum and TX goes to zero. (The ed and U terms

only consitute interactions between the new effective
conduction-electron degrees of freedom and lead to a

constant susceptibility for T « I".) See curve A of
Fig. 9. On the other hand, if ed » I', we have a

transition from the free orbital to the frozen-impurity

regime at T —ed, as in curve 8 of Fig. 9.
We note that the zero-temperature regime has

been referred to as the frozen-impurity regime in all

the cases, which is to indicate only that, effectively,
the impurity degree of freedom is a.lways frozen out,
leaving behind only residual interactions between re-

normalized conduction-electron degrees of freedom.
In the asymmetric case, since particle-hole symmetry

is no longer valid, these residual interactions include

potential scattering. The information as to which

parameter values we are considering is contained in

the relation between the renormalized conduction-
electron degrees of freedom and the original
conduction-electron degrees of freedom (i.e., in ques-

k gTX
I

(gp~)~ 6
I

8

Ir»ul

In (k8T/D)

FIG. 9. Plots of kgTX(T)/(gag) vs ln(k~T/D) for the
case I && Uot the asymmetric Anderson model. For all
values of e& there is a direct transition, as the temperature is

lowered, from the free-orbital regime to the frozen-impurity
one. The case leal (( I, curve 3, is indistinguishable from
the symmetric Anderson model for I )) U (cf. the I &) U
curve of Fig. 2). For ed )& I, curve B, the transition oc-
curs at T —~d.

tions as to whether a conduction-electron degree of
freedom is frozen out in addition to the impurity de-
gree of freedom being frozen out, etc.) and in the
strengths of the residual interactions among the con-
duction electrons. In Sec. III F we show that the
most dominant of these interactions lead to a con-
stant susceptibility and to a linear specific heat (as
T 0).

This completes our survey of the susceptibility
results for the asymmetric case. The rest of the sec-
tions of the paper will deal with the detailed quantita-
tive discussion of the basic features presented above.
Some of our results, such as Eqs. (1.13) and (1.17),
were first derived by Haldane' using perturbative
scaling techniques.

II. FIXED POINTS AND EFFECTIVE HAMILTONIANS

FOR THE ASYMMETRIC ANDERSON MODEL

In this section we set up the formal machinery of
fixed points, eigenoperators, and effective Hamiltoni-
ans that are associated with the renormalization-

group transformation T and are of interest in the
case of the asymmetric Anderson model. It is only
with the help of this machinery that the results of the
numerical calculations can be understood. In Sec.
II A we identify the basic fixed points for the asym-

metric Anderson model. In Sec. II 8 we discuss a

complication that can arise due to the presence of
asymmetry —namely, the possibility of potential
scattering and lines of fixed points. In Sec. II C we

identify the eigenoperators, eigenvalues, and effective
Hamiltonians around each of the fixed points for the
asymmetric case.
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A. Basic fixed points for
the asymmetric Anderson model

To start with we want to identify the basic fixed
points of &' that are of interest for the asymmetric
Anderson model. These fixed points are important
because each of the various regimes we discussed in
Sec. I B is associated with one of these fixed points.
Three of the basic fixed points that we will en-
counter, namely the free-orbital, the local-moment,
and the strong-coupling fixed points, are the same as
in the symmetric case. The major new fixed point
that is characteristic of the asymmetric case is the
valence-fluctuation fixed point (associated with the
valuence-fluctuation regime discussed in Sec. I A).
Another fixed point, the frozen-impurity fixed point,
is related to the strong-coupling fixed point via po-
tential scattering (as discussed in Sec. II 8).

The method we follow in order to identify the
fixed points for the asymmetric case will be the same
as for the symmetric case: namely, we consider spe-
cial values (basically 0 or ~) for the parameters I',
U, and eq and compare the resulting Htt [cf. Eq.
(1.2)], in the limit N ~, with the free-electron
Hamiltonian. For details, see Secs. III A and III B of
I. In accordance with the restriction eq ~ —,U, we

need only consider eq ~ —U Furthermore we will only
describe the odd Ncase through-out the rest of this paper

1. Free-orbital fixed point: HFo

Hp ——A [eg(cj~cg„—1)

+ I' ( fp cg +cy fp ) + 2 Unytnyt] (2.1)

If we neglect states which have energies U above the
ground state, we get rid of the subspace in which

n& =2. By calculating the remaining energies and
states up to O(I /U), it is straightforward to show
that Ho is equivalent to

Hp —A gf(by bg 1)+r ( fp bye +by fp )

+ (bg~ o„„b~„)(f, ~ o fp„)
2(e~+2U)

space of states in which n~ = 2 gets removed from
consideration. The resulting generating Hamiltonian,
to be denoted HN vF, is just HN plus a new effective
impurity degree of freedom corresyonding to the
nq = (0, 1) configurations only. Clearly, for (odd)
N ~, HN vF goes to a new fixed point to be denot-
ed HvF, which is just the even free-electron fixed
point H' plus the new impurity degree of freedom.

In order to make this more explicit, as well as to
derive some results that we will need later, we now
consider a situation in which I and e& are small but
Uis much larger than the energies of interest. In
particular, consider how this affects the energy levels
and states of the initiai Hamiltonian Hp (H~ for
N =0). From Eq. (1.2) we get

This is the same fixed point as discussed in Sec.
III B1 of I, and can be obtained by setting I, U, and

eq to zero in Eq. (1.2). The resulting generating
Hamiltonian, denoted by HN Fo, is just the free-
electron Hamiltonian HN plus a free-impurity orbital
of zero energy. As (odd) N ~, Hjy" Fo goes rapidly
to the fixed point HFo, which is just the even free-
electron fixed point H' plus a zero-energy impurity
orbital. For details see Secs. III A and III B of I.

Z. Valence-f1uctuation fixed point: HvF

This is the characteristic new fixed point associated
with the asymmetric case, and corresponds to the sit-

uation in which only the nq =0 and n~ = 1 configura-
tions of the impurity are present, are degenerate, and

are decoupled from the conduction electrons. It can
be obtained by setting I' and eq to zero in Eq. (1.2)
while letting U ~, as a result of which the suQ-

O',
I
II ) = It ). ba'„

I ~) =o ~

b„In) =0, b„Iv) =S,„In) .

(2.3)

(2.4)

Here I 0) represents the state in which the impurity
orbital is empty, and Itt, ) the state in which it is occu-
pied by one electron of spin p, (] or [). It is easy to
verify that

bzt, =cz„(1—nz), bg„= (1 —nq) cq„

bye p bye p n$ (2.5)

Therefore, for any N, if one can neglect states that
have energies —UA n ' i2, then to 0 (I'l U) one is

considering, in effect, a Hamiltonian

(bu„bu„) ( fo, fp~)
'

(2. .2).2(-., +2U)

where the operator bq„acts on the remaining (nq=0
and nq= 1) impurity states only, and is defined by

N-1

Hp = A ' X A " $„( f„„f +&„+f+&„f„„)+ez(bz„bp„—,I)+I' (fopbap+bdp fpp)

+ (bg„a „„bg„)( fp, o, ,f, .)—
2(eg+ 2U)

(b',b..) (.f'.fp.)
2(eg+ 2 U) (2.6)



1052 H. R. KRISHNA-MURTHY, J. %. WILKINS, AND K. G. WILSON 21

If in addition we consider the case when eq = I' =0),
the impurity degree of freedom b~ gets decoupled
from the conduction electrons, and we get the gen-
erating Hamiltonian H~, vF. As (odd) % —~, H~vF
goes to the valence-fluctuation fixed point Hv'F,

which is just the free-electron fixed point H' plus the
free-impurity degree of freedom b~, i.e., from every
state of H' we can construct three degenerate states
of HvF corresponding to each of the three impurity
states ({&),1]&, I])).

4. Strong-coupling fixed poi nt: Hsc

This fixed point is also the same as in the sym-
metric case, and can be obtained by letting I ~ for
fixed Uand e~. It is easy to verify that this removes
all the states of Ho [cf. Eq. (2.1)l except its ground
state, so that the effective Hamiltonian HN for any W

is Eq. (1.2) with all terms involving cq and fo re-
moved, and is denoted HN'sc

3. Local-moment fixed point: HgM

This is the same fixed point as in the symmetric
case, and corresponds to the situation in which only
the p1y = I configuration of the impurity is present
and is decoupled from the conduction electrons. It
can be obtained by setting I =0 and e& = —~ in Eq.
(2,6), which removes the nq =0 subspace of states
from consideration as well [n„=2 states are already
removed in Eq. (2.6)].

In order to make this more explicit, consider what
happens to the Hamiltonian Ho of Eq. (2.2) when

is much larger than the energies of interest (i.e. ,

eq (0 and large in magnitude). Then the subspace
in which n~ =0 can be ignored, and within the
remaining (nq = I) subspace, Ho can be shown to be
equivalent to [up to O(1'/{~q{)]

Ho=A [J(./o„(rp. fo ) '7+@(.fog./o„ I)]
(2.7)

(2.10)

As discussed in Sec. III 8 of I, as (odd) % —~,
H~ sc goes to the odd strong-coupling fixed point
Hs'c, with single-particle levels qi .

5. Frozen-impurity fixed poi nt: HF~

Finally consider the case in which we set I and
U =0 in Eq. (1.2) but let eq —+~. This removes all
the states in which nq = 1 or 2 from consideration.
The resulting generating Hamiltonian, which we will
denote as HN F~, is essentially the free-electron Ham-
iltonian HN ]/]/ith the added proviso that the ground
state be assigned a charge of —1. {This is because
the charge operator g~ was defined so that [cf. Eq.
(2.25) of I] nq = I has zero charge. } As (odd)

~, HN F[ goes to HF'[ which is just the even
fixed point H' plus a ground state of charge —1.

I IJ=— +
2eg 4U +2eg

K— I I"

2~g 4U+2eg

(2.g)

Here 7 is a spin- —, operator associated with the im-

purity states. Hence, for any %, if one can neglect
both the states of energy -UA~ " ' and
—a&A( ', then to O(I'/{e&{, I /I/) one is in effect
considering a Hamiltonian'

N —1

H)( =A' "" $ A ""4.(f', f.+)„+./"+(„f.,)
tj 0

+Jfpi„(r„„fo„7+ K ( for fo„—'I),'

(2.9)

If in addition we consider the case when I =0, then
J = K =0, and HN is just the Hamiltonian HN LM dis-
cussed in Sec. III 82 of I, and leads to the local-
moment fixed point HLM for (odd) A( ~. HLM is
just the even free-electron fixed point H' plus the
impurity spin 7.

B. Potential scattering and lines of fixed points

In Sec. II A, we identified the basic fixed points of
the asymmetric Anderson model. All these were
essentially simply related to the free-electron Hamil-
tonian HN. However, since the Hamiltonians we are
dealing with do not obey particle-hole symmetry,
there is an added complication that we must consider,
namely that the HN associated with the fixed points
can have potential scattering.

Consider the Hamiltonian
(
N —]

HO(g. ) —A(N —()/2 $ A n/2g ( /
t—

nW

+f( +()g ./ ( ) + & (.fo(. fo„—I )

(2.11)

The K term describes potential scattering of the con-
duction electrons at the impurity site. Since Eq.
(2.11) is a quadratic Hamiltonian it can be diagonal-
ized exactly (numerically) in terms of new electron
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and hole operators and energies: for odd N,

(@+1)/2
Hrt(K) = $ [rtj+(K, N)gi„gi„+rid (K,N) ht„hi„]

j~l
(2.12)

The properties of Htv(K) are investigated in detail in
Appendix A. Here we just note down some results,
the most important of which is that rt,+(K,N) and
ri, (K,N) for fixed j have well-defined limits g~ (K)
and q, (K) at N ~. pi+(K) and rt, (K) vary with
K in a smooth monotonic fashion, as depicted in Fig.
16(b). Thus we have a whole line of fixed points of
F', one for each value of K, which we will denote
(for odd N ~) by H'(K).

Clearly from each of the basic fixed points con-
sidered in Sec. II A, we can generate a whole line of
fixed points simply by adding potential scattering. So
at first sight, we can think of five lines of fixed
points for the asymmetric Anderson model: namely,
the lines of free-orbital, valence-fluctuation, local-
moment, strong-coupling, and frozen-impurity fixed
points, which we will denote by HFo (K), HvF (K),
HLM (K), Hsc (K), and HFl (K).

However, we can show that the lines of strong coupling-
and frozen impurity f-ixed points are the same For t.his
purpose recall that [cf. Sec. III B3 of I] Hsc is the
same as the odd fixed point H; therefore Hsc (K) is
the same as the line of odd fixed points H (K) aris-
ing from Hno(K) for even N. But as proved in Ap-
pendix A, H (K) can be mapped to H'(K ) [where
K is related to K by Eq. (A64)] with the added pro-
viso that the ground state of the latter be assigned a
charge of —1. Hence Hsc (K) is the same as
H'(K ) plus a ground state of charge —I; i.e., it is
the same as HFl (K ).

Thus we have identified four distinct lines of fixed

points for the asymmetric Anderson model, namely
the lines of free-orbital, valence-fluctuation, local-
moment, and frozen-impurity fixed points, denoted
by HFO(K) HVF(K) HLM(K), and HFl(K),
respectively. The generating Hamiltonians for these
fixed Points will be denoted Hri Fo (K), Hw, vF (K),
Hrt LM (K), and HN Fl (K) HN, FO (K) is just
Hrt(K) plus the free-orbital states determined by cq,
Hrt vF (K) is just HN(K) plus the valence-fluctuation
states determined by hq , Hn L'M (K) is just Hiv(K)
plus the local-moment states determined by 7;
Hrt F, (K) is just Hn(K) Plus a ground state of
charge —1. Table I lists the first few states of the
four lines of fixed points, together with the energies
and charge and spin quantum numbers associated
with these states.

We recall that (cf., I Sec. III C) when Htv is near a
fixed point, H~ hardly changes with N, so that for
the corresponding temperature range, TX is a con-
stant. Each of the above fixed points is hence associ-
ated with a characteristic, constant TX value. To
identify these, we calculate TX using Eq. (1.5) but
using the generating Hamiltonians Hrt Fo (K),
Hrt vF (K), etc. , for Hit Since the . imPurity degree
of freedom is decoupled from the conduction elec-
trons the calculation is trivial, and we get

k T x(T ) =(S„');+((S',)„o( )
—(S', )„o)

(Sty ) i + Ics TrtXO( Tti P A K ) . (2.13)

Here S;, is the impurity spin operator and ( );
denotes the expectation value evaluated using just
the zero-energy impurity states; and (S;z); is trivially

verified to be —, , 6, 4, and 0 for the FO, VF, LM,1 1 1

and FI cases, respectively. Xp is obviously the change

TABLE I. First few states and energies of the various fixed-point Hamiltonians.

Charge Spin Index

Q S
HF', (Z)

state energy

h'vF (&)
state energy

e„'M (z)
state energy

HF', (SC &0),
state energy

1
0

2

1

2
1

2

0

1 cg 0

3 2'+ hl

1 2' +gl v)+1

1 — 0
2 cg+ hl
1 c~+ hl
1 2' 0
2 Cg +gl 7))

Cd+gl gl

bd

bd +gl + hl

hl

bd +2gl

by+ hl
by+ hl

bg +gl
2gl

bg+gl

0

gl
+ 'gl

11

27)]

0

7)1

~+

27)1
~+

T

T+g, +h,
+gl + hl

T +2hl

T +2gl
7 +hl

T +gl +2hl
T+hl
T +gl

T +2gl + hl
T +gl

0

~& +11
'g] +'gl

2 gl

2q+,

q+, +2ql

~+
2g)++ q)

~+

2gl + hl

hl

2gl +g2

gl + hl

gl + hl

gl +g2

gl +g2

~+

~2
2p)+ + z)

Yf 1

2q+, + q2+

0
+ 'gl

2q+,

v))+ + q2+

q+1+ TI2+
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in the susceptibility due to potential scattering, and is given by (N odd)

((t)t+r)/2

k/)TNXo(TN) =
—pg( (,N)

(
—/)q/+(N)

—p~ (w)
e

—
/)vp( (N)

—Pz(

(I+ "/)2
(2.14)

In Appendix A we demonstrate that if we replace
2)/

—(N) above by their fixed-point values 2)/ +, the-

resulting expression for k)3 TN)(0( TN) vanishes as
exp( —vr2/InA) as A 1. The contribution to Eq.
(2.14) hence comes from the deviations of 2)(

—(N)
from their fixed-point values and can be shown to be
of order (ks TN/D). We can therefore neglect the
second term in Eq. (2.13). Evaluating the first term
for each of the lines of fixed points, we get for the
characteristic TX values,

Secs. IV A and IV B of I). For this purpose we need
expansions for f'0, f'~, etc. , in terms of the electron
and hole operators that diagonalize HN(K). In Ap-
pendix A it is shown that

(2.16)

A)„—= (Kf()„+zopf)~)'

A
—3[(N 1)/41 $ (~+—+g oo 2)

—
Q t) (2 17)

J

1

8
j.

kaTX

(g/ a)'
0

for HF() (K)
for HvF (K)
for HLM (K)
for HF") (K)

(2.15)

A 2„=—( $02 f()„+KA ) ~ + A '/'
go()f2„)

A
—5[(N 1)/4] $ [~—+ ( +)2g + ~—

(
—)2ht ]

J

(2.1g)

From our discussion of the fixed points of the
asymmetric Anderson model, it should be reasonably
evident by now that each of the regimes that we dis-
cussed in Sec. 1A is associated with the line of fixed
points of the same name [i.e. , the I'ree-orbital regime
is associated with H„o(K), etc.I. This association
becomes even more explicit when we consider the ac-
tual flow of Hg between the various fixed points, and
the correspondence of such a flow to the temperature
dependence of the susceptibility. This will be done in
detail in Sec. III. But for this purpose, we need to
identify the eigenoperators of F2 around each of the
above fixed points, and construct effective Hamil-
tonians that approximately describe the flow of H~
when it is in the vicinity of these fixed points. This
is done in Sec. IIC. Once again we emphasize that
the discussion in this section assumes familiarity with
the discussion in Secs. IV A and IV 8 of I, which
should be consulted for details.

HN""= HN F() (K) +0))A' SH) F()

+ copA 5H2 Fo+ (2.19)

where no-, are essentially independent of N, and g,
—

are the fixed-point single-particle energies of H'(K).
Thus the roles played by, f'0, A ~, etc. , in the asym-
metric case are analogous to the roles played by fo,
f'[, etc. , in the symmetric case: namely using f'0 in
SH gives rise to a factor of A ",use of 3 ~„ in 5H
gives rise to a factor A ', etc. On this basis, using
the methodology of Secs. IV A and IV 8 of I, we ar-
rive at the results of Table II, which lists the dominant
hierarchy of 50's near each of the fixed points dis-
cussed earlier, together with the eigenvalues of the
eigenoperators that they generate. Then, for those
values of N where H~ is close to a fixed point, for
example to the free-orbital fixed point, its flow can
be described in terms of the effective Hamiltonian

C. Eigenoperators and effective Hamiltonians
for the asymmetric Anderson model

The method we folio~ in order to identify the
eigenoperators and construct the effective Hamiltoni-
ans for a fixed point of ~ in the asymmetric case is
exactly the same as in the symmetric case, namely we
examine the properties of H~ + A ' SH, where
5H is small and depends only on the first few degrees
of freedom consistent with the fixed point, and H~ is
the generating Hamiltonian for the fixed point (cf.

For general values of ed, U, and I", the parameters A,
co~, cu2, etc. , can be determined by fitting the energy
levels calculated using Eq. (2.19) to the numerical
results from the iterative diagonalization. For limit-
ing cases the dependence of K, ~[, co2, etc. , on ed, U,
and I can be calculated analytically. Once co~, ~2,
etc, , are determined, H~" can also be used to calcu-
late k()TNX(TN) and F(TN) for the appropriate tem-
perature ranges. Exactly similar procedures can be
adopted when H~ is close to any of the other fixed
points. The actual implementation of these pro-
cedures is carried out in Sec. III.
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TABLE II. Hierarchy of generators of eigenoperators for the fixed points of the asymmetric Anderson model.

Fixed point Label Operator
Eigenvalue Relevance

character

Coefficient with which
the eigenoperator
appears in Sec. III

Free-

orbital

fixed

point

HFO (K)

Valence-

fluctuation

fixed point

H,'F (Z)

Local-

moment

fixed point

H„'M (Z)

Frozen-

impurity

fixed point

HF, (X)

~Hl, FO

~H2, FO

5H3 FO

SH4 po

SH5 po

5H6, FO

SHE Fo

~H8, FO

~H9, FO

5H& vF

SH2 vF

5H3 vF

SH4 vF

SHg vp

~Hl, LM

~H2, LM

~H3, LM

~4, LM

SHl pl

~H2, Fl

~H3, Fl

SH4 Fl

5H5, Fl

»dt t?d)

(c~ c~„—I)

fo& + fo&&d~)

(cd~cd~ —&) (&'dv fpv+ fpv('tv)

0~v(/vf I 0 / r,f'
Op, yv' pv

(cd„cd„—I ) ( f"G„f'p„—I )

(QI .fo„+.foI.QI )

»ut »a~(.fov.fOv

(.f'p„.f'p„—1)

(b,'„b,„—I)

by~ f0~+ f'p~bd

bg (r~„bd „,f'
Op, p v ov

bd&b& fov, fov

(.fo„.f'o„-1)

foy, ~y, vfpv

(,fp„,f'p„—I )

fp„A l„+A l,fp„

(.f'p„.f'p„—I )

( f'0„3l„+3 l„fp„)

(.f,'„.f,„-I)'
tAl Al

(.f'Op, .fO~ I) ( fOv~ l. +"lv.fOv)

fp„A2„+A2„ fp„

Relevant

Relevant

Relevant

Relevant

Marginal

Marginal

Marginal

Marginal

Marginal

Relevant

Relevant

Marginal

Marginal

Marginal

Marginal

Marginal

Irrelevant

Irrelevant

Irrelevant

Irrelevant

Irrelevant

Irrelevant

Irrelevant

2U

&l/t2

f 1/2

III. DISCUSSION OF NUMERICAL RESULTS
FOR THE ASYMMETRIC ANDERSON MODEL

In this section, we enter into the detailed discus-
sion of the results of the renormalization-group cal-
culations on the asymmetric Anderson model.

A. Pre}iminary look at the numerical results

To start with, we want to demonstrate that the
fixed points identified in Sec. II are relevant to
describe the numerical results. For this purpose, we

have plotted in Fig. 10 the energies of the first few
states of H~ as a function of N (for odd N) for the
parameter values U/D =10, ad/D =-10 ', and
r/D =1.571 x 10~. These states have been chosen
to have the same charge and spin quantum numbers
as the ones listed in Table I. Thus we can compare
the energies of Fig. 10 with the values they would
have in the fixed points (the latter are indicated in
Fig. 10 for K =0). From this comparison it is quite
clear that for N «9 H~ can be said to be close to
Hr":o (with K =0), for 13 & N & 17 H& is close to
Hvp (with K =0), 23 & N & 31 H~ is close to
HLM (K) and for N )41 H~ is close to Hr":t (K).
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dence between the susceptibility plot and the flow of
H&, with the temperature being related to W via Eq.
(1.4). We recall that when H// is near a fixed point,
TX is roughly constant as T changes. Figure 11
sho~s that for T &) U, TX has the value —, charac-

1

teristic of the free-orbital fixed point. As T drops
below U, we have a transition to the value TX = 6,

1

characteristic of the valence-fluctuation fixed point.
As T drops below —aq (roughly ), there is a transition
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FIG. 10. Low-lying energy levels of H~ as a function of

odd N for A =3, and parameters indicated on the figure. On
the left-hand vertical side are the lowest-lying free-electron
fixed-point levels for N odd (0, q1, 2q1, and 3q1), while on
the right-hand side are the equivalent levels for N even (qo,
q1). (a) Levels for even charge and half-integral spin. The
following fixed points can be observed by comparing the
curves with Table I: free orbital (N & 9), valence fluctua-
tion (13 & N &17), local moment (23 & iV &31), and
frozen impurity (A' )41). In the case of the latter two
fixed points, the value of' impurity scattering is important
(see Fig. 11, curve A, and Table VI). (b) Levels f'or odd
charge and integral spin. Note how in the valence-
fluctuation regime the Q =I and Q = —1 states (f'or S =0)
are split only to nearly merge again in the local-moment re-
gime. See the discussion following Eq. (3.29),
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Flows of HN such as in Fig. 10 will be analyzed in

detail in Secs. III B and III E. Here we just note some
results. The crossover from HF'0 and Hv'F is due to
the relevant variable U and occurs when UA'
grows to become of order 1. The crossover from
HvF to HLM (K) is due to the relevant variable —~d

and occurs (roughly) when adAtu "/' be—comes of
order 1. The crossover from HLM(K) to HF~ (K) is

due to a marginal variable (—I'/ —ed) and occurs
(roughly) when (I'/ ~d)N lnA gets to —be of order 1.

Plot 3 of Fig. 11 shows the plot of TX vs T for the
same parameter values as above. As in the sym-
metric case, we can make a one-to-one correspon-

FIG. 11. Plots of I.
& TX(T)/( p'p, &)' vs ln(i.z T/D) which

illustrate the parameter dependence of transitions between
the various regimes. (a) That the transition from the free-

1
orbital regime (TX= —) to the valence-fluctuation regime

8

(TX= —) occurs at T1 ——Uis clearly illustrated by curve
1 1

6 1

A compared to curves B and C. That the transition from
the valence-fluctuation regime to the local-moment regime

( TX=
4 ) occurs at T2' ——E~' is seen by comparing curve

C with curves. A and B, The values of E~' were deduced
from Eq. (3.22). (b) The transition from the local-moment
regime to the frozen-impurity one occurs at a temperature
of order Tz. See the discussion below Eq. (3.44) and Table
VIII for detaits, where curves A, 8, and C are referred to as
7.1, 7.2, and 7.3, respectively. Note that all three curves lie

along the universal Kondo-susceptibility curve indicated by

the dashed curves.



RENORMALIZATION-GROUP APPROACH TO THE. . . II. . . . 1057

to the local-moment regime, in which TX is close to
—but smaller by a constant marginal coupling. As T

drops further, TX slowly decreases to zero, charac-
teristic of the frozen-impurity fixed point. %e note
that the transition from the local-moment regime to
the frozen-impurity regime is represented by the
universal curve [dashed line in Fig. 11(b)] just as in
the symmetric case [see the discussion following Eq.
(3.41)].

B. Free-orbital regime

%e recall that when eq, I", and U are zero, H~ in
Eq. (1.2) reduces to Hrr ro, the generating Hamiltoni-
an for the free-orbital fixed point. Therefore, when

I, and U are all small, we expect to be able to

write

HN, 'Fo =—Hg Fp +2UA '
ndtndl

+ edA (cy~cd~ 1 )

+f' 'A'n "i'( fo„c~„+cdt„fo„), (3.1)

where the U, ~d, and I terms are now to be treated by

perturbation theory W.e note that Eq. (3.1) is precise-
ly of the form of the effective Hamiltonian around
the free-orbital fixed point, since the last three terms
in Eq. (3.1) are precisely SH~ t:o, SH3 ro and 5H3 po,
the generators of relevant eigenoperators around HFo
[cf. Table II and Eq. (2.19)]. Furthermore, the coef-
ficients Jt, co~, c02, and ~3 are now explicitly known,
to be just 0, 2 U, ~d, and I, respectively,

Expressing Eq. (3.1) in terms of the electron and
hole operators that diagonalize Hg Fp, we can write

HNgo = gal"( g,„g,„+hi„h~„+2UA ' nutndt+tdA '(Q cd )
]

+ f' A
— + O/(Cd gg„+gl„cd„+cd„hl + hg„cd )(N-1)/4 ~

I

(3.2)

The energies of the states considered in Table I cal-
culated using H~" are listed in Table III. The U term
lifts the energies of the states in which nd =2 by
2UA' ', the ~d term contributes an impurity orbi-

-I/2
tal energy of ~dA ' ', and the I term changes
the single-particle energies rt~ by I'At '3i (oollqi ).
It is clear that these effects account satisfactorily for
the energies plotted in Fig. 10 for W & 11 (Note: for
U/D =10 3 and A =3.0 and UA"-""=0.Ig at
/t/=11. ) We note that U, ed, and 1 are all relevant
variables.

One can also calculate ksTrrX(Trr) and F(Trr) us-

ing Hugo in place of Hrr in Eqs. (1.5) and (1.6). The
calculational details are identical to those in Sec. V A
of I, and one gets to the lowest nonvanishing order
in each term,

I I U IksTn«Tn) = —+—
8 32 kBTg 32 kgT~

I/~
Xt, Fo(Tn, P, A)

ka Tg
(3.3)

1 U 1+( +tv) ks Tn ln4 —— +
4 kgTjy 4 kgb

+
T

~1,Fo( ~iV /3. A), (3.4)
ka T~

where x] Fo and F] Fo are the functions evaluated in
Appendix C of I. An expression similar to Eq. (3.3)
has independently been derived by Haldane [Ref. 9,
Eq. (28)]. Thus, for ksTn ))max(U, {ed~, I ), we

(w, -I)/2
UA ' =n, Tt" = U/n (3.5)

1

have the free-orbital regime in which TX = 8,
F(T) = ks T ln4. W—hat happens as T drops below

max( U, eq, I') depends upon which of the deviation

terms in Eq. (3.3) dominates. We note that the U
1

term tends to push TX above 8, while the ed and I

terms push TX below —,. This is consistent with the

discussion in Sec. II, where we saw that U ~ leads

to the valence-fluctuation fixed point in which

TX= 6, while ~aq~ ~ or I' ~ leads to the1

frozen-impurity fixed point in which TX =0.
%e will organize the rest of our discussion in the

same manner as we did in Sec. I B. That is, we first
discuss the case when I && U, and consider what

happens for various characteristic values of ed. The
case I && U can be handled analytically, as is done
in Appendix D.

The first typical asymmetric case to consider, there-
fore, is the situation when U )) {~eq{, I'}. In this

case, when W gets to be large enough that UA
is much bigger than 1, Hg crosses over from HFo to
Hve, as we saw in Sec. III A (cf. Fig. 10). Corre-
spondingly, as k~Tdrops well below U, TX crosses
over from its value of —, for the free-orbital regime

to its value of 6
for the valence-fluctuation regime

[cf. plot A of Fig. 11(a)]. We will let Art' and Tt"

denote the values of W and T around which the
crossover takes place. From Figs. 10 and plot A of
Fig 11(a),
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TABLE III. States and energies of H~"Fo (K =0).

21

Charge

0
Spin

S
Index

State Energy

1

2 Cd

Ã1

2cd +h1

0

YJ 1

+» + 2 Up(iV-1)/2

- +(X—1)/2
d

+- +(W-1)/2
+1=~(N-1)/2( 2

/

+I A " ' /2(cx01/gt)

1

2

1

2
2cd +g1 &»+2 U/t, (W-1 )/2

d
p(N-1)/2

+- ~(W-1)/2
Ed

+l=~(N-1)/2( 2
/

+I W(~-')/2( ' /~'}

1

2

1

cd +h1
cd+h1

0
YJ 1

- ~(W-1)/2

+I A( ')/2(e01/r]1)
+f /I (hf —1)/2( 2

/

2 cd

Cd +gt
cd +~1

0+ 2 U~(&-»/2

Yf 1

+- ~(W —»/2
d

+ra( -')/2(,2, /~', )
+r~(/'-'»2(~2 / ')

where a is some number like 5, say. The fact that
the transition from the free orbital to the valence-
fluctuation regime is determined by the scale of U is
amply demonstrated by plot 8 of Fig. 11(a), which
has the same ~d, values as plot A, but a U that is
bigger by 10, and by plot C which has the same Uas
plot 8, but different ed and I values.

C. Valence-fluctuation regime

As emphasized earlier, this regime is the one that
is really characteristic of the asymmetric case, and

displays many new features. The most important of
these features, as we will show below, is that the flow
of H~ in the vicinity of Hvp can be characterized by

an effective, N-dependent, impurity-orbital energy
parameter Ed(N) Correspon. dingly, the temperature
dependence of the susceptibility is characterized by
an effective temperature-dependent impurity-orbital en-

ergy Ed(T).
As we have discussed before, the valence-

fluctuation fixed point is characterized by the fact
that the states in which nd = 2 are removed from con-
sideration, as happens when UA ' becomes
much larger than all other energies of interest. Since
within the free-orbital regime, U, Rd, and I all grow
as A ~ ', we can argue as in Sec. II A that as far as
the low-lying states Hg for W & N1' are concerned,
one is in effect considering the Hamiltonian (2.6).
We will rewrite Eq. (2.6) as

(3.6)

Hg"vp = Hy, vp +&yA (bg~bd„—1) +I A ' (bg„ f0~+ fa„by~) + J(A " ' (bq„a„„bq„) (,f I a. i i f i)

+rC, A& ""(b,t,b„)(f,'„f-,„),
where bd„ is the operator characterizing the new effective impurity degree of freedom (cf. Sec. II A), and we have
let

J, —= I'/(4 U +2eq), K~ ———I /(4 U +2e„) (3.7)

We note that Eq. (3.6) is precisely of the form of the effective Hamiltonian constructed around the valence-
fluctuation fixed point. The last four terms in Eq. (3.6) are precisely (cf. Table II) SH~ vp, SH2 vp ( the generators
of the two relevant operators), and SH3 vp and SH4 vp (the generators of the first two marginal operators).
Furthermore, the coefficients of these operators are now explictly expressed in terms of ~d, I', and U. %e note
that SH5 vp, the generator of the marginal operator that describes potential scattering, does not occur in Eq. (3.6).
That is to say, the crossover from HFO to HvF does not generate potential scattering. This is consistent with the
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discussion of Sec. III A where according to the numerical results, the effective K for HHV(K) was zero.
Expressing Eq. (3.6) in terms of the electron and hole operators that diagonalize H(( vF, we get

Ll Ll

HN VF = X r(( ( g(„g(„+h(„h(„) + adA ' (bd»bd„—I ) + I' A ' X ao((bd»g(» +g(»bd» + bd»A(» + A(»bd»)
l~l lal

f t - t+ J&(b b X o( o( (g(» „g( +h(„» A( +g(„„A( +A( „,g( )
dp. p, v dv + Ol I v I v

II

+Klbd»bd» Xao(ao, ,( g(vg, , +h(„h, , +g,„h,, +h(„g,, )
II

(3.8)

This expression reconfirms that ~d and I" are relevant
variables, while Jl is a marginal variable. El looks
marginal, but actually has a piece that is like the Rd

term [see discussion after Eq. (3.11)].
The question as to what value we should use for

the upper limit Ll (of I) in Eq. (3.8) turns out to be
quite important for the discussion to follow. Hence
we will pause to comment on it. Since the condition
of validity of Eq. (3.8) is that we be interested in en-
ergies much smaller than UA ~ ', we can demand
that the largest energy in Eq. (3.8), namely gL, be
smaller than UA' " '. For example, we can set

[It can be shown that the condition (3.9b) arises rath-
er naturally if one attempts to derive Eq. (3.8) for-
mally from Eq. (3.7).]

We list in Table IV the energies of the states listed
in Table I calculated using H~'vF. The I term
does not affect energies to first order, so we have cal-
culated to second order in I", i.e., to O(1'). Table
IV clearly brings out the important feature that we
mentioned at the beginning of this section, namely
that the energy levels of H~ are describable in terms
of an effective, N-dependent, impurity-orbital energy
parameter Ed(N) that plays the role of ad. We have

= UA" '»'/a, -
1

(3.9a)
E ( N) = a + I'a (N —N,

") +—K,A

where a is some number like 5, say. (Such numbers
are encountered at various places in our discussion.
We use the same symbol n to characterize all of
them, since their precise values are unimportant in
view of the fact that all the transitions that occur in
our discussion are fuzzy and not sharp. ) Using Eq.
(3.5) which connects U to the transition iteration
number Nl', we get

A ' =A ' or Ll = —, (N —N(') . (3.9b)

(3.10)

where Nl" corresponds to the crossover from HF'o to
Hvp [cf. Eq. (3.5)].

The result (3.10) can also be proved formally. It is
easy to verify that the second-order contributions

-1/2
from the I term can be described by the Hamil-
tonian

(

t API+
2

b i (r r ibti g v ( g(» (r»vg(v A(» (r»vh(v )
2 dp, lg v dv

(

+ (I —
2 bd»bd») x v ( g(»g(»+ A(»A(»

I 1 'gl
( J

(3.11)

The first term in Eq. (3.11) gives rise to the I term in Ed(N). The rest of the term affect conduction-electron
states and scale, in a simple fashion, as I'At '» . The Kl term in Eq. (3.8) can be rearranged (by normal order-
ing the h, „h,, term) as

Ll Ll

2Kl xao( bd»bd»+Klbd»bd» xao(ao('( g(»g(~ h(»h(' +g(„h i +A(„g i )
t - t

II
(3.12)
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TABLE IV. States and energies of HrrvF (K =0). Here At(N) =
X& I (norlrtt ) = rraL t

= oaf 2
(N —&t )I a»tt

Charge Spin Index

Q S I. State Energy

g)
bd +g) +hl

0

„;—(;d + I=g) + K) g2) A

2 YJ)

+IA "/' '/„'
+( )

1

2
q) —(cd+I 5)+K)52)A +f A{'-))/2~2 /&'

bd + 2g) +2K) ap)

bd+h)
bd+h)

0 —(gd + f'g) + Kl /2) A +

Q)

g)

+21 A o.o)/q) ) oo2i K) uo)

+J)ao) —K) np)
2 2

bd ~1
2p)

bd +g)
2q) —( d + I 5) + K) b,2) A(

))

—I"A{~ ))/2~2 /&
+21=A(w-))/2 2 /„~
+rA '-'/'N'/ '

Ap) Y])

—3J)o.o)
2

+J)ap)
2

+K)o)2

+2K) o,p2)

+K)ao)2

The first term in Eq. (3,12) gives rise to the Kt term in Eq. (3.10). The second term in Eq. (3.12) describes po-
tential scattering of the conduction electrons off the impurity, but this scattering is present only for those states
in which nd = 1. We note that the Jt term in Eq. (3.8) describes spin-spin scattering of the conduction electron
off the impurity spin within the subspace of states where nd =1.

The above features of the energy levels of Hg "rvF (which features can be seen to correctly describe the energy
levels in Fig. 10 for N between 13 and 17) are also reflected in the susceptibility results, as we show below.

Substituting Hz"vF in place of Hrr in Eqs. (1.5) and (1.6) and carrying out the perturbation expansion, we can
-1/2

verify that to leading orders in the parameters ed, I, Jt, and Kt, T~X( T~), and F(T~) are given by

L) 2 Pq(

kBTNX(TN) =
s ts p&dA 3 pjl $

(I + sar )2

L)

ts PK1 2 X rxol
( 1

r

1 ~I p{W 1)/2 ~ 01
18 ~

( ) )(
t

(1+14e ' +e ' )
(1+e ")'

(3.13)

F(TW) = —krrTrr ln3+ —PegA( '~~ +
s PKt 2 $rrttr +—PI'At+ (3.14)

Since

L)

2 '=A '=A {W—W )/2

( 1

-(W —1)/2
the E) term looks like the ed term with ~d replaced by K) A , which is the same result as in Eq. (3.10).
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As to the I term, it is clear that for large I the summand goes as Ooi/rtl'; hence we get a contribution which looks
like the R~ term with Rd replaced by

1 2

f X '„' = f 2L, = r~2-,' (N -N,
"),

(~1 gl

which is also the same result as in Eq. (3.10). Finally, making use of the result show'n in Appendix A that

P X~ol
-Ps( 2

Ao-=x~(A =0) =
-pq,') 2 2 lnA

(3.15)

we see that the Ji term produces a constant shift in TX.
To sum up our discussion above, we have shown that in the valence-fluctuation regime, the deviation of 0~

from the fixed point HvF calculated to O(1") can be understood in a simple manner in terms of an effective, N
dependent, impurity-oribtal energy Eq(N) given by Eq. (3.10). To O(1'), Ed(N) effectively replaces eq as the
coefficient of the (bqi„bq„—1) term in Eq. (3.8).

Before moving on to a discussion of the temperature dependence of the susceptibility, we pause to remark that
such effective N-dependent coefficients of eigenoperators as Eq(N) can arise quite generally in high-order (here
second order in I'~2) renormalization-group calculations whenever there are simple relationships between the
eigenvalues of the transformation such as one eigenvalue being equal to the square of another, or to the product
of two others, etc. (Here A, the eigenvalue associated with eq is the square of A'i', the eigenvalue associated- |/z
with I' .) For details see Wegner. '

The rest of our discussion of the valence-fluctuation regime will concentrate on the temperature dependence of
the susceptibility. Analogously to Eq(N), such a discussion leads in a natural way to an effective, temperature-
dependent, impurity-orbital energy, to be denoted by Eq( T). We show below that Eq( T) is given by

E~(T) = ed+ —ln
F U

Ck T
(3.16)

where a is some number like 5, say [cf. discussion following Eq. (3.9a)].
In order to identify Eq(T), we proceed as follows. We make use of Eqs. (1.4), (3.9a), and (3.15) in Eq. (3.13)

and (3.14) to get

1 ~u 2 &oJ~
ks TNX(TN) = ——

6 18k&T& 3 lnA

Ki
1&kg Tg 2Am

z -Pn(I'/~ 4
X

&oi 1 —e (1 14
ski 2sof--

8 + I +A
(3.17)

K -1 z —Ps(

F(T.) = k, T. ln3+ -" + ' + 4 "/~
3k r 3k T 2A 3 k T 1 +A ( q 1

P1+e
(3.18)

Next we take the continuum limit by letting P 0 and N ~ at fixed Tg, and then letting A 1. Then the
sums over i above can be converted to integrals (exactly as in the evaluation of Xt Fo and Fi Fo in Appendix C of
I) and we can show that

k TX(T) =——— —— + — ' ' (1+14 -'+ -' '),
6 18ksT 3 U+eg 20.' 18ksTN IgksT 4o e (1+e &') 2

(3.19)

F(T) = —k T 1 3+ eu + I'/(2wa) + 4 I'/m' de 1 —e

3kgT 3kgT 3 AT 4o ~ 1+e (3.20)
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It is easy to verify that th dominant contribution to
the integral in Eq. (3.19) is given by ln(U/2n T)
Hence we can write

kTxT=———
6 18ks T 18ktt T

r/~ + ~ ~ ~

3 U+ed
(3.21)

-2
where eq( T) is given by Eq. (3.16) and . . . indicate
smaller terms. The constant 3 can be obtained by a
careful evaluation of the integrals in Eq. (3.19). A
result similar to Eq. (3.21) was first derived by Hal-
dane [Ref. 9, Eq. (29)j.

Next we discuss the temperature dependence of
TX as T decreases within the valence-fluctuation re-
gime. This clearly depends upon which term dom-
inates in Eq. (3.21). We note that I always reduces
TX below 6; i.e., tends to drive TX towards the

frozen-impurity regime in which TX is zero; whereas
Ed(T) can increase TX above —, , towards the local-

moment regime where TX = 4, if it is negative, or

decrease TX below 6 towards the frozen-impurity re-

gime if it is positive. From Eq. (3.16) we see that as
T decreases, Ed( T) increases slowly (logarithmically).
Therefore, TX will make a transition to the local-
moment regime only if ed is negative and —ed is suf-
ficiently large compared to I' that Ed(T) is negative
and Eq(T) remai—ns large compared to I' as T de-
creases. We will discuss such a case first.

The condition for the transition from the valence-
fluctation to the local-moment regime may be formu-
lated more precisely as follows. The point is that
from Eq. (3.21) it is clear that the valence-fluctuation
regime breaks down when T gets smaller than

Eq( T) or I', w—hichever occurs first. Let T," be a
temperature such that [cf. Eq. (3.16)1

txT2 = Eg( T2 ) = Eg = e——g ——ln—I U
m

t

(3.22)

where n is a number like 5, as before. If the solution
Ed' to Eq. (3—.22) is much larger than I", then Tean

become small compared to —Ed( T) while it is stiil
much larger than I, and we get a crossover to the
local-moment regime at a transition temperature
roughly equal to T2" We can rewrite E. q. (3.22) as

t

Ed &g 1 U 1-- =-———ln —+—ln-
r I ~ 1. ~ I

(3.23)
The solution to this equation is sketched in Fig. 12.
We note that —Ed' is monotonic decreasing as —~d

decreases; Ed' = I' when ed = I'+ (I/7r) —I—n( U/'I );
there is no solution for —Ed" when —~d is less than
0.6827r+I /n ln(U/I'). Thus we see that TX can

—'+ —' ln ~

---2

FIG. 12. Solutions of Eqs. (3.22) and (3.52). Both equa-
tions can be written as y =x —(In~ y ~)/tr where
x =a~/1 +(I/rt) In(U/I'). andy =Ed /I' for y &0 and
Ed"/I for y & 0. Note that the solution pops from negative
to positive y at x =—(1+inn)/m =—0.68. The values of
(x,y) indicated by arrows are appropriate for the susceptibili-
ty curves shown in Figs. 13, 14 (7,4—7.7), and 15 (6,1—6.4).
The curves shown in Fig. 11 correspond to points off the
left-hand lower quadrant. See Table VIII for a complete list-
ing of relevant numbers.

make a transition from the valence-fluctuation to the
local-moment regime at a transition temperature T2'

determined by Eq. (3.22) if eq is negative and
—ed » r/rrln(U/I'). We note that this condition is
much more stringent than the condition —~d && I
which one might have naturally written down.

The validity of the above discussion is demonstrat-
ed by the plots A, 8, and C of Fig. 11(a), in all of
which TX displays a transition from the valence-
fluctuation to the local-moment regime. The —E~'

values for these three plots are (in units of D)
7.557 X 10, 6.315 X 10, and 7.557 x 10 ', respec-
tively. Using an o. of 4 we get for the values of the
transition temperature T2 the numbers 1.9 x 10
1.6 X10, and 1.9 &&10 ', which are roughly right.
At any rate the trends are clearly correct.

We next discuss the local-moment regime.

D. Local-moment regime

In this section we discuss the local-moment re-

gime, in which TX= 4. The main point that will

emerge from our discussion is that the basic way in
which the local-moment regime for the asymmetric
case differs from that for the symmetric case is it has
potential scattering of the conduction electrons, but
that this potential scattering has little effect on the
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= (T,'/D)
or

2 ln(D/T2" )
lnA

(3.24)

temperature dependence of TX. We also show the
correspondence between the asymmetric Anderson
model and the spin-

2
Kondo Hamiltonian with po-

tential scattering.
As discussed in Sec. III C, when the values of U,

64I, and I are such that —E~' determined by Eq.
(3.22) is much bigger than I', we get a crossover
from the valence fluctuation to the local-moment re-
gime. In terms of TX, the transition temperature is
T2' [cf. Eq. (3.23)]. In terms of H((, the transition
iteration number N2' can be determined by setting

so that for N & N2', H~ arrives close to the local-
moment fixed point. This is seen from Fig. 10, for
which case N2' given by Eq. (3.24) is =24.

In accordance with the discussion in Sec. IVC, in

the vicinity of the local-moment fixed point H~ can
be described by the effective Hamiltonian

H„'((„(K)= H,",„(K)+JA(' »»-,-(ft„-,„f,„)

(3.25)

where only the generator of the marginal operator
5H( LM (cf. Table II) is explicitly shown. The other
marginal operator is a potential-scattering term, and
can be included in H(( LM (K).

We note that Eq. (3.25) can be rewritten

H((LM (K) =A X A " ( (.fnt, fn+tn+fn+(gafn(n)+ Jr 'fot (r(nnfon+K(fog. /o(n
nW

(3.26)

But this is precisely the sequence of Hamiltonians one would use in a numerical renormalization-group treatment
of the spin-

2
Kondo problem when potential scattering is present in addition to the usual spin-spin scattering off

the impurity. ' Within the framework of the same approximations as in Sec. II A of I, such a problem corresponds
to the model Hamiltonian [compare Eq. (1.1)]:

~1 nl pl (1
JQ» =D», k dk ak„ak„—pJ „,dk „dk'ak„ona„, —

2
7+pK „dk J dk'ak~a„, (3.27)

where D~ is the appropriate bandwidth. X~, when subject to discretization, etc. , leads to precisely the sequence
of Hamiltonians (3.26), if we identify J and K as

2 1

1+A-' '- ' K = — 2pK
I + A-' (3.28)

This reconfirms the well-known equivalence" between the asymmetric Anderson Hamiltonian and the spin- —,

Kondo Hamiltonian with potential scattering. We note that in the light of our analysis, this equivalence is valid
only for temperatures below the transition temperature T2', so that T2' plays the role of the bandwidth D~ in the
equivalent Kondo problem.

Next we discuss the properties of HN''LM (K ). In terms of the electron and hole operators that diagonalize
Hy (.M (K) (cf. Sec. II A), we can write, using Eq. (2.16)

L2 L2

H('(,"LM (K) = $ (7(('g('„g(„+g( h('„h(, ) +J7 X {a(o((n,', g('„o.I,„g, +(~I(a,—,Ih(„g,„h,t
I 1 II

+ (nO((n I ( g(n (rnIIh I + h I (r gIIg(n) } (3.29)

[By analogy with the discussion following Eq. (3.8),
the upper limit L2 is given by —,(N —N2" ).] The

energy levels of the states considered in Table I, calcu-
lated using H('(((LM (K) to O(J), are listed in Table
V. Comparison with the levels plotted in Fig. 10
shows that in this case (unlike the two previous re-
gimes) g(+ W q( so K &0, and in fact, since q~ ( q(+,

K )0. Also, we see that J )0.

F(T(() = — kgBlT+n2(Fo)K (3.31)

Here Xo and I'0 are the contributions from the fixed

One can also calculate the susceptibility and the
free energy to O(J), using H((,""LM in place of H& in
Eqs. (1.5) and (1.6). The results are

kB TB(t( T(() =
4

+ kB TN&o(K ) J&&,LM(K ), (3.30)
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TABLE V. States and energies of H& LM (K). where AA is the function of A introduced in Eq.
(5.21) of I,

Charge Spin Index

Q S r State Energy

& (I + A l) lnA 1+A '
l

IA
2o. 1 —A '

1

2

7 +g1+h1
7 +g1+h1

0

q&++q& +( )
q++q-, +( )

1

2
~+2h1 2 g1

1

2
T +2g1 2g+,

0 7 +h1

v +g1+2h1
7 +h1

2
1 3Japl

q1 +2m]i —3Jnp]+ +2

A

q) + Jnp1

7 +g1
7. +2g1+ h1

7 +g1

2
g+, —3Jap+1

2
+1+~i 3J01

+2g+1+ Jap+,

point, due to potential scattering alone. Xp was writ-
ten down earlier [cf. Eq. (2.14)], and Fo is given by

(1+e "' )(1+e "' )
I 1 (I+ all )2

(3.32)

The function X1 LM is given by
l

2 ( +)2 ~~l

X1,LM(K ) =p '-' (I+. '"')'
(~- )2e a~l+"''
(1+e "' )',

O.'0 VF O,'0
2 2 4

1 +
inA (inA)2

1/2

(3.34)

Substituting these results into Eq. (3.30), and making
use of Eq. (3.28), we get, to O(pJ)

l t 2' -1 l

k TX(T)=—,
' I+ I+

A A

(3.35)

(3.33)

Note that there is no O(J) term in F(Tll). The
functions Fp, Xp, and X1 are evaluated in Appendix
A, where Fo and Xo are shown to be zero (see also
the discussion of Xo in Sec. IIB), and Xt LM to be
given by [cf. Eqs. (A34), (A50), and (A30)]

ap2(K )
Xt LM(K ) = X2 + X2 =

lnA

= I+—'(InA)2- ' (inA)'+
12 720 (3.36)

As A 1, 2 & goes to 1 quite rapidly, and Eq. (3.35)
tends to the expected continuum limit. ' %e note
that J produces a constant shift in TX. Since we saw
from the energy levels that J )0, Eq. (3.28) yields

pJ & 0, so that TX is reduced below 4, in agreement

with the plots in Fig. 11. The expression (3.35) for
TX is valid only for T just less than the transition
temperature T2', as discussed later.

Next we discuss the relation between the effective
values of pJ and pK in the equivalent Kondo Hamil-
tonian (3.27), and the parameters U, ed, and I' of the
asymmetric Anderson model. For general values of
U, e~, and I, this relation can be established numeri-
cally, first by calculating J and K from the numerical-
ly determined energy levels, and then evaluating pJ
and pK using Eq. (3.28). For limiting cases, howev-
er, the relation can be established in analytical form,
as shown below,

In Sec. II A, while discussing the local-moment
fixed point, we showed that when Uand —ed are
themselves much larger than the energies of interest
(i.e., Uand —eq are much larger than D in addition
to being much greater than I'), then one is in effect
considering the Hamiltonian (2.9), which is precisely
the same as Eq. (3.25), with J and K being given by
(2.8). Making use of Eq. (3.28), and substituting for
U, ez, and I' from Eq. (1.3), it is easy to verify that
for such a case we get

pJ=- 2r 2r
2r~e, ( 2r( U + e, )

r rK= 2~(U+.d)

(3.37)

pJ=— 2I
m[E,"[

2I'
~(U+.,)

l IpK=—
2~~ Z,'~ 2~( U+.,)

(3.38)

The reasons for this expectation are as follows. First,

which are identical to the Schrieffer-Wolff results. "
As we showed in I (cf. Sec. V B), for the symmetric
Anderson model these results continue to be valid
even when U/D « 1. However, in the typical
asymmetric case that we have been considering where
I « —ed « U, and there is an appreciable range of
temperatures for which we have a valence-fluctuation
regime, the above results are no longer valid. In this
case, we rather expect
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the reason that Eq. (3.38) is different from Eq.
(3.37) is that within the valence-fluctuation regime,
there is an effective orbital energy Eq(N) which does
not scale in a simple fashion (as Atn '~~2). Now con-
sider the Hamiltonian H~ just at N = N2', the transi-
tion point from the valence-Auctuation to the local-
moment regime. From the discussion in Sec. III C,
we know that it is basically given by Eq. (3.6) but
with eq replaced by Ed (related to Eq' the same way
as ed is related to eq), which, in the case we are con-
sidering, is negative and much larger in magnitude
than I. Furthermore, the Ed A ' is much larger
than the energies of interest. Hence we can argue as
in Sec. III A to claim that Eq. (3.6) can be replaced
by Eq. (3.26) with J and K being given by [compare
Eq. (2.8) for U=~]

rJ=—— „+J),
2Ed

I
—, +K)

2Ed
(3.39)

4(4kff Tx( T) —I) = ln( T/T») (3.40)

where C&(y) is a universal function independent of J

The reason for the appearance of J~ and K~ above is
that these terms are identical to the J and K terms in
Eq. (3.26) within the supspace in which nd =1, and
hence get carried through the crossover from the
valence-fluctuation to the local-moment regime.
Equation (3.39) together with Eq. (3.28) leads to Eq.
(3.38).

The next thing for us to discuss is the temperature
dependence of TX as T decreases within the local-
moment regime.

Consider the flow of HNnLM (K) as Af increases
within the local-moment regime. Since J in Eq.
(3.39) is the dominant variable in addition to being
marginal, higher-order terms in J become quite im-
portant as N increases. This is because when one cal-
culates various quantities that characterize
Hf'f""LM (K), such as its first few energy levels,
kff T&X( Tff ), etc. , as expansions in powers of J, one
gets "bad" expansions, in the sense that the expan-
sion coefficients are polynomials in N and become
large when N gets large.

We recall' that in the symmetric case, i.e., in the
case where the effective Kondo Hamiltonian has no
potential scattering, the bad expansions (in powers of
J ) for the various properties of HffnLM (K =0) can
be taken care by introducing one effective, N-

dependent, running-coupling constant Jjf (represent-
ed by Zn in Ref. 2). The precise definition of Jn is
somewhat arbitrary, but the central point is that,
although J'& has a bad expansion in powers of J, all
the quantities that characterize Hf". LM (K =0) have
"good" expansions (free of powers of N) in powers of
Jn. In particular Jff+2 and kff T„X(TN) have good ex-
pansions in powers of J~ and this is what leads to the
scaling law for the susceptibility, given by

pJ„„=pJ[I+(~pK)']-' . (3.42b)

Substituting Eq. (3.42) into Eq. (3.40), we get the
result that the Kondo temperature T~ in the asym[-
metric case is given by

T"
T» = exp[ —C&(pJ,ff)] (3.43)

Thus the presence of (particle-hole) asymmetry in
the Anderson model, or of potential scattering in the
Kondo problem, seems to make itself felt in the sus-
ceptibility only via the effective Kondo temperature,
i.e., via the renormalization of pJas in Eqs. (3.42)
and via the effective bandwidth T2'. These features
had been suggested earlier, on the basis of perturba-
tive treatments" '" of the Kondo problem with po-

with an expansion for small y of the form

fIf ( y) = ————ln
~ y ~

+ 0 ( y)
1 I (3.41)2

The coupling constant J, band-edge effects, etc. ,
enter Eq. (3.40) only via the scaling temperature T»,
called the Kondo temperature. The argument that
leads to this result is briefly recalled in Appendix 8:
The details have been discussed extensively in Refs.
1 and 2.

In the asymmetric case, however, higher-order
terms in J can be shown to generate additional poten-
tial scattering about Hff" „M (K), and it appears not to
be the case that atl the quantities characterizing
HN"f. M (K) can be described in terms of one
running-coupling constant Jg. The details about this
complication are being investigated.

Nevertheless, we note that our numerical calcula-
tions for the asymmetric Anderson model seem to in-
dicate the following remarkable result. Namely, that
the susceptibility for the asymmetric local-moment
case still obeys a scaling law of the form (3.40), with
the same universal function 4( y) as for the sym-
metric case. This result is demonstrated numerically
by the fact that the TX vs ln T plots of Fig. 11(b) can
actually be mapped on to the universal Kondo sus-
ceptibility curve as indicated by the dashed curves in
Fig. 11(b) (compare Fig. 3).

Assuming the validity of the scaling law (3.40) for
the susceptibility for the asymmetric local-moment
case, consider applying it to the susceptibility at a
temperature less than, but close to T2', the transition
temperature, Eq. (3.35) is a good approximation to
the susceptibility, since the 0 (J') corrections will not
have had a change to build up yet. Therefore we
have, for T = Tq" /u, say,

2' -1
4kff TX(T) —I = p 1+ p —= pJ, ff(A)

A A

(3.42 a)

In the continuum limit (A 1) A» 1, and J,ff(A)
reduces to



1066 H. R. KRISHNA-MURTHY, J. %. WILKINS, AND K. G. WILSON

tential scattering. An argument which lends plausibili-

ty to these results and which depends on the present
renormalization-group approach is presented in Ap-
pendix C.

Finally, we discuss the dependence of the Kondo
temperature Tg on the parameters of the Anderson
model. Using Eqs. (3.43), (3.41), and (3.22) we get
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I pJ.ffi, (3.44)

where pJ is given by Eq. (3.38) and the proportionali-
ty factor is a regular power series in I /lEd"

l and
I /(U+ aq). In the extreme asymmetric case, when
I'/U can be neglected in comparison to I'/lEd'l in the
expression for pJ, we can use Eq. (3.40) to exprss Tx
in terms of the original parameters I, ~~, and U. We
get

Tx —(I U)'~'exp— (3.45)

a result which Haldane derived earlier using pertur-
bation theory in I from the asymmetric Anderson
model.

In order to compare the T~ resulting from the re-
normalization calculations of TX with those from an-
alytic formulas, we must, as in I (see the end of Sec.
V B), discuss the effects of perturbation theory, of re-
normalization by pJ, and of finite A on Eq. (3.44).
In fact, the only change from the arguments present-
ed in I is that Eq. (3.44) must be multiplied by 0.364
instead of 0.182 (the factor of 2 results from the fact
that the orbital energy is —, U in the symmetric

Anderson model while it is just Ed in the asymmetric
, one). Hence we calculate Tx from

T~(I', aq, U) =0.182lEd"
l [pJ,«(A) ]'

(3.46)

In Table VI we compare the values of the expression
(3.46) for each of the three cases in Fig. 11(b) with
the corresponding numerically determined values of
T~. The latter can be obtained from the plots via the
mapping with thc universal curve, or morc accurately
from the numerical results for TX, by looking for the
temperature at which TX=0.0701 (cf. Fig. 3). The
agreement between the last two columns seems a lit-
tle too good.

The next regime of behavior that we must discuss
is the low-temperature, frozen-impurity regime, in
which TX is zero. For the case we have been dis-
cussing above, this regime is reached for tempera-
tures much smaller than the Kondo temperature [cf.
Fig. 11(b)]. But before discussing the frozen-
impurity regime, it is convenient for us to discuss the
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transitional cases, by which term we mean cases
where the parameter values are such that one or the
other of the three regimes we have discussed so far is
absent. (The frozen-impurity regime is always
present as long as I' &0.)

E. Transitional cases

(3.47)

O.25

0.20-

keT
2 0.]5-

«ee~

0.]0-

r+
r ~ ~ ~ ~ ~ ~ e ~

/

/
/

/
/

/

~ ~

/

/

~ ~

[O' ]O'

0.05-

I

]o' ]d' [O' ]O' [0'
keT/0

I

0- I

FIG. 13. Plot of I.~TX(T)/(gp, q) vs ln(k&T/D) for a

choice of parameters e&, U, and I such that —Ed = I [see
Eq. (3.22)]. There is considerable hybridization between the
n& =0 and n~ =1 impurity configurations, resulting in a rela-
tively small value of TX in the local-moment regime. It is
difficult to see the deviations (which are a consequence of
this hybridization) from the universal Kondo susceptibility
(dashed curve) as the system evolves toward the frozen-
impurity fixed point.

The most interesting transitional situation to dis-
cuss is the case where, as —ed decreases, Eq' [g—iven

by Eq. (3.22)] decreases to become comparable to I'.
Then the states in which nq =1 get strongly admixed
with the states in which n~ =0, and we no longer ex-
pect a transition from the valence-fluctuation regime
to the local-moment regime. Another way to think
about this situation is to note that, as —Fq' grows to
become of order I", pJ, the coupling constant that
governs the local-moment regime and is given by Eq.
(3.38), grows to become of order unity. Whence,
from Eq. (3.45) we see that the Kondo temperature
T~ rises to become of order T2', so that the transition
from the valence-fluctuation to the local-moment re-
gime merges with the transition from the local-
moment to the frozen-impurity regime. The result is
that TX makes a direct transition from the valence-
fluctuation to the frozen-impurity regime, at a transi-
tion temperature of the order of I' (which is the same
as —Eq'). We note that this situation can arise even
for —eg ))I, once —ed & I /m In U/I'. In this case
the significant quantity is Eq( T =I'/n) given by [cf.
Eq. (3.16)]

n T3' = Ed ( T3" ) = Eq'", — (3.48)

1.e.,

[

= Ed(F/n) ——in —'
n'

(3.49)

And as T drops below T3', TX makes a transition
from the valence-fluctuation to the frozen-impurity
regime. Numerical results for TX for the case when
E„(I'/n) ) I' are plotted in Fig. 14(b). We note that
these plots show sharp drops in TX reminiscent of
the sharp drops in TX for the case when I =0 and
ed &0 (cf. Fig. 5). These sharp drops are nonuniver-
sal, i.e., can not be mapped on to the universal
Kondo-susceptibility curve, and correspond to broad
maxima when we plot X vs T, as shown in Fig. 14(b).

As ~d becomes positive and increases, so does Fq".
When eq is driven to be of order U. Fd" also be-
comes of order U, when the transition from the
free-orbital to the valence-fluctuation regime merges
with that from the valence-fluctuation to the frozen-
impurity regime, and we get a direct transition from
the free-orbital to the frozen-impurity regime at a
temperature T3' set by Ed.

That basically covers all the ranges of ed when
I &( U ((D. Next we consider what happens
when I is made comparable to or bigger than U.
Then we once again get a direct transition from the
free-orbital to the frozen-impurity regime. Since ed is

1
restricted to be ~——, U, this transition will be con-
trolled by I if

~
ad ~

&& I, and by eq if eq && I'.
Finally consider the case when U itself is made

comparable to the bandwidth D. Since we are in-
terested in k~T (D, in this case there will be no
free-orbital regime. The rest of the regimes depend
on the values of ed and I'. If (~eq~, I ] && D, we start

As —ed decreases through the value (I'/m) ln U/I,
eq(I'/n) goes from a negative value through zero to
a positive value. But as long as ~E~(I'/n)

~

& I, the
transition from the valence-fluctuation to the
frozen-impurity regime is basically controlled by I,
and is very hard to treat analytically. One can only
rely on the numerical results, such as plotted in Fig.
14(a).

Eventually, as —eq gets small enough or becomes
positive, Ed(l'/n) becomes much larger than I . In this
case, as the temperature decreases within the valence-
fluctuation regime Eq(T) can be positive and increas-
ing, so that the breakdown from the valence-
fluctuation regime can occur because T becomes
smaller than Eq(T) fcf. Eq. (3.21)]. In this case we
can identify a temperature T3' such that
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FIG. 14. Plots of k~T&/(gpB)» ln(AT/D) «r a

choice of the parameters U, ~d, and I such that Ed' & I"

[see Eq. (3.52)]. The transition between the valence-
fluctuation fixed point and the frozen-impurity fixed point
resembles the situation in which I =0 and ~d )0; i.e., the

ground state of the impurity has zero occupancy. Deviations
from the universal shape indicated by the dashed line reveal
the nonmagnetic character of the impurity, (b) Plots of
DX/( gp, B) vs k& T/D for the same parameters as in (a).
The deviations from universality in (a) correspond to the
broad maxima in this more conventional plot. The curves
labeled A, 8, C, and D correspond to run numbers 7.4, 7.5,
7.6, and 7.7, respectively, in Table VIII.

F. Frozen-impurity regime

The frozen-impurity regime is the regime in which,
effectively, the impurity degree of freedom is frozen
out, and corresponds to a characteristic TX value of
0. From the discussions in Secs. III '—III E, it is
clear that the frozen-impurity regime is the stable

with the valence-fluctuation regime for k~T & D, and
the discussion of Secs. III A —III C can be applied to
this case merely by replacing U by D everywhere.
Plots of TX vs ln T for the ease when U =D are
shown in Fig. 15.
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low-temperature regime (i.e., there are no further
transitions away from this regime). (This is true as
long as I ~0. When I =0, the valence-fluctuation
regime is stable if ~q=0, the local-moment regime is
stable if eq & 0, and the free-orbital regime is stable
if a~= U =0.) The threshold temperature below
which TX can be considered to be in the frozen-
impurity regime is given by T~, I, or T3" depending
on the parameter values that we are considering.

As we discussed in Secs. II A and II 8, the frozen-
impurity regime is associated with the frozen-

I

ks»D

FIG. 15. Plots of k~T/(pp~) vs ln(k&T/D) for parame-
ters U, ~&, and I chosen so that E~"&I [see Eq. (3.52)].
Curves A, 8, C, and D are characterized by the condition
U —D, resulting in the absence of the free-impurity fixed
point [cf. with Fig. 14(a)], The nonmagnetic character of
the impurity is indicated by the sharper drop of the full-line
curves than of the universal (dashed) curve. (b) Plots of
DX/( g p&)2 vs (k&T/D) for the same parameters as in (a).
The broad maxima correspond to the deviations from
universality depicted in that figure. The curves A, 8, C, and
D corrcspond to run numbers 6.1, 6.2, 6.3, and 6.4, respec-
tively, in Table VIII.
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impurity fixed point, HFI (K). The low-temperature
region in which T is close to zero corresponds to a
large N region in which H~ is close to HFI (K).
Hence we can calculate the properties of the frozen-
impurity regime using an effective Hamiltonian con-
structed around H~ FI (K), as discussed in Sec. II C.
In this paper we will include in this effective Hamil-
tonian only the generators of the two leading ir-

relevant operators of eigenvalue A ', namely H~ F~

and H2FI (cf. Table II). That is to say, we will use

P( N )I/2 ( f t—f I ) 2 (3.50)

Hive"FI (K) = Hp FI (K)+OIIA ( fp»AI»+A 1» fo»).

where the parameters au~ and co2 will be determined in
terms of U, e~, and I', and A ~ is the operator defined
in Eq. (2.17).

The central aspect of our discussion of the frozen-
impurity regime mill be thy result that the dominant
contribution to the susceptibility is a constant term
proportional to co~ and co2, and the dominant contri-
bution to the specific heat is a term linear in T and
proportional to ~~. We will also discuss the depen-
dence of the parameters ~~ and eo2 on the parameters
of the Anderson model, namely U, ~~, and I . Ex-
pressing Eq. (3.50) in terms of the electron and hole
operators that diagonaiize Hg, FI (K), we get using
Eqs. (2.16) and (2.17),

HN, FI (K) X (Wl gl»gl» + 2ll Al»hl»)
I

+OII& Q(aola 71 gl g ~ noln %1 "I " a»a '& 'gl»h ' + p' o
' 1' "'»gl'-(gi)/2~ + + + t — — — t + — — t t — + +

Ol I I I p Ol I' I I Ol I I v Ol I

II

1

+ o)2A X (apl a rgrl„g + apla ihl„h + nolaolgl»h, + nolnp, AI»g, ' j-(W-})/2 ~ + + + i (iV-))/2 I

Ol & I pa Ol & Ip, Ol & lp
J

II

(3.51)

There are some technical restrictions associated with the use of Eq. (3.51): (i) Out of the eigenoperator terms,
we must drop any pieces that look like a ground-state energy term (since, although this fact was not stressed ear-
lier, the Hamiltonians H~ are actually defined with their ground-state energies subtracted), « like po«ntial-
scattering terms (since all such effects are assumed to be included in the fixed-point energies rtl and 211 ). (ii)
Only first-order calculations in OII and OI2 are permitted (since other operators which can be effectively of the
same strength as the second-order contributions have not been included). Furthermore, since we are only «n-
sidering energies and static properties in this paper, we need only the diagonal part of Eq. (3.50). It is s«»ghtfor-
ward to verify that the diagonal part of the cv~ term is given by

2
2OII A g ( aol 'gl gl»gl» + nol OI Al»hl»)

I

(3.52)

-(N-1)/2 + +This term shifts every electron energy qI+ by an amount equal to 2co~A " 'ooI qI+ and every hole energy qI by
-(W-])/22(o)A '

noI qI . The diagonal part of the ~2 term can be shown to be'
2 2

o&2A X ((a(ll) (a+ &() [ gl»gt g i gl» + gl»g i glzg (I & I') 1+ n(II ao i[ A(»h i A s Al» + Al»h g hl&h i (/ A I') ]
II

+2nol a» I gl»AI h, gl„—gl„h, h, gl„]+2npla, ia(Ila, , [gl„h, Al„g,~„—gl„h, hl„g, ],)

(3.53)
We note that this term only affects two-particle states.

In Table VII we list the energies of the states considered in Table I calculated using the above effective Harnil-
tonian. By fitting the numerically calculated energy levels to these results we can determine K, co~, and ao2. Note
that all the low-lying energy levels of Hg are being described in terms of just three parameters.

The susceptibility and the free energy can be calculated by substituting Hg"FI (K) in place of Hlv in Eqs. (1.5)
and (1.6). To order OII and OI2, we get

A
—( -)/

ks Ty X ( Tll ) = ka TII( Xp( K )— ,~,-(W-1)/2
OJ2Pa

2
XI, FI — [ X2, FI + X2, FIF2, FI ] (3.54)
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TABLE Vll. States and energies of H(t'("'FX (K & 0).

Charge

Q

Spin
S

Index Energy

-2

1

2

1

2

2p} +h

h}

p) +2'}A / (~ +)

+2~ A-( -»/2( +' — +' -'»
GP2 o.'0} o.'0} AP} )

„-, +2„A-(~-})/2( -2 -)

+2 1

2 2P} +F2

g}+h}

a'} +h}

2g}

A'} +g2

P} +F2

++ +2 A /( + ++ )

+2 A-(w-})/2

Yf~ + YJ] +2'}A (0! 'g + o! g )
2 2

—2~ A-("-}»2m+'n-'2 +0} +0}

2'g + 26'}A (2ckp} Tji ) +20)2A (A )

„++„++2.A-(&-})/2(.+ „++.—,-)2 2

+4 A-(W-})/2 + +
6)2 0!0}AP2

g++g++2~ A-("-})/2(n+' ++~-' -)

'Neglecting possibility of degeneracy, i.e, p~ (A ) =0.

~-(W-})/2
QP}

A-(w-})/2
OP2

F(Tjy) =Fo(it" ) +lrCaTjy Fr F)+— (3.55)

Here Xp and Fp are the contributions from the fixed point, i.e. , due to potential scattering, and have been written
down earlier [cf. Eq. (2.14) for Xp and Eq. (3.32) for Fp]. The other functions, Xr Fr, X2 Fr, etc. , are defined as
follows:.

-P'9( -P'9( -0 l( -P l(

%, Fr It = X ~or 'gr + &10( 'g(
I (1+e "' )' (1+e "' )'

(3.56)

4,Fr(&) P X ~or
(

+ 0.'p(

(1+e "' )' (1+e ")' (3.57)

-Ps( -Pn(,2e '(1 —e ')
~3,FI(+) P $ ~pl

(1+e "' )'
2e "' (1 —e "')

0!0(

(1+ "' )'
(3.58)

-Pv(
e

+ap( q(—
(1+e ' ) ( 1 + e "'.)

(3.59)
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-Pn(
+2 p 2

F2 FI(K) =—/3 g uor + nor
t 1+ P~l 1+p

P~l
(3.60)

kB T/t/Xo= Fo X3 Ff F2 Ff 0

nr'1(K)
XI, FI X2, FI FI, FI ( 6

(3.61)

(3.62)

where [cf. Eq. (A30)],

All these functions are to be evaluated in the limit

P 0 and N ~ keeping TN fixed. (N determines
the upper limit on I in the sums. )

The thermodynamic functions above are evaluated
in Appendix A. There we show that, neglecting
corrections of order exp( rr'—/lnA), the functions are
given by [cf. Eqs. (A54) —(A57)]

The next thing for us to discuss is the dependence
of pII and pI2, or rather, of XD/( gpa)' and R, on the
parameters U, ~d, and I. There are basically three
cases for which such a discussion is in order.

(i) The first case is when U can be treated as a

small parameter. This case can be handled analytical-
ly, as has been done in Appendix D where we show

'

that
r r

X ~w
1 ~ U 0 U

( gIM, a)2 2rrA m A rrb

(3.68)

2 4

u2p(K) =np 1+ K =up/(K)
(in A)' (3.63) R =1+3, +0

mb,
(3.69)

Substituting these results into Eqs. (3.54) and
(3.55) and making use of the connection Eq. (1.4)
between P N, and Trr, and putting back all the factors
we have been suppressing, we obtain

where

r'+ [~,(.„+—,
' U) ]'

r (3.70)

(T) (gI a)'
X

pIIIt (K) I, pI, y'(K)
+ —,

' (1+A-')
2AA 2 43A2

(3.64)

( k,r)'—F(r) = '
( —,

' ~')
D

(3.65)

where A A is the same quantity as defined earlier in
Eq. (3.36). From Eq. (3.65) we get, for the specific
heat,

c(rr) = —r, F(r)a'
'BT2

, k,'r —~14(K)
D 2AA

(3.66)

Thus we have the results promised earlier, namely
that the susceptibility is a constant and the specific
heat is linear in T. The results for C and X can be
combined to get the ratio

R
4 2 kB- TX

(gp, )'

= I ——,
' (I + A-')

23 A

(3.67)

As mentioned earlier, co], cu2, and K can be calculated
by fitting to the numerically determined energy lev-
els. Using these we can calculate XD/(gp. a)' and R
from Eqs. (3.64) and (3.67). The results for the
various parameter values that we have considered so
far are listed in Table VIII.

x( T)

( gIMa) kB TK
(3.72)

The validity of this result for the cases plotted in Fig.
11(b) can be gathered from Table VIII, where the
values of the two sides of Eq. (3.72) are compared.

In the symmetric case, one could argue2 that R
should be independent of pJ for small enough pJ,

and A A is the A-dependent quantity defined earlier in

Eq. (3.36) (AK 1 as A 1). The above results
agree with the known continuum-theory results' in
the limit A 1.

(ii) The second case is the asymmetric-local-
moment case when U and —ed are both large enough
compared to I that there is a substantial temperature
range for which TX is in the local-moment regime.

From the discussion of Sec. III D, we know that in

this case X seems to obey the scaling law (3.40),
which can be reexpressed in the form

ks TK X( T) =
4 ( TK/ T ) [ I + qI ' (ln( T/ TK) ) ] (3.71)

where 4 ' denotes the function which is the inverse
of qI. The right-hand side of Eq. (3.71) is clearly
another universal function of (T/TK), and as T 0,
we expect it to go to some universal constant X„.
Since 4 for the asymmetric case seems to be the
same as 4 for the symmetric case, we expect that X„
for the asymmetric case has the same value as for the
symmetric case, i.e., for the Kondo problem without
potential scattering, namely, "X„=0.1. Hence we

expect, for T (( T&,
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TABLE VIII. Appropriate numerical values for all the numerical computations in this paper, all done for A =3. Runs 7.1 to
7.3 are curves A to C in Fig. 10; 7.4 to 7.7 are in Fig. 14, and 6.1 to 6.4 in Fig. 15. The values of Ed /I or Fd' /I have been de-
duced from Eq. {3.22) or {3.49) and are also indicated on Fig. 12. T~/D is the temperature where TX=0.07. The susceptibility
and the coefficients cu& and cv& {ofthe two irrelevant operators about the frozen-impurity fixed point) are shown in units of
T~/D so that deviations f'rom universality can be appreciated. The primes on ~&, ~~, and K' denote that the analysis for
frozen-impurity regime was done for even N, while the discussion in the text has been for odd N,

U

D
r
D

{or Ed') {in units of T&/D)

7.1 10 3

72 1Q

73 10 ~

—mx10 61

2

—~x10 61

2

—nx10 51

2

-10-'
-10-'
—10 4

—4.81

—4.02

—4.81 2.20 x10 9 0.112 0.395

2.67 x 10 '0 0.114 0.405

7.46 x 10 ' 0.111 0.400

0.106 0.108 2.07

0.103 0.130 2.08

0.104 0, 105 2,06

74 1Q

7.5 10 ~

76 10 ~

7.7 10-'

—nx10 51

2

—mx10 '1

2

—~x10 51

2

—mx10 51

2

—1.57 x 10
—0.974 x10 '

- 0974 x10 5

1.04

1.34

1.85

2.40

1.10 x10 5

1,67 x10 5

2.08 x10 5

0.302 2 ~ 26

0.443

0.527

3.60

4.91

0.824 x 10 0.242 1.71 0.057 1.56

0 050 1.88

0.043 2.44

0.033 3.04

1.67

1.53

1.39

1.30

6.1

6.2
6.3
6.4

0.5
0.5
0.5
0.5

~x10 3

7r x10 3

7r x10 3

~x10 3

—~x10 3

-1,948 x 10
0

1.948 x 10

0.72
1.00
1.48
2.01

1.06 x10 3

1.52 x10 3

2.20 x 10
3.54 x 10 3

0.182
0.227
0.293
0.452

1.18
1.55
2.19
3.74

0.069 1.17
0.044 1.45
0.045 1.96
0.042 2.52

1.88
1,71
1.51
1.37

Fig. 13 10-' —~ x 10-'
2

—Sx10 5 —1.18 4, 78 x10 '

and the numerical results showed this value to be
R =2. In the asymmetric case there seems to be no
simple argument which makes clear whether or not R
is independent of the parameters of the Anderson
model. The numerical results in Table VIII show
that R in the universal range (runs 7.1 —7.3) is only

slightly affected by potential scattering. In the
nonuniversal range (runs 7.4—7.7 and 6.1—6.4) R
drops below 2, the amount of drop being a rough in-

dication of the magnitude of the departure from
universality.

(iii) The final case for which we can discuss the
dependence of X/( g p,a)' and R on U, eq, and I' is
the case considered in Sec. III F. where —ed is small
enough compared to I or ed is positive such that
there is a direct transition from the valence-
fluctuation to the frozen-impurity regime due to a
positive Fq( T).

In this case, in view of our discussions in Sec. IIIE
[cf. discussion around Eq. (3.48) and (3.49)], the sit-
uation for temperatures much less than the transition
temperature T3' can be likened to that for an Ander-
son model with an effective ed equal to Ed'" and an
effectiv U equal to ~. Hence we can use the expres-
sion (D27) derived in Appendix D and replace eq by
Ed"' to claim that in this case

(3.73)
(gpa)' Ap 2'(EJ')'

The condition for the validity of this result is that
Ed" be much greater than I .

%'e note that the dependence of Ed" on ed, U, and
I is obtainable by solving the transcendental equation
(3.48). For the case when eq is positive and compar-
able to U, th solution for Ed'" is approximately

I U
Ed =- ed +—ln —+

7T
(3.74)

Substituting this result into Eq. (3.73) we get (setting
1~=1)

x I 2I U1— ln —+
( g PB) 2'rr&d ~~d &d

. (3.75)

Of course, such a series for X can be obtained directly
from the asymmetric Anderson model (for the case
when eq )) I') using perturbation theory in I', as has
been done by Haldane. ' The expression (3.73) can
be looked upon as the result of summing up of the
logarithmic terms of such a perturbation series. (Of
course, such a summing up is hard to perform
without using renormalization-group techniques, ei-
ther as above, or in the scaling-theory form used by
Haldane. ~)
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Htl g KIaI al +K~ yol+o al ao

II

(As)

It is easy to show that a new set of operators c, ,
defined as c, = $1 ul, al where ul, are the elements of
an orthogonal matrix, will diagonalize HN(K) into a
set of single-particle levels 2), (N) provided the u»

satisfy the equations

( 2//
—EI) u'lJ = K yol Xy tll i, (A6)

The solution of Eq. (A6) is easily shown to be

2

K = $ ——= X(N, 2)/)
7)j —fl

Expressing HN(K) in terms of the operators a, we get

APPENDIX A: DISCUSSION OF THE FREE-ELECTRON
HAMILTONIAN WITH POTENTIAL SCATTERING

2
+OI+OI

n, —~I
I

(q/
—

~l )'

1/2

(Ag)

In this appendix we discuss the properties of the
free-electron Hamiltonian with potential scattering,
described by the Hamiltonian (2.11)

HN0(K)

A(N I)/2 g A n—/2g (
—ftf, +ft f )+Kftf

nM

=H +KA ' f f (Al)

Spin indices are unimportant for this discussion and
are suppressed.

Exact results

I-I~ ——~~ ~laI a, ,
o ~ t

I

A
—(N 1)/4$—

Since HN(K) is a quadratic Hamiltonian it can be
diagonalized into a set of single particle levels, to find
which we express Eq. (Al) in terms of the operators
that diagonalize Hg. We will write

That is, the eigenvalues q, are determined by the
roots of the equation X(N, 2)) =K, which roots can
be determined graphically by plotting X(N, 2)) vs 2)

and locating the intercepts of such a plot with the--1
horizontal line L =A . Once q, are determined, ul,

can be computed using Eq. (Ag).
We first consider the case when N is odd. Using

Eq. (A3) we get

(N+1)/2 2

=X(N, &) =—2&
I 1 Q gl

(A9)

The graphical determination of the roots of this equa-
tion is sketched in Fig. 16(a), which shows that there
are —, (N +1) positive eigenvalues which grow

smoothly out of q,
"

as ~K
~

increases, and can be
denoted 2)/+(K, N) and

2
(N +1) negative eigen-

values that grow smoothly out of —qj' and can be
denoted —2) (K,N) [j =1,2, . . . , —(N +1)]. Us-

ing the results that for t » 1, qI'= Al ', and
ol = &oA' ', one can easily show that

( A
—(N+1)/2) 2n+1

X(N, 2)) =2r) X „+2o,02 $ p-(2n+1)
I

(A10)

yol = ~ol

al = /I-l, yol = o(0-1 (/ (0)t
(A3)

~
for N even, I =0, +1, +2, . . . , +

2 N,

In view of our discussion of H~ in Sec. IIIA of I, we
know that, for N odd, / = +1, +2, . . . , +—(N +1),

which shows that, as N ~ the eigenvalues
2)/

—(K,N) rapidly approach (with deviations that van-
ish as A ' "/') their fixed point values, denoted by

2)/
—(K). The equation determining 2)/

—is, from
(A 10),

OO

(A11)
A

&I = 7)I al = gl 'yol = ool

yOI = InOI-(A4) The behavior of 2)/-(K) as a function of K is
sketched in Fig. 16(b). We note that as K +~,
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x{e,~)

2 I ~l
0

(a)

o

II 9P

q+(K)—

-20 -10 IO

I

20 50
K

FIG. 16. Eigenvalues of the odd-N free-electron Hamil-

tonian with potential scattering K. (a) The characteristic
function L {N, q) [see Eq. (A9)] is plotted vs the energy q
measured in units of A ' for the case N = 5. Note
that X(N, q) blows up as the fixed points qj" of free-
electron Hamiltonian for odd N and is zero at those g~ for
even N. The intersection of X(N, q) with K gives the
roots vp~

—(K,N). (b) The behavior of p~-(K, N) is plotted

as a function of K. Note that as K +~, qj
—(K,N) ap-

proach the odd free-electron eigenvalues qz . In the limit

~ we denote the roots gj={K) as the eigenvalues of
the fixed-point Hamiltonian including potential scattering
I-I'(K);

(g,
—

} go over to the odd free-electron eigenvalues

}pi }. We will let H"(K) denote the fixed point
determined by the set of single-particle levels

~,'-(K).
Next we consider the case when N is even. Using

Eq. (A4) in Eq. (A7), in this case we get

W/2

K =X(N, q) = +2v) $
l-l

l7 Yf I

(A12)

The graphical determination of the roots of this equa-
tion are sketched in Fig. 17(a). This figure shows

1

that there are —, Ã positive eigenvalues which grow

smoothly out of q, as
~
K

~
increases and can be

d enoted g, (K,N), and
2

N negative eigenvalues

which grow smoothly out of —q,' and can be denoted
—q, (K,N) ( j = I, 2, . . . , —N). The eigenvalue

that grows out of qo (=0) is positive if K )0 and

negative if K & 0, and will be denoted qo(K, N) for
K )0 and —go (K,N) for K & 0. Exactly as in the

cage of odd N, we can verify that as N —~,
q, (K,N) rapidly approach their fixed-point values

q, (K). The latter are determined by the equation

OO A 2

+
The behavior of q, (K) as a function of K is

sketched in Fig. 17(b). We note that as K + ~,
Iq, } go over to the even free-electron eigenvalues
}pi'}. We will let H (K) denote the fixed point
determined by the set of single-particle levels

&,-(K).
We make one further remark about the ground-

state charge associated with H (K). We recall that
(cf. Sec. III A of I) our convention for assigning
charge was such that for the cases when K =0 the
zero of charge corresponds to having one electron in

'lip (cf. Table II of I). Therefore, when K )0 and we

associate an electron operator with qo, the ground
state (with no electrons or holes) of H (K) must be
assigned charge —1; when K ( 0, and we associate a
hole operator with qo, the ground state of H (K)
must be assigned charge +1.

Next we consider the expansion for fo in terms of
the new operators c, . Using Eqs. (A2), (AS), and

(A7), we get
r

fo = A g g yp(MIJ cg

j I

A-(w-&)/s y K—t

, , (v), —
e, ,)'

t

Cj (A14)

For large N, the term in large parentheses in Eq. (A14)
is independent of N. By labeling cj in terms of elec-
tron and hole operators, it is straightforward to show
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~a
A A g A

i 10 12
that for N odd we get

A
—(N 1)/4—

X ( + + —
g 1')

J
(AIS)

as was stated in Sec. IIC [cf. Eq. (2.16)]. uP, are
given by

j

Apj =K QQpJ 4. 4 +
( 71j- —

111 } ( 21j- + ji( )

1/2

=K [ X'(7—fJ+)] '-' (A16)

(a)

The second result above follows from the definition
(All) of X(rtj—). Similarly, for N even, we can
write

f11
—A'N ""$—(apjg, +npjhj')

J
(A17)

with the understanding that for K & 0 there is a gp

but no hp, whereas for K (0 there is a hp but no gp

[cf. the discussion following Eq. (A12)]. Using Eqs.
(A14) and (A13) we get

q'(K
+ --[ 2 I

CtpJ=K QIxp1 ' + „4 2
+ + „4(~J'-+ ~1 )'

1/2

=K [—X(&,'-)]-'~2 (A18)

(b

Finally, we calculate the O(A N ' ~ ) deviations
of 21,-(K,N) and q, (K,N) from their fixed-point
values. For example, by substituting rt,-(N)

IIJ + SJ A ' ' into Eq. (A 10) and collecting to-

gether the terms of O(A t '2 2), we can show that

A
—(N —1)/2

rlj
—(N) =rtj——

X'(rt,-+)

+
=~'-+K(~'-)2"' A-"-""

J pJ (A19)

I

-20 -IO l0
I

20 30
K

FIG. 17. Eigenvalues of the evei~-N ft;ee-electron Hamil-
tonian with potential scattering K. (a) The characteristic
function X(N =6, q) is plotted. vs q measured in units
A . Note the contrast with Fig. 16(a) in that X now
blows up at the f'ixed points q of odd-N free-electron Ham-J +iltonian, etc. (b) Similarly, the roots of qj

—(K, N) are ob-
tained from the graphical solution of X =K '. In the limit
N ~, we denote the roots g~-(K) as. the eigenvalue of
the fixed-point Hamiltonian including potential scattering

+ /II (K). Finally, we note that there is one-to-one mapping
between H (K ) and H (K) where K = —(2/n)
& lnA/(1 —A ')K ' tsee Eq. (A64)].

The scond step above follows from Eq. (A16). Simi-

larly

(A20)

Of course, one can also diagonalize Eq. (AI)
directly numerically, by diagonalizing the
(N +1) 24 (N + I) matrix Xv(K) whose only non-

vanishing matrix elements are

(3'-.v).,.+I = «v).+1,.
=At ' "1~/ n=0 1 (N —1)

(A21)

+
+ + ~.— A-(w-I)/2

it, (N) =it,
~ (~-)

.+
+K(" )2 nj

A
—(N 1)t2—
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[Compare with similar discussion in Sec. III A of I.]
The single-particle levels r), (N) are given by the
eigenvalues of this matrix. If the real orthogonal ma-

trix that diagonalizes Xy be denoted', then we

have the result that

as stated in Eq. (2.17). For N even we get

+it: /, —A
—I( —)/) g("+&+g "

& Ijt)

(A25b)

N

X(X,'),011, =&,(N).m„, .

n M

(A22) Similarly, one can prove Eq. (2.18) by considering
Eq. (A22) for n =1.

fn = g~nj Cj, Cj
= $~nj /n. (A23)

The new operators cj that diagonalize II)t(F ) are
then given by 2. Asymptotic (i e j. .», 1)

+ +results for qgj.—,mod, etc.

911and 7), (N) can be evaluated numerically using
standard diagonalization routines on a computer. In
this way all the results that we discussed earlier in

this appendix have been verified to be true.
Next we consider the proofs of results (2.17) and

(2.18) used in Sec. II C. Equation (2.16) has been
proved earlier. To prove Eq. (2.17), consider Eq.
(A22) for n =0. Using Eq. (A21) we get

„,+g, an„=~,A """Ort„.-- (A24)

But from Eq. (A23), 3R „and 5R» can be seen to be
the expansion coefficients for expressing, f'0 and f]
(respectively) in terms of the new operators c, . By
relabeling c, in terms of electron and hole operators
and by using the result (AIS), it is easy to show that
for N odd

Kfo+ /of) =A ' $(uo s)+g, —uq, 7), h )
J

(A25a)

For j )) 1, the quantities q,
—no-+„etc. , can be

evaluated exactly (analytically), as shown below.
First consider the case when Ã is odd. For

s)J+—» 1 we can write [cf. Eq. (All)]

A I-1
X(sI~ ):—2u—o IJ g + 2t, (q,-) —A '-

( +)2 A2(l ))—(A26)

The first approximation above follows from the fact
that the dominant terms in the sum in Eq. (Al I) are

+for 'gI = 'g. )) I, for which O02I O02Al-1 an
qt'= A' ', the second approximation follows from the
fact that the extra terms that are added are of order
(I/q, -). The last sum in Eq. (A26) can be evaluated
exactly using a Sommerfeld-Watson transformation, '

and we get

r

~( )
7ruo, sring

2 X
( —I)" tan( vr Inq/ ln A)

lnA InA „)cosh (sr'k/InA) tan'(m Inq/InA) +tanh'(rr Inq/InA)

~0 m lnq
2

cot
ln A lnA

(A27)

2+ ( ~ i)+ ~ J 7TAO
qJ = A ~, E = cote'y

lnA
(A28)

We note that in the limit A I, s)J—
+ = [(j —I) + y]

xlnA, so that y is essentially the phase shift.
Furthermore, using (A16) we can derive the

asymptotic solutions for oo—, We have, using Eq.
(A28),

2 2 +
'' —1/2

7T 0!0 m. lnqj-
ap~ =E + cosec

(InA)zq, +-lnA (A29)

since the neglected terms are of order
exp( —2sr k/InA). Substituting this result into Eq.
(All), it is straightforward to verify that the asymp-
totic solutions for q,

+—can be written

Substituting the results (A28) into (A29), we get

uo+-, = uo(K)(v) +-)'i'

2 4
7T 0',0u()(K) —= u() I + E

(lnA)'

' -1/2

(A30)

Following exactly the same procedure as above, we
cap show that the asymptotic solutions for 7)J—

+ and
hp, are

„+ . + „+ +
i), =A' )t'+-)',

(), =u(Kuo)(q, )'i', (A31)

where y and uo(K) are the same as before
All of the above asymptotic solutions have been

checked to be correct using the exact results from the
numerical diagonalization.
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3. Evaluation of thermodynamic sums

Next we discuss the evaluation of the various ther-
modynamic sums involving q(- and O.p that we en-
countered in the text. The basic sums that we need
are

P 0. Using these approximations we get

+—QI

k((T((x(( = $
(1+e ' )' (1+e ' )'

(A39)

-Pn(

k, T&xo"(K)= X -+
(1+e " )' (1+e "')'

(A32) X2-+= ao2(K ) $ u,
+-

(~-oo

+—fll

+
(1+e ' )'

+ +—tl( —
Q(. =-:( ) X (.,-)" ' " ' ' '

M(1+e ' )'

(A41)

x('-(K) —= P X(~o'()'n('-
( (1+e "' )'

(A33)
+ +—N —

Q(

X3-+=+n2(K) X u(+-

(1+e ' )'
(A42)

x (K ) -=p g ( o'-()'

I

+
-Pn(

e
+

(1+e "' )'
(A34) Fo = 2 k(( T(( X in+ 1+e "'

, 1+e
(A43)

+ +

xg(K) = +p X(~-o'-()"
I (1 ye o( )3

(A35) + 3

1+e

+

F;+ =ao2(K) X (u(+-)' (A44)

-Ps(

Fo (K) —= —-k((TN $21n+ 1+e
( 1 ~ P9(

(A36) +
1+e '

+
oo

F2+-=+no2(K) X u,
+- (A45)

-Pn(
Ft+ (K) —=p X (-no+()221(+-

( 1+ -P~('

-»(+
F (K) = +P X(~'-()2-

-P (

(A37)

(A38)

where we have introduced the variables

u ——= Pq —=PA' '+', u"=P7('=PA' ' . (A46)

We note that if we let P PA,
(u( +, u(') (u(+-t, u(+(), which means that the sums
(A39)—(A45) are periodic in lnP with period lnA,
and can be evaluated quite easily using a computer.
In the limit A 1, the sums become independent of

The functions defined in the text are then obtainable
as Xp = Xp + Xp, Fp

= Fp+ + Fp, Xi Fi = X) + Xi,
X2 Fl =Xi LM =X2 +X2, etc. %'e want to evaluate
these sums in the limit when p 0 and N 00 keep-

ing T(( fixed. (N determines the upper limits on I in

the sums. )
%e note certain common features of the above

sums. First, each of the summands is exponentially
damped [as exp( —Pq() j for large I, so that the upper
limits on lean be set to ~ in all the sums. Thus the
functions are independent of T((. Second, for P « 1

the sums are dominated by the terms for which

Pq(=1, when we can replace g(-, q(', and uo( by

their asymptotic values. Furthermore, the lower lim-

its on I in each of the sums can be replaced by —~,
since the contributions due to the extra terms that
are thereby introduced are of order P, and vanish as

2kaTN 0" du 1+e "A"
Ff =+ ln

u ] y -uAe (

(A48)

Next, we consider the limit as A 1. In this case
the variables ul- and ul' vary slowly with I, and the
sums can be replaced by integrals. For Xi X2 X3-,

F~-, and F2-, we choose u —= ul- to be the integration
variable. For Xg and Fp- it is convenient to choose
u =—u('A~~ ' as the integration variable. In either
case we have Al =b, u/(u inA). Hence we get, in the
limit as A 1,

-u A&l'2
+ 1,'

,

du e

lnA "o u (1 ~e-u~&(2)2

-u~-&i'
, (A47)

(1 ~ —x-&(') 2
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~o(K) "" e-"(1—e-") ~o(K) 1

lnA "o (1+e ") lnA 2

+ ().p(K) t'" e-~ ().p2(K) 1

lnA "o (1+e ")2 lnA 2

In order to prove this mapping, we consider the
Hamiltonian

Ho + K A+(n —) )/2 ft f + K A(N 1)/2/'—t f' (A58)

for even N, in the limit Kp ~. We can solve Hg in
two ways.

The first way is to first solve (for even N)

~o(K) '" e "(1—e ") ~o(K) 1

lnA p: (1+e ") lnA 4
Htt(Ko) =Htt+K A(" ' f f' (A59)

(AS1)

np2(K) t'" e- ~p2(K),
lnA "o, 1+e " '

lnA

(AS3)

Thus, we have, in the limit as A 1,

kg TgXp = Fp = X3 Fl F2 Fl 0

~o2(K )
Xl, Fl

(AS4)

(A55)

up2(2K )
X2, Fl Xl, LM

1nA

~o2(K),
1, FI (AS7)

When A ) 1, the integrals (A47) —(A53) can be
considered as approximations to the sums
(A39) —(A45). However, there is a theorem (see
Ref. 2, p. 832 for the proof) according to which the
error due to replacing the sums by the integrals is
only of order exp( —2r2/lnA). Therefore, to a very
good approximation, we can regard the results
(A54) —(A57) as valid even for A ) 1 [as long as
exp( —vr2/inA) « 1] with ap(K) being given by Eq.
(A30).

Finally, we note that functions Xp-, Xl-+, etc. , can be
evaluated exactly for any given A, (8, and K using the
exact, numerically determined values for qI—. , gI', and
ng. In this way, all the above conclusions have been
verified to be correct.

+ t2.2p(K) n(')(K )Fl- u du t

lnA "o (1+e ") lnA

(A52)

./ 1
=—,A

—(w —l)/4 ~ apl Cl
'7T' Ap

(A60)

Hence the f) f) term generates potential scattering
about the even fixed point. We conclude that for
Ko= ~, Hw leads to H'(K ) plus a ground-state
charge of —1 as even N ~, where K is given by

t

lnA

m'cl'p2
(A61)

The second way to solve H~ is to diagonalize it
directly. By using exactly the same methods as we
used in diagonalizing H/t(K), one can show that in
the limit as Kp ~, the eigenvalues of H~ for even
N are given by the roots of the equation

A 2 g/2 m2
o'oo O,p—+2q g'9 I l

A +2
= —K 1 (A62)

In view of our earlier discussions, one would con-
clude from Eq. (A62) that as even N ~, H/t leads
to the fixed point H (K) where

lK = —Kl (A63)

Hence we have proved the result that H (K) is
the same as H'(K ) plus a ground state of charge
—1, with K and K being related as

lnA --l 2 lnAK =- 2K = — 1K
~~o2 ~ 1 —A

(A64)

in the limit as Kp
' ~. This has already been dis.-

cussed, and we know that this leads to the even fixed
point H' as even N ~. Furthermore, we note that
Ko ~ freezes the states in which fo fo =0, giving

~ t

rise to a ground-state charge of —1. One can also
verify that the expansion for f) in terms of the
operators that diagonalize H/t(Ko) for Ko ~ is
given by

4. Mapping between H (K ) and H (K)
The details of the above proof are not given here.

Finally, we demonstrate one-to-one mapping
between H (K ) and H (K), which in the language
of Sec. II 8, are two lines of fixed points of V . This
mapping was invoked in Sec. IIB to show that the
strong-coupling and the frozen-impurity lines of fixed
points are the same.

APPENDIX B: DIS.CUSSION OF THE SCALING LAW
FOR THE SUSCEPTIBILITY OF THE KONDO

HAMILTONIAN WITH POTENTIAL SCATTERING

The perturbation expansion for the running-
coupling constant J/t has the general form (the tilde
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over all J's has been suppressed)

JN J +~2 NJ +&3 NJ + (81)

into Eq. (85), we get the result

C (y( T)) —ln(ks T) =4(y( To)) —In(k&TO), (812)

JN+2 JN +~ 2JN + ~ 3JN +

where

~2 = &2,N+2

(83)

(84a)

A3 a3 ++2 2a2 N+2a2 u + (2a2 u —a3 u) . (84b)

Equation (83) is a good expansion because A2, A3,
etc. , are expected to be independent of N.

The solution for the recursion relation (83) is

0(Jjy) +
2

(N —1) = p(JN ) + —(No —I), (BS)

where
t

q'(J) -=+ ', —I lnlA»l+O(J) . (86)
A2J

Now consider the expansion for the susceptibility.
%e expect an xpansion of the form

ka TgX( Tg) =
4

+ Yt(p) J + Y2(p, N )J2+

In terms of JN,

ks TgX( Tu) =
q

+ JN Y&.(P)

+ Jg[ Y2(p, N) —Yt(p)a2u] +

which can be rewritten

y(TN) —= [4ksTjyX(Tu) —I]
= Bt (P) Ju + B2(P) Juz +

. (87)

(BS)

(89)

The coefficients Bl, 82, etc. , are expected to be in-

dependent of N, but can, in general, depend on P.
Equation (89) can be inverted to get

Jw = y(Tw)—1

Bl

1

82 2

B3 [y(Tjy)] + . (810)

By substituting this equation and the result [cf. Eq.
(1.4)]

, (N —I) InA= —ln—1 kaTN 1+A+in, (811)
D 2p

The coefficient of the 0 (J) term is I because J is a
marginal variable. The coefficients a2 N and a3 N are
polynomials in N, and can become large as N in-
creases. This is why Eq. (Bl) is a b'ad expansion.

We can invert Eq. (81) to get

J = Jht —a2 NJu+ (2a ju —a3u) Jg+ . (82)

If we substitute Eq. (82) into Eq. (Bl) written for
JN+2, we get a recursion relation between JN+2 and JN

where we have written T for TN and T0 for TN . 4 is
0

given by [cf. (810) and (86)]

4(y) =—(inA)+(J ) = Bl lnA

A2 y

+ —I InAln~y)+O(y) .
!

(813)
If we now take the limit as p 0 and A
keeping Tand To fixed, we get the scaling law (3.41),
~here T~ is related to T0 by

ln(TO/TK) d [y(TO)l
and can be computed by choosing T0 to be high
enough that y( To) can be calculated perturbatively.

I

Starting from the model Hamiltonian (3.27), we di-
agonalize exactly the piece of (3.27) that excludes the
pJ term, namely

Pl f 1

Xf = D„J dk —kai,'a„+p& J~ dk J dk'akak,

(cl)
This can be done by means of the transformation

fl
a„=„dq u(kq) cq (C2)

u(k, q) =[cosh(q)]8(q —k)+ sing(q) 1

q —k

(c3)
where 8(q) is the phase shift determined by the
equation

mc tao(q)+P J
" =(pK) '

~ q —k
(C4)

In the above equations, P denotes the principal part.
In terms of c~, 3C~ is diagonal:

wl

(CS)DC' = Dz
&

dqc/cq cq

These results can be verified, for example, by linearly
discretizing 3C~, solving the resulting Hamiltonian,
and then taking the continuum limit, or directly [if
enough care is taken in handling the generalized
functions u(k, q)] by substituting Eqs. (C2) —(C4) in

Eq. (Cl). We note that

(C6)

this follows from Eqs. (C2) —(C4).
Substituting these results into the mode) Hamil-

tonian (3.27), we get

APPENDIX C: DISCUSSION OF THE KONDO PROBLEM
WITH POTENTIAL SCATTERING
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, sing(q) sin&(q')

/

(c7)

~e note that sins(q) is a smooth function of q, and can be expanded in powers of q. In accordance with our dis-
cussion of Sec. V D of I, the dominant term is the term independent of q, as the terms involving powers of q pro-
duce irrelevant operators about the local-moment fixed point. Hence we get

1 1

Xx —D/r ~l qc& c&dq —pJg«J dq J dq'c,
2

o. c i
2

'7 (C8)

where

where the last two results follow from Eq. (C4) for
q =0. As far as the susceptibility is concerned, the
difference between c, and ak is irrelevant. Hence we

get the result that for small —pJ, the low-temperature
susceptibility for the Kondo problem with potential
scattering can still be written

4&(4kaTX —I) =In[T/Tx(J «)1 (C10)

TK(J «) D(J «)IpJ «I exp
1

pl J.rrl (c11)

where 4 is the same universal function as for the
Kondo problem without potential scattering. Note
that the effective bandwidth D (J) is affected by the
irrelevant operators about the local-moment fixed
point and will in general depend on the higher-order
terms in Eq. (B7) when we expand sing(q) and
hence on pK.

pJ,« ——pJ = pJ cos 5(0) =sinS(0) 2 pJ
~per [I+(~p/t)'] '

(c9)

[refer to Eqs. (B4)—(B6) of I], we can write HNO for
odd Was

where, in contrast to the symmetric case where 'gp

was exactly zero [cf. Eq. (E6) of I], qp now has the
value

v)o=—SgA " ' =(~g+ U)A (D4)

In this case, a set of oprators a/ = X, U~&a, where U//

are the elements of an orthogonal matrix will diago-
nalize HNO into a set of single-particle levels r/, (N)
provided that the U~/ satisfy the equations [compare
Eqs. (E7) and (E8) of I]

(q/ —v)(') U, =r'"AtN '»4 „U„-(i~0) (DS)

(~ -5 AtN-'&/') u =r'"AtN-'t/' g u (D6)
Iwp

HNQ X rll al aI + r'"A"-" ' X no/(ao a~ + a/ ao)
/ -J I -J

(D3)

APPENDIX D: ANALYTICAL TREATMENT
OF THE SMALL-U CASE

The solutions to the above equations are that the
eigenvalues r/, (N) are determined by the roots of
the equation

The procedure we follow in order to treat the small
Ucase of the asymmetric Anderson model analytical-
ly is basically the same as for the symmetric I &) U
case treated in Appendix E of I. We break up H~ as
[cf. Eq. (2.18) of I]

9j d~ A(w-1)/2

I=~(W-1 )/2

UpJ is given by

J 2

=2g/ X =X(i)/ N)
l 1

(D7)

HN = HNO+ UA (cq~cq„—I )

Hgp=Hg+SdA '
cd cd

+ f t/2A(N —1)/4(c t/ + / t )

(DI)

diagonalize Hgp exactly, and treat the U term as a
perturbation. The conditions for the validity of this
procedure will arise out of the analysis. Spin indices
have been suppressed in H~p for convenience.

The diagonalization of Hgp can be carried out ex-
actly as in Appendix E of I. Using the same notation

' —1/22
Apg

U = 1+rA('-')/' &pj 2
/ /(v)/ —rt( )--

(Dg)

and U// for / AO are determined by Eq. (DS). The
function X defined in Eq. (D7) is the same as what
appeared in our discussion of HN(K) in Appendix A

[cf. Eq. (A9)].
For the purposes of this appendix we will assume

that Sd « 1 and I « 1. In Figure 18 is sketched
the graphical determination of the roots of Eq. (D7)
for the two characteristic cases Sd « I and Sd &) I".
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2. Frozen-impurity regime

Clearly, as N ~, 2)/(N) tend to the fixed-point
values given by the roots of the equation

OO 2
——'-+2~/-'X ', —= +X(q ), (D12)

'-' (~/-')' —n)"

where we have denoted the positive eigenvalues by
qJ+ and the negative eigenvalues by —qj. From the
discussion of Appendix A, it is clear that gj- corre-
spond to a potential scattering K given by [compare
Eq. (A11)]

K —I'/Sg (D13)

FIG. 18. Eigenvalues of HNO. The characteristic function

X(q, N) is plotted vs q measured in units of A ~, and
for the case of odd N, blo~s up at qJ". The eigenvalues are
given by the graphical solution of X (q —5&A N / )
& I'A N / y(q). For the free-orbital regime we set N
small enough that 5~, I && A ~N ') . Accordingly y(q),
curve A, is a very steeply inclined straight line intersecting
the q axis at 8&A~N '), and yields the solution (010). For
the frozen-impurity regime (i.e., N oo), y(g) is just the
constant —S~/I'. We have shown two extreme cases:
8& && I' with curve C and. 8 && I with curve 8.

1. Free-orbital regi me

—f A(N-t)/2~2 /~+ ( J yj0)

Furthermore, one can verify that

J 2

U = I + f A('-"/' X
t 1 gl

(D10)

When N is small enough that I A'N "' && 1 and
8&A' ' && 1, to zero order in the small quantities
the roots of Eq. (D7) are given by (see Fig. 18)

2)p =0, v//
= 2)/' ( j w 0)

This is just the free-orbital fixed point Hpo (K =0).
The leading deviations are easily sho~n to be

~ ~ A(N-j)/2
gp t

, =—,'K'f '=-I/(28,'), (D16)

where the second result follows from Eq. (D13).
The U term in Eq. (Dl) gives rise to an

O(A (N ') 2) deviation about Hpt (K) that looks like
the cv2 term discussed in Sec. III F. To see this, note
that in terms of the electron hole operators that
characterize the fixed point,

&u=—ao = X Up, a/ - X ( Uo;g, + Uo, /2, ') .
j

Furthermore, the limit 8~A N " ~ gets rid of the
nq ~ 0 states of the impurity, whence the ground
state acquires a charge of -1. Thus for N ~ we
have the frozen-impurity fixed point HF( (K). We
note that K is negative, and in the symmetric limit
(8~ 0), K -oo. All of this is in agreement with
earlier discussions.

Next we consider the O(A ' "') deviations
from the fixed point for a large but finite N. This
will enable us to obtain the coefficients co~ and co2

(discussed in Sec. III F) explicitly. Making use of
Eqs. (D7), (A10), and (D12), it is easy to verify that
to O(A 'N "/')

v) -(N) —v)
—= v)

— A " (D14)+ + +(I' —A )j / i xit( +)gj

Neglecting A ' in comparison to I", and making use
of Eq. (A16), we can rewrite this as

2)/-+(N) -2)/-+--(K I' ) A '" ""a()/ Y)/-+ .(D15)

This deviation is precisely of the form of the co] term
discussed in Sec. III F [see discussion following
(3.52)], and we can explicitly identify that

CX

U =I' A' "/' ' ( 'Wo)pj = J
gj

(Dl 1)
From Eq. (Dg) we see that for large N,

r

2
' -]/2

+ ~™A(N 1)j2 ~ Ol

so that the Uterm in Eq. {Dl) is just UA(~ ')/2

(apap —I) to leading order. All this is characteristic
of the free-orbital regime. [ f A(N-1)/2X'( +) ]—t/2 (D18)



10&2 H. R. KRISHNA-MURTHY, ,J. W. WILKINS, AND K. G. WILSON 21

U+ =SF t/2A (w i)/4 +
Ol O.'OJ (D19)

Once again making use of Eq. (A16), we can rewrite
this as

where

r'+A,'(., + —,
' U)'

r (D25)

Substituting Eqs. (D17) and (D19) into Eq. (Dl),
one can easily verify that the U term generates a de-
viation about HF't (K) precisely of the form of the cu2

term discussed in Sec. III F, where co2 is. now explicit-

ly given by

, =U(KI '") =UI'/S„' . (D20)

(D21)

R =1+
2

(1+A ') U
ApI

(D22)

where @(K) is defined by Eq. (3.63) and A~ by Eq.
(3.62). Substituting these results as well as the de-
finitions Eq. (1.3) for U, I, and Sd, and making use
of Eq. (D13), we finally get the results

X AA )+A U g U

( gpa) 2m 5 wA mA
r

R =]+A, +0'sr~ m~

, (D23)

(We note that the U term also generates additional
potential scattering. Since we are only interested in

the lowest-order calculations we will neglect this ef-
fect.)

Substituting the results for cu~ and cu2 into the ex-
pressions for X and R [cf. Eqs. (3.64) and (3.67)], we

get

%e note that in the symmetric case, Ed =
2

U

when 6 = I, and the above results reduce to those
obtained in I [cf. Eqs. (5.40) and (5.41) of I] In. the
limit U =0, A 1 (AA 1), the above results agree
with the calculations by Salomaa. ' The condition for
the validity of Eqs. (D23) and (D24) is that I'/D and
U/vrh be, small compared to unity.

Finally we note that in the limit when ~d is positive
and ed)& I, U

Z =—A,"2/r, (D26)

in which case to leading order in the small quantities

x
(gp, a)' A, 2~~„'

(D27)

According to the discussion above, this result is valid
provided UI /ed is small. Actually Eq. (D27) is the
dominant term in the zero-temperature susceptibility
even if this condition is not satisfied, as long as ed is
positive and ~d &) I. This result follows from the
fact that in this case the ground-state subspace essen-
tially has nd =0 (see Fig. 7 corresponding to the
manifold of states), which therefore makes no contri-
bution to the susceptibility. The dominant [O(I'))
contribution comes from virtual transitions to the
nq =1 subspace, and is given precisely by Eq, (D27).
Uenters only when we calculate O(I') contribu-
tions. For further discussion see Sec. III F, where we
make use of Eq. (D27) to calculate these contribu-
tions.
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would appear if we calculated things to higher orders in

J1, and would lead to N-dependent coupling constants
such as J1N. Such effects can in principle be included in

Eq. (3.39) by substituting J + for J1, but would be
1N2

much smaller than what we have kept in Eq. (3.39). [For
example, J ~ —J1 —J1 ln( U/ —F& )/lnA].

1N2
' Unless it should be the case that either v~& or q& is nearly

zero, in which case we must add the term

2 ~ ~01 +01~0i( &1p~1vhlv~lp, + ~lpahlv~ la~1p)
+2 — +

l Wl

if q+1=0; or the term

2 + 01 ~0l0I(hlphlvglvhlga + hlp~lvhlvhlpa)
I Wl

if q&
——0; since these terms can connect nearly

degenerate states, This is needed only for the energies.
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