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High-density composite solitons in superfluid He-A form a regular one-dimensional lattice.

The magnetic-resonance frequencies and the intensities of these soliton lattices are determined
i

theoretically. Furthermore, if the soliton lattice has open ends, the soliton lattice relaxes by un-

coiling the l and d vectors. The characteristic time for the uncoiling is calculated. The present

theory appears to account for unusual NMR behavior in magnetization-tipping experiments.

I. INTRODUCTION

In a series of papers Maki and Kumar' have stu-
died a variety of domain-wall-like textures in super-
fluid 3He-A. In particular, when the superfluid is
confined in a long cylinder with a diameter much
larger than the dipole coherence length gt
(=10 p, m), it was shown' that the most stable
domain wall is a twist composite soliton in the-pres-
ence of an axial magnetic field, while the splay com-
posite soliton has the lowest energy if the magnetic
field is perpendicular to the cylinder axis. The ex-
istence of the composite solitons, which involve both
the d vector (describing the spin component of the
3-phase order parameter) and the I vector (describing
the orbital symmetry axis of the order parameter) has
been confirmed by Avenal et al. ' and by Gould
and Lee6 through detection of the satellite resonance
frequencies in the NMR spectrum of He-A. In more
recent experiments by Giannetta et al. ' and by Bozler
and Bartolac, the magnetization was tipped by a large
angle (—180'). After the tipping they discovered
that the NMR absorption was almost exhausted by
the satellite resonance unlike the earlier experi-
ments' where the Leggett resonance gave the dom-
inant absorption peak. Furthermore Bozler and Bar-
tolac (BB) discovered a time dependence in the NMR
satellite frequency. Only a few minutes after the tip-
ping did they observe the NMR consistent with a
composite soliton.

The object of the present paper is to study a regu-
lar array of composite solitons (i.e., one-dimensional
soliton lattice) and their magnetic responses. The
work is partially motivated by the puzzling features in
the tipping experiments. In the tipping experiments a
large number of composite solitons are created. Sup-
pose that all d solitons created magnetically decay
into composite solitons then the soliton density per
unit length is estimated' as N, =—(2lvr) (&up/&q) gt
where coo is the Larmor frequency associated with
the static magnetic field Ho, Q& is the Leggett
frequency, and gt is the dipole coherence length

(-10 p,m). For Hp —1 kOe, N, can be of' the order
10' cm ' although apparently W, cannot exceed

gp'(T) —5 x 10'(1 —TjT,)'~' cm ',
where gp(T) is the temperature-dependent BCS
coherence distance. At such a high density, compo-
site solitons are very likely to form a regular array
due to their strong mutual repulsion. In particular in
the twist case, the regular lattice is an exact solution
of the Euler-Lagrange equation for the textures.
Then the spin-wave spectrum is quite different from
that for an isolated soliton. In particular we can in-
terpret the time dependence of the satellite frequency
as due to the time dependence of the soliton density.
Furthermore we show that the NMR absorption is
dominated by the satellite resonance for a soliton
density N, & 10 '(t ' (-10' cm '), which is again
consistent with the tipping experiment by Bozler and
Bar tolac. '

In Sec. II we shall study the regular soliton lattice
for both twist and splay cases. In Sec. III we calcu-
late the spin-eave spectra for those two soliton lat-
tices and their relative intensities in the NMR absorp-
tion. Section IV is devoted to the relaxation of the
solition lattice due to the orbital relaxation. It is
shown that in usual circumstances the soliton density
decreases exponentially in time. The characteristic
time is of the order of 10. minutes for the twist case
and of the order of a few minutes for the splay case.

II. SOLITON LATTICE

The order parameter of superfluid 'He-A is given
by a 3 x 3 matrix A„;= d„A;. Here d is a real unit
vector describing the spin component and 5 is a com-
plex vector describing the orbital component;
Z = [1/(2)' ]dp(T) (5) + i52), where 51, 52, and
l(=Bi x 52) form a triad of unit vectors. Ap(T) is the
temperature-dependent amplitude of the order
parameter.

The free energy corresponding to inhomogeneous
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where

6 N 7g(3)
5 gm' (22» T)2

for the weak-coupling model. To this should be add-
ed the nuclear dipole energy

ED=—
2 XtvQq J d r (/ d) (2)

where Xg is the normal spin susceptibility. In the
presence of a strong magnetic field along the z direc-
tion, I and d will be restricted to the x-y plane

d = sin 1t/x +cosQy,
A

I = sinXx +cosXy,

and

Z= (2) '/'Ape'~( cosXx—+sinXy+/i ) . (3)

Furthermore, in the case of domain walls. p and X

will depend only on s = n x, where n = (n1, n2, n2) is
a unit vector normal to the domain wall and parallel
to the cylinder axis. The free energy per unit surface
(normal to n) f of the system becomes

1

F 2

f =—= —A ds' 1+2a 1— ll3
2 2 X, +2(2 —a )2

CT 2 —0
1

textures is given in the Ginzburg-Landau regime by2

ro

Ek. =-2It'~ d'» I31'7 ~l'+I&x~l'+2I& '&dI'

+
I

& I2(l & d I'+ (& x d )']] (1)

The only stable periodic solution of this equation is"

(5) 1/2

cosv =sn sIk,
k g

(8)

where I/.
' (k) is a complete elliptic integral of the first

kind. In the limit k 0, Eq. (8) becomes

(5)'/'
cosy = sin S

k g

I and d rotate in the opposite direction at a constant
rate around the z axis forming a double helix. This is
shown schematically in Fig. 1(a). In the opposite
limit k 1, we have

(5)1/2

cosv = tanh s

which describes an isolated soliton.
Substituting Eq. (8) into the expression for the free

energy we find

f =23 $2'm '(2[E(k)/K(k)] —mt], (10)

where sn is a Jacobian elliptic function" of parameter
m = k2. Equation (8) describes a regular soliton lat-
tice with a lattice constant

LP 1/2 $2 kE (k)2
1/2

x 1]12+4)2 2sin (X —1]1) (4)

where A = —,E502 and a =ri
~ sinX+ n2cosX, the suf-

fix s implies the derivative with respect to s, and cr is
the surface area of the domain wall. The phase $(s)
has been eliminated. In the following we limit our-
selves to two cases.

]

la
1

A. Twist solitons

When the magnetic field is in the axial direction,
we have n z. Then, introducing new variables by

u =X+4/, v=X —Q, (5)

we have

f=
2

A J ds ( ,
'

u,'+ -', v,2—+4&2
' sin'v) . (6)

A constant u minimizes f. We take hereafter u =0.
Minimizing fwith respect to v gives

7~ v„—$2
' sin2v =0 .

FIG. 1. Soliton lattices for the twist case (a) and the splay
case (b) are shown schematically. The solid arrow indicates
the direction of the I vectors, while the broken arro~ indi-
cates that of the d vector.
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FIG. 2. Free energies per unit soliton distance Lp are
shown for the twist case and the splay case.

8. Splay soliton

where m = k', I& = 1 —m, and E(k) is a complete el-
liptic integral of the second kind. Here f is the free
energy per unit length. f decreases monotonically as
Lo increases as shown in Fig. 2. As Lo ~, f goes
to the previously obtained limit for a single soliton'
(per length Lo),

determine n and A. so that the free energy has a
minimum for a given spacing between two solitons;
the free energy is minimized with the condition

L, =2'(k)) -',

f =4.8023 (gqLO) ', with u=0.481 . (14)

For Lo ~10(t, fwill reduce this value gradually to
f =4.0A ((tLO) ', as the asymptotic I direction far
from the soliton relaxes from parallel to v, to that of
the splay composite soliton.

In the other limit Lo « gt we find

f =9.56ALO', with n =0 .

where Lp is the soliton lattice constant. The solution
is schematically shown in Fib. 1(b). The present
solution does not approach the splay composite soli-
ton solution' in the limit k I, as the I vector is held
asymptotically parallel or antiparallel to n. Therefore,
the solution considered here is rather close to a regu-
lar array of I textures. ' However, we believe that the
present solution is reasonable as long as the soliton
spacing Lo is not much larger than (t (say
Lo ~ 10(t), which region is of prime interest. Fur-
thermore, as noted already the satellite frequencies as-
sociated with the splay composite soliton are rather
close to those for the splay I textures. We have sub-
stituted Eq. (I2) into Eq. (4) and minimized fwith
respect to X and n for fixed Lp. The result is shown
in Fig. 2. In the limit of large Lp we obtain

We now consider the case where Hp is applied per-
pendicular to the cylinder axis. We then take n =y.
For this case the exact solution is rather difficult to
obtain, as X and P are coupled. Therefore we shall
look for a variational solution of the form

cosX = sn(ks1k), sing = n cn(ks1k) sn(ks1k), (12)

where o. and A. are variation parameters. W'e shall

For intermediate values of Lp, we give a table of m

and n values, which minimize f, as a function of
Lo/gt (Table I).

We see from the present analysis that f diverges
like Lo for small Lo (i.e., Lo/g, « 1), while it ap-
proaches an asymptotic value proportional to Lp ' in
the limit of large separation. The solitons act as par-
ticles with a strong repulsive interaction potential
with a range of roughly 10)t.

TABLE I. o., K(k), Af, and Ag for the splay soliton lattice are given as functions of Lp/(~.

L p/g

0
1

2

3

4
5

6
7

8

9
10

0
0.030
0.108
0.200
0.290
0.352
0.400
0,433
0.455
0.471
0.480

1.98
2.05
2.31
2.60
3,03
3.42
3.84
4.34
4.82
5.39
5.90

0.080
0.146
0.210
0.276
0.327
0.350
0.364
0.369
0.368
0.368
0.365

0.550
0.573
0.601
0.638
0.665
0.685
0.696
0.708
0.709
0.710
0.710
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III. MAGNETIC RESONANCE given by

The magnetic resonance has proved to give a de-
tailed insight in the dipole generated textures like

composite solitons. In response to an external rf
field the d vector oscillates in the potential provided

by the local t vector. In general spin-wave modes can
be localized as well as extended. For example the
Leggett resonance in the bulk liquid arises from an
extended mode, while satellite resonances are due to
localized modes (the spin-wave bound state trapped
at the dipole potential due to the texture). In the
case of a soliton lattice, the spin-wave spectrum has a

band structure. Then the rf field couples to the spin
wave with a particular wave vector q. Hence the
NMR experiment allows one to explore a small por-

tion of the spin-wave band structure.
To determine the resonance frequencies we

parametrize the d vector as2

d =c osg[sin( I)l+f)x+cos( ])+)f)y]+singi,
(16)

where ([I describes the equilibrium d configuration
and f and g describe small oscillations. Substituting
Eq. (16) into Eq. (1), we construct a set of eigen
equations for f and g. Then the NMR frequencies
are given in terms of these eigenvalues, ' while the
intensities of the resonances are calculated from the
eigenfunctions. To do this we first note that the
magnetization associated with the d oscillation is

given by'

Sf =22 „ds [(f2+g,z)+ g) zcos[2(x —(l()]f2

+ [g, 'cos'(x —y) —(](2]g'], (20)

where we have retained only the quadratic terms in f
and g. Then the eigenvalue equations are given by

Xff = ()zf„+—cos[2(X —y)]f,
Xsg =—(i'g„+ [cos'(X —)i() gg—'y,']g,

while the resonance frequencies are given by -,

QJ) (xf) . 0g i

QJg = OJp + A,g Og2 2 2

(21)

(22)

(23)

for the longitudinal and transverse resonance, respec-
tively.

First let us consider the longitudinal resonance [Eq.
(21)], where X —(i(= u is given by Eq. (8). In the
limit k 0 (i.e. , Lp/g « I), the potential is given by

cos[2(X —)[I)] =2sinz[(5)' ()) 'z] and Eq. (21)
reduces to a Mathieu equation. Furthermore the
longitudinal resonance picks up the spin-wave mode
with q =0 (zero wave vector). In fact, in this limit,

the only eigenmode, which couples to the rf field is

ep(z) {=1——, cos[2(5)' gt 'x] + ), which yields

Af =0 to leading order.
In the other limit Lp/g) » 1, where k tends to 1

we recover the solution associated with an isolated
soliton

M =—
7 pX~( —sin)i(g, , cos)i(g, , f,), (17) Xff = g)'f„+ (I —2—sech'[(5)' 'g) 'z]]f, (24)

where suffices t imply the time derivative. Then the
intensities of the longitudinal and the transverse
resonance are given by"

with

f nn (sech[(5))»(-)z]](&»~»' '-))»

and

and

xf = —,
' [(65)'» —7] . (25)

g„(s) sin)1)(s) ds

+ „g„(s)cos(]((s) ds (18)

where f„(s) and g„(s) are the normalized nth eigen-
functions. Furthermore from the closure properties
of ]g„(s)] and [f„(s)],the sum of the intensities has

to be unity f ~dn"[(5)' g 'z(k], (26)

Furthermore, in this limit there are a set of scattering
states with Af slightly larger than unity, which do
contribute to the longitudinal resonance.

For intermediate values of Lp/gg, we shall deter-
mine the eigenvalue variationally. For the bound
state (i.e., the state with Xf ( 1), we make use of a

variational function

X I(n) I Xf (n) (19) with v as a variational parameter. Here dn is.a Jaco-
bian elliptic function. Equation (26) interpolates the

two limiting solutions nicely. Then )f 'is determined

by
A. Twist soliton lattice

Again we shall consider the twist case and the splay
case separately. The fluctuation free energy Sf is (27)

(Lp
ds [Sv cn sn dn" +(2sn' —1) dn'"]

apf faL 0
d~ dn2v

aJ 0
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where all elliptic functions have (5)'~ (t 'z as argu-
ment and k2 as parameter. In the limit k 0 and
k 1, we can work out the integral analytically and
we find

ptf =0.1k, with v =0.2

+Lo, etc. Here M is an integer and 5I is given

—r(—~)r(1+ ~)] =6.04' (30)

with

u, (z + Lo) = u~(z) . (2S)

Then u, (z) is very well approximated for small q by
(for derivation see Appendix A)

1
z —

2 51
u, (z) =sin mM

Lo —~I
for 0 ( z ( Lo, (29)

where solitons are assumed to be located at z =0,

0 8 I 1 I

for k 0, for example.
For general k, Eq. (27) is evaluated numerically

and then minimized with respect to v. The general
result is shown in Fig. 3. We have also calculated the
intensity from Eq. (1S) and it is shown in Fig. 4.
increases from zero as the lattice spacing increases
and reaches the value for the isolated soliton when
Lo = Sgt. On the other hand for small Lo, the inten-
sity is completely exhausted by the bound state.
Only for Lo & Sgt does the intensity of the satellite
peak begin to decline. For larger Lo (i.e., Lo » gt),
the intensity decreases like lit t ——6 04((t/Lo. ).

For large separation (Lo » fg), the scattering
states for Eq. (24) can be constructed as the exact
scattering matrix is known. When the potential in
Eq. (24) is arranged in a linear array with a distance
Lo, the spin-wave function takes the form

f(z) = e"*u,(z),

g)N& =1+(2„+1)2~2
,
Lo —5l

with intensities

(31)

I,(")=, , 1-6.04
(2n +1) 7r Lp

(32)

with n =1,2, . . .
Therefore for Lo » gq, there is an infinite series

of scattering states, which contribute to the longitudi-
nal resonance. All these resonance frequencies
reduce to the Leggett frequency as Lo becomes much
larger than (t. XJ("~ for n =0, 1, 2 is shown as a func-
tion of Lo in Fig. 5, while the intensities for n =0, 1,
and 2 are shown in Fig. 4.

Now turning to the transverse resonance, the rf
field couples to the spin-wave modes with

q = (27r/5LO)j (j =1,2, . . . ), since sing(z) and
cosg(z) have a period of 5Lo. First, the bound spin
wave is determined by making use of the following
variational function g ~ e'~*dn" [(5)'~ g 'z

l kl, with p,
as a variational parameter. As in the case of the
longitudinal resonance, the above function interpo-
lates two limiting exact results for k 0 and k 1.
The result for Ag

' is shown as a function of Lo in

and a. = —, [(—,)' ' —1]. 1 (z) and P(z) are the y and

the digamma function, and y = 1.76 is the Euler con-
stant.

Furthermore, it is easily seen that only the scatter-
ing states with q =0 and odd M couple. to the longitu-
dinal rf field, The longitudinal resonance frequencies
are given then by

0 6
[.0

O.8

O.4 0.6

0 2 0,2

0.0

Ipy

3 0 ~~-~L 60 90

v5gj. Lo

FIG. 3. A., (—=A.g) and XI (—=A.f), which appear in the
transverse and the longitudinal satellite frequency, are
shown as functions of soliton separation Lo for the twist case.

FIG. 4. Intensities of the longitudinal satellite II and of
the transverse satellite I, are shown as functions of Lo.
II, II ', and II are the intensities from the scattering
states in the longitudinal resonance.



20 SOLITON LATTICE IN SUPERFLUID 3He g 989

0.8

0.6
.67

o.y .' 4Q

0.2

l.o
0 40 , 6O

v54i. L o
IOO

FIG 5 (n) assoc&ated w&th the longitudinal scattering

states are shown as functions of Lo.

p.p »
0 ~5G. L,

FIG. 6.G. 6. A., (=kg) and A. ~ (=Af) for the splay soliton lattice

are shown as functions of Lo.

Zg'"' ——I + [(2n +1)'+ ']n—
25 Lo —8,

(33)

and

I,'"'=[I —cos(—', vr)][(2n+ —', ) '+(2n+ —') ']'
5

xm 1 —0—2 (34)

with n =0, 1, . . . , where

5, = (5)-'"g,[2y+ y(I+ g') + y(-~')
—I'(—o.') I (I + cr')]

and o- =-.) 1

5'

(35)

Fig. 3 together with X)p'. li, increases monotonical-

ly from 0.5 for La=0 to 0.8 as Lo increases. Fur-
thermore, making use of Eq. (18), we have calculat-

ed I„which is shown in Fig. 4. As in the case of the
longitudinal resonance, the bound state almost ex-
hausts the transverse resonance as long as L & 10~
%hen L

0 sj.
hen Lp & IOQ there appear intensities associated

with the scattering states. The scattering states are
handled similarly when Lp & 10'. We now find

where X and ip are given in Eq. (12) and f and g
describe the d oscillation as given in Eq. (16). In the
present case, no exact result is known even in the
limiting situations. Therefore we determine the
bound-state eigenvalues variationally by assuming
that f ~ [ds(hs ~k)]" and g ~ [dn(Xs ~k)]~ where dn is

a Jacobian elliptic function and A. and k correspond to
the equilibrium solution. Note that in the present si-

tuation both the longitudinal and the transverse rf
field couples with the spin-wave mode with q =0
(zero wave vector). The result of the variational cal-

culation is shown in Fig. 6. Xf increases from 0.083
to 0.366 as Lp increases from 0 to 10 gq, while Xg in-

creases from O.S50 to 0.707. Both Xf and ) g saturate
around Lp = 10'. The broken lines in the figure are
the values expected for an isolated splay composite
soliton '"

(X~ =0.40 and Xg =0.670).
Small discrepancies in the asymptotic values are

due to the fact that our equilibrium solution Eq. (12)
does not have appropriate asymptotic behavior for
Lp » gj. However, as already explained, we believe
our variational solution is reliable for Lp & 10'. We
have also calculated the intensities of these modes,
which are shown in Fig. 7, As in the twist case, the

S. Splay soliton lattice

For the splay solution lattice, we obtain eigen equa-
tions

)ff =—
2 gq

—[(1 +sin X)f,]+ [I —2 sin (X —p)]fd

Xgg =——,g~' —[(I +sin'X) g, ]
1 2 d

0.6

p.4

0.2

o,o l I I

vsggL, 6o 9o

+ [I —sin'(X —p) —
2 (1 +sin'X) gpQ,']g, (36) FI&G. 7. Intensities II and l, are shown as functions of LD.
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and

X)" =1+ (2n +1) m
Lp —5(

with

X " =1+ (2n +1) m.

Lo —~f
(37)

8(=5.15', 5, =7.2(j,

bound states appear to exhaust the resonance for
Lp & 10'. For Lp & 10' the intensities associated
with the scattering states with resonance frequency
slightly above the Leggett frequency become more
and more important. The Af's and Ag's associated
with the scattering states are given by

proceeds rather slowly. Except in the immediate vi-
cinity of the transition temperature, this unwinding
process is controlled by the orbital viscosity. In par-
ticular, in our parameterization, orbital relaxation is
described by

—p. —X = F(X, Q),5
Qt SX

08)

where F(X, Q) is the free energy and p, is the orbital
viscosity introduced by Cross and Anderson. ' For
simplicity we consider here the twist soliton lattice.
Furthermore, we assume that the soliton lattice re-
laxes uniformly so that only the soliton spacing Lo
(or k) changes as a function of time. This assump-
tion is justified a posteriori as the relaxation proceeds
extremely slowly. We can then rewrite Eq. (38) as"

where 51 and 5, have been determined using our sum
rule Eq. (19).

The present result for the transverse resonance is

of particular interest, in view of the recent tipping
experiment by Bozler et a/. The experiment was
done in the splay configuration. Immediately after
the magnetization was tipped by large angle, Bozler et
at. observed a clear resonance with a negative shift,
which is consistent with the Brinkman-Smith" picture
of a rotating d vector in the x-y plane. However, this
negatively shifted resonance was eaten up rapidly on
the order of msec. Simultaneously a new resonance
appeared with increasing intensity around co = ~0
+0.550&/2cop. This new resonance soon ex-
hausted the total absorption. Then the resonance
frequency moved gradually upwards and ended up
with the frequency expected for the splay composite
soliton in a matter of several minutes. If we assume
that after the tipping, the Brinkman-Smith oscillation
decayed into a highly compressed soliton lattice and
that afterwards the soliton lattice relaxed slowly (i.e. ,
the lattice spacing increases gradually) then the
present calculation describes quite nicely the above
experiment. Furthermore, the calculation does show
that the satellite resonance exhausts the total absorp-
tion when Lp & 10'. However, if the experiment is

performed over a. longer time scale then the theory
predicts the appearance of a series of resonances with

frequency slightly above the Leggett resonance. In
Sec. IV, we study a possible soliton lattice relaxation
-mechanism.

IV. SOLITON LATTICE RELAXATION

After a soliton lattice is created by magnetization
tipping in a cylinder with open ends, the soliton den-
sity will decrease steadily due to their mutual repul-
sion. In this circumstance the I and d vectors at the
end points unwind and the soliton density in the
cylinder may decrease uniformly, if the uncoiling

Bx 8—p, nt, ds = „ f(X, qy) ds, (39)

where m = k, a is the length of the soliton lattice
and

cosX=sn[(5)'t2(kgb) 's ~k] . (40)

Substituting Eq. (40) into Eq. (39), we obtain after
lengthy but straightforward calculation

(41)

where r" =
,s (a/Q—) r, Ln= [2/(5)'t jgtkE(k), and

A

r = p, +2/4A is the t vector relaxation time in a uni-
form system as measured by Paulson, Krusius, and
Wheatley" (r = t~t2/in2). Finally Eq. (41) is integrat-
ed as

Lp(t) =Lp(0) e't' (42)

the spacing increases exponentially with time or the

soliton density N, (t) [=N, (0)e 't' ) decreases ex-
ponentially in time. The soliton distribution appears
to obey the ordinary diffusion law in a one-
dimensional system. The characteristic time depends
quadratically on the total length of the soliton lattice.
When a = 1 cm, we have r ' =—10 (1 —T/T, ) 't sec,
where we inserted the observed v near the melting
pressure. Therefore the characteristic time of the sol-
iton lattice with a —1 cm is of the order of ten
minutes to one hour.

In the case of the splay soliton lattice, the
corresponding equation is more complicated and can
only be solved numerically. However, in the limit

Lp/gq « 1 and Lp/gq » 1, the soliton density is
shown to decrease exponentially in time. The charac-
teristic time for the first limit is about
r ' = 7a (1 —T/ T,) 't and 4a (1 —T/ T,) ' 2 min in the
second limit at 29 bar. (Here a is measured in cm. )
The substantial decrease in the characteristic time in
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APPENDIX: SCATTERING STATES
FOR A SOLITON LATTICE

We shall determine here the energy spectrum of
the eigen equation

FIG. 8. Time dependence of satellite frequencies and
their intensities are shown for the splay soliton lattice. The
soliton spacing is assumed to expand exponentially in time.

82
P(z) + v(z) P(z) = Eg(z),

/Z

where v(z) is given by

v(z) = X V(z + nLp) (A2)

the case of the splay soliton lattice is due to the
steeper slope of the free energy and to the smaller
inertial term. The above time scale appears to be
again consistent with the experiment. In any case,
assuming the exponential decay of the soliton densi-
ty, the satellite frequencies and their intensities for
the splay lattice are plotted as a function of time in
an arbitrary unit ~ ' in Fig. 8. When more data be-
come available as to the time dependence of the sa-
tellite frequencies as well as their intensities, it is
hoped that the .present prediction can be tested exper-
imentally. The soliton lattice may also be relevant in
the turn off experiment by Krusius et al. ,

' where
they observed rather long I-field relaxation time.

we have

Q = Fe'"'+ Ge '~, for z +~,
where

(A4)

F at + lpl I p2 A

G i pz a) —i p—) G (AS)

and V(z) = V(—z).
Furthermore we assume that the scattering matrix

associated with V(z) is known. For

Q = Ae'~+ Be '"' for z —~ (with E = k ) (A3)

V. CONCLUSION

Then the solution of Eq. (A 1) is writtenzP

P(z) = e'q*uq(z), with uq(z + Lp) = uq(z) (A6)
We have extended the study of composite solitons

in 'He-A to the case of regular soliton lattices. The
soliton lattices appear to be realized after the magnet-
ization was tipped by a large angle (—180 '). We
have found equilibrium solutions for given soliton
densities both for the twist case and the splay case.
In the former case the exact solution is obtained by
integrating the Euler-Lagrange equation, while in the
latter case the solution is determined variationally.
The spin-wave spectra for the soliton lattice have
been determined. Furthermore, within the simplest
assumption, we find that the soliton density decreases
exponentially in time. The soliton lattice, relaxing
slowly in time, then accounts for two puzzling
features of the magnetic tipping experiment: the time
dependence of the satellite frequency and its intensi-
ty. This result is quite encouraging, although certain-
ly more experimental work on this subject is desir-
able.

and q and k are related by

cosqLp = a~ coskLp +P~ sinkLp . (A7)

I'( ik') I (I —ik')-
a)+ip) =

r( Ik' a) r( ik' —+ a +—I)—(Ag)

where

k'=k/a, a=
2

[—1+(I—4a Vp)''] .

We are interested in solutions in the limit

Lp/g )) 1. In this limit we can assume k' (( I and

For definiteness let us consider the longitudinal reso-
nance. In this case the rf field couples only with

q =0 mode. Furthermore in the case of the twist lat-
tice, where V(z) = Vp sech (az), a, and P, are given
exactly by
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we have

Cl~ = 1 By(&) —y(~) —y(~+1)J1(I + ~)r(—~)

is approximately given by

? ?

IP (z ) = 2
&

sin + 8? cosmmz mmz

Lo —5 Lo —~(
(A11)

1 1 +0(k') .k' I'(I+cr)I'( —o)
(A9)

for 0 & z & Lo. However the one which couples to
the rf field is given by

Substituting Eq? (A9) into Eq. (A7) we have

k(Lp —g() =m??, (A10)

1
mm(z ——,g,)

Q(z) = A sin
L() —5(

for 0 & z & Lp (A12)

whet'e m 1s an lnteget' and 5? given in Eti. (30) 1n the
text. The wave function outside of the potential weil with odd integer m.
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