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The dielectric response of the two-dimensional charged Bose gas is investigated in the

random-phase approximation. Using this temperature-dependent dielectric function we find the

energy spectrum and the damping for the quasiparticles. The electrostatic potential around a

test charge at T =-0 is displayed. We also study the thermodynamic functions of the gas at very
low temperatures and high densities.

I. INTRODUCTION

Due to the interest in the behavior of real physical
two-dimensional or quasi-two-dimensional systems
which has been current for some years, it is of great
intrinsic value to investigate the properties of specific
model systems in two dimensions and to discover,
whenever possible, how they differ from their coun-
terparts in three dimensions.

The Coulomb interaction provides us with several

examples, most of which have direct physical or
model applications. Coulomb gases are particularly
interesting and fruitful topics of study because of
their capacity to support collective oscillations along
with the fact that their long-range nature suggests
that the system's properties may change dramatically
with dimensionality. In this paper we study the
dynamical response of a Bose-Coulomb gas in two di-
mensions.

The dynamical properties of a classical three-
dimensional plasma both free of and subject to a
magnetic field are well known. ' Lindhard' first stu-
died the degenerate electron plasma in the absence of
a magnetic field and later Quinn er al. - examined this
system in the presence of an external magnetic field.

Interest in the two-dimensional electron gas was
then stimulated by observations of the behavior of
electrons on semiconductor inversion layers and
layers of electrons oo superfluid He films. ' Stern
first discussed the plasma oscillations in a two-
dimensional electron gas. He obtained a dispersion
relation at the absolute zero of temperature. Fetter"
has subsequently studied the plasma oscillations of
the Fermi gas at various temperatures, in particular
in the classical regime. ' The effect of an external
magnetic field on the two-dimensional electron gas
has also been investigated by various authors. '

The behavior of the three-dimensional charged
Bose gas in zero magnetic field has been extensively
studied by many workers. ' The dielectric response

of the three-dimensional system in the presence of a
magnetic field has been examined by Hore and
Frankel. " A charged Bose gas combines the Bose
condensation phenomenon with the usual problems
arising from the long-range Coulomb forces and so
provides a particularly rich subject for investigation.
It is therefore of interest to study the charged Bose
gas in two dimensions.

In addition to the inherent worth of studying this
particular two-dimensional many-body problem, the
results obtained in this.paper should also be of specif-
ic interest for superconducting thin films. In this
context we note that it has recently been suggested
that a new type of superconductivity may occur in
electron-hole liquids" and in particular in thin films.
According to the ideas of Schafroth" a gas of
charged bosons may serve as a model for a supercon-
ductor.

In three dimensions the Coulomb interaction has
the form V(r) ~1/r. However in the lower dimen-
sions there are two well-defined Coulomb systems,
namely the "restricted three-dimensional" gas and the
"pure Coulomb" gas. In two dimensions the former
consists of charges that interact via the three-
dimensional I/r Coulomb potential, but which are
confined to motion in a plane. The second system is
composed of particles which interact through the log-
arithmic two-dimensional Coulomb potential. It is the
"restricted Coulomb" gas which models real films of
charged particles. The gas with the logarithmic
Coulomb potential, while its behavior is certainly of
particular intrinsic interest as a many-body problem
involving particles with very long-ranged interactions,
is also valuable as a model of two-dimensional super-
fluidity. '

In the present paper we investigate the behavior of
the two-dimensional charged Bose gas where the
charges interact via the I/r potential. In a second pa-
per we shall examine the response of this system in
the presence of a magnetic field. This study should
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have particular relevance for the charged Bose gas as
a model of superconducting thin films. Our results
for the logarithmic potential will be published in a
third paper.

As is well known, the three-dimensional Bose gas
undergoes Bose-Einstein condensation at nonzero
temperatures. However the ideal Bose gas in two di-
mensions does not condense for temperatures above
absolute zero and indeed there are theorems' which
insist that long-range order does not exist at finite
temperature in a general class of interacting two-
dimensional systems. Whether or not a gas of parti-
cles with long-range interactions in two dimensions,
like the Coulomb interaction, has a phase transition
at any finite temperature, or specifically whether a
Bose-Einstein condensatc exists at all at T =0, has
not as yet been rigorously established.

We here follow the approach of Hore and Frankel'
in their three-dimensional treatment of thc charged
Bose gas, which we refer to hereafter as HF. They
use a dielectric function formalism in the random-
phase approximation.

This approach essentially treats the charged system
by perturbing around the ideal gas behavior. The
ideal gas is condensed at T =0. In three dimensions
Foldy' has shown, using a method of Bogoliubov,
that the ground state of the charged Bose gas indeed
has macroscopic occupation of the single-particle
ground state. This indicates that the random-phase
approximation as used in HF is valid.

In the third paper of this series we shall return to
the "restricted three-dimensional" charged Bose gas
and show that this system likewise condenses at zero
temperature, thus providing the justification for the
use of t]he random-phase approximation. in this paper.
In that same paper wc also show that the method of
Bogoliubov does not indicate that a condensate exists
in the "pure (logarithmic potential) two-dimensional"
charged Bose gas at T =0. Therefore it is question-
able whether, for this system, the use of the
random-phase approximation, is at all justified. We
shall return to study this problem in detail in our
third paper.

The present paper is organized as follows: after
first obtaining a closed-form expression for the
dielectric function in Sec. II, we find the quasiparticle

energy spectrum and the form of the damping of the
quasiparticles in Sec. III. The nature of the thermo-
dynamic functions of the gas at low temperatures and
high densities is obtained in Sec. IV, while the form
of the electrostatic potential around a test charge im-
mersed in thc gas at zero temperature is investigated
in Sec. V.

We find that the thermodynamic functions exhibit
an interesting behavior around T =0, which does not
occur in the three-dimensional gas. Possible explana-
tions and implications are discussed.

II. DIELECTRIC FUNCTiON

Consider a one component gas of N spinless bo-
sons each with mass m and charge e confined to an
area 0 at temperature T. %'e suppose the presence
of a uniform background of particles of opposite
charge to maintain charge neutrality.

The dielectric function, p(q, co), can be derived by
examining the response of the system in equilibrium
to a small disturbance. " The result in two dimen-
s1ons 1s

Fp(p) —Fp(p —q)
p q, pp =1+

fq0
co ——p ~ q+-

m 2m

The variables q and ao are, respectively, the wave
number and the frequency of oscillations of the gas
about equilibrium. Associated with oscillations of
frequency ~ are quasiparticles of.energy tao, p
represents the values of wave number accessible to a
free particle in Q. Fp(p) is the equilibrium distribu-
tion of the bosons.

We make thc random-phase approximation and
take for Fp(p) the ideal-Bose-gas distribution func-
tion, "

~here kg is Boltzmann's constant, z is the fugacity,
and for bosons

O~z~1

Equation (1) then yields

1

g /tq' ',
ao ——p q+

m 2m
p(q, p) =1+ 2me ~ 1 1

/rr/0
&

k p /2mk&T
&

k (p q) /2mk&T—

Since the ideal Bose gas does not condense at nonzero temperature in two dimensions there are, unlike for the
three-dimensionai calculation in HF, no singular terms in the summation in Eq. (3). Appendix A indicates how
Eq. (3) can be written as follows:
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2

I+ e m m7r
2@2+ 1/2 2 j

First, however, we consider the gas at the absolute
zero of temperature. Then

where

zJ —C D
([I + $(iC&D)]e

g-1 J
2+2—[1+@(iC&B)]e

Nl OJ 1 Nl QJ 1D= + —q, '8= ——q
hq 2 '

tq

4m 2m' T

where A. ~ is the thermal de Broglie wavelength and
@(x) is the error function'9 with

(~X

@(x)= „e ' dr

(4) and Eq. (1) gives

2778e(q, ~, T=0) =I—
cu' —it'q4 4m'

(6)

where

2we p
m

For the T =0 quasiparticle energy spectrum, Eq. (5)
accordingly yields

g2 4
~'(q) =a,q+

4m

III. QUASIPARTICLE ENERGY SPECTRUM

We now investigate e(q, rv) in the two asymptotic
thermodynamic regions

pay' 0+

(high temperature and low density) and

e(q, o)) =0 . (5)

(iow temperature and high density), where p = &/&
is the areal number density.

The allowed values of cu are then found as solu-
tions, o) =co(q), of"

In general, Eq. (5) is not easily solved; however
asymptotic solutions can be obtained in a small-q lim-
it. This is, of course, the region of most physicaI in-
terest, since the oscillations are weakly damped and
are, therefore, well defined as quasiparticles. It is
well established' that

ru(q) —(a,q) 'i'

for two-dimensional charged gases in the small-q lim-
it, so

D2A = BzA = ma~/qke T )) I

provided T is not too large. We study this region us-
ing the results in the appendices as follows.

Firstly, Eq. (83) is used in Eq. (4) to obtain the
following result for z ——0+:

I p 1 'n
2H ~ 2p+1 0~,2n + I,

(I —~/~')"

(-I)~
2

Qpq I P~T
e(q, co) =I—

(~' —o) &~ I'(—,
' p)/Jm—

+.2m ' em~ z' .
h

. fo) i . (ru'+cr)+ I
2 2 + 1/2

inh j exp
q h &z & 1 j 2kqT

~here we have defined, for convenience,

8=q keT/m

and

o. = t q4/4m2

This asymptotic expansion is good for

co )& H, a

The fugacity is now eliminated by Eq. (E3). After some algebra, the following expression for e(q, ~) is found:



20 CHARGED BOSE GAS IN TWO DIMENSIONS. ZERO. . . 975

(1+
3 i ) g [1+2 / 2+ —( /

tlat

cr QJ 1 cr/rgl (gP (1 —cr/(g )~

[1 +5cr/~2+3(cr/~2)2+ (cr/~2)3] ' '4 '
t 2 ~ 3 f

X 26
' +945 '2 1+ 2+14 2

+4 +
(1 —cr/au') '

" 1+01, 1+o,
~

[1+0(p) 2)]&e
~2 2

ap A. Tm
2

+I
k q2

c
r

2+ kQJ +sinh exP —, [1+0(pXr2)] + 0
~

pXr2sinh
™~

exp — ~, (g)

where we have used'

r(—,') =(~)''; r( —,
' —p) =(—1) 2 (~)''(2p —1)!!, p~1

This expansion is valid when

per &&1 and cd »8 o

Now we use Eqs. (C3) and (D2) in Eq. (4) to give the following expression for z ——1 —:

e(q, c0) =1- apq

( ' —~),~ r( —,
' —p)/( )'"

[X(p) —ln( —lnz)] (—lnz)~ + X
(—1) +~)(1+p —a) (—lnz)

pI pA. T
2 pA, T

2

asap

t p N

28 2p +1
,2n +1,

. 2me m (lnz)~ . . M —j (c0 +cr)~ 2

sinh j exp
(1 —cr/ro2)zc' q2tzh. r ~~ p!j' 2 ~ 2ksT 2

j~]

This asymptotic expansion is good for

Cd » 8, CT

The fugacity is eliminated by use of Eqs. (E4) and (E5), yielding

't

Gl cr pier 2pkr eo 1 —o/oP
c

15)(3) g
' ' [1 + 2cr/cu' + , (cr/rv')'] —lp5 c

'

g
' [1 + 5 cr/co' + 3 (cr/cu')' + ,

' (o /a)')']-
p Xr ~' (1 —cr/o)')' 90pXr a)' (1 —~/~2)'

1 '|3 !4'

+ 945((5) (ti/~2)4 1+ 28 cr +14 cr +4 cr + 1

) 2 3 2 - 2 2 9 2

x 1+0~, 1+0,
~

[1+0(e ' )]
,
~',

. )

c

1 c 1 I

+i, , [1+0 (e )] sinh exp —
2

+ 0 sinh — exp-. 27Fe m -P&T . Acd 1 cd + CF

q 4 XT 2kgT 8 AT
(9)
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We have used'

This expansion is valid when

pXy &&1 and (v &&8, o

Asymptotic solutions to Eq. (5) can now be obtained by iteration. The resulting expression are, for

63 =6)] + l602

(co~ and col are real), the following: for pXr && 1 (low density, high temperature),

r I

(cl ~ (q ) = a& q 1 + 3 +62 0 [9

Qpg' Qpg

1 1

+ —+24CT 8

Qp Q' Qpg

o.8

(a,q)'

g+180-' g

5
g2+ 0 + —, [1+0(p~,')];

I aeq (apq)'
(10)

]/2, r
~ 3/2 ~r

aeq t ks T . t(apq)' 1 apq + a.
&o~(q) = —e sinh — - exp ——.

to 1eadlng of del FoI'

o-,'e «1
and

(u( o, f(aeq)
& ]/2 1/2—«1,

Q)] kg T

(12a)

(12b)

we may expand the hyperbolic sine function and neglect the term exp( —a./0) to obtain, to leading order,
I

l 3/2

cu, (q) = —e ~ (—rr) ~ (a q) ~ exp ————32 1 12 12
8 g 2 e J.

For pXr )& 1 (high density, low temperature),
f

r

(u)(q) =aeq'1+0 — + — — +a( 1+0 padre
, -ei',l

a~q a~q
l

1 &4
o. + 1 8 2m' o.H 8+ -

2
O'2 + '

2
+O!3pXr, aeq 3 (aeq) a~q

ir 1 l5 l 1

apq (aeq)

n, (ps„') =15~(3) ~'/4px,', —

ai(p) r) =7~'/6 —1g0((3) +15~'~(3)/2px'+ ~'/4(pg')'

~3(p "r)=945((5) —[4505'(3) +907r'5(3) +77r'/31/p) r +105((3)rr'/2px' —405''/1296(p~r)';
'~ 1/2 f 'i 1/2 '

aq ks T 1 f(aeq)
~l(q) = ——

. slnh
2

i 0, ll, ,'qao
i

2ks T

f

1 Qpl a
exp —— +

2 0 0
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apqx exp ——
2 8

(14a)

to leading order, where

ao = /r'/me'

is the Bohr radius. If Eqs. (12) hold, then we obtain

1/2
' ' 1/2

o)p(q) = —— ' (a,q) '/'

The first two terms in Eq. (10) are exactly those
given in Fetter's paper' on the classical electron gas.

We have evaluated only the leading classical term
for the damping and this is also that obtained by
Fetter. ' It would be a simple matter to generate
quantum corrections to the result using Eq. (8).

It is very significant that the low-temperature spec-
trum [Eq. (13)] has terms which are proportional to
q and to q while the zero-temperature spectrum
[Eq. (7)] has no such terms.

to leading order.
The above expansions are all good for

8, o- « aPq

If we define wavenumbers q[ and q2 such that

8 q 2mp p
apq q~

'
k~T

and

apq q2

( ' 1/3
8wNfp p 8wpq2=

ap

then Eq. (15a) can be written

(15b)

From Eq. (10) we see that the first quantum
correction to the high-temperature, low-density classi-
cal frequency, in the small-q expansion, occurs as the
fourth term. It is interesting to find out if this quan-
tum correction can ever dominate the second classical
term, within the validity of the expansion. The ratio
of the quantum term to the classical term is

(q )(r)'
8 8~

Since Eq. (15b) can be written

IV. THERMODYNAMIC BEHAVIOR AROUND T =0

The nature of the thermodynamic functions of the
gas at high densities and low temperatures is now in-
vestigated. This we accomplish by using the spec-
trum of Eq. (13) in the Landau o quasiparticle model.
It is of great interest to determine to what extent the
temperature corrections to the T =0 excitation spec-
trum modify the thermodynamic functions calculated
for T &0 using the zero-temperature spectrum, Eq.
(7).

We consider here the internal energy per unit
volume, E(p, T), given by the Bose quasiparticle in-

tegral

!!co((q)

( )2 J f ()/k t'
(27r/

-J tcu)(q)/k~ T
dq qa), (q) Xe2' J 1

using Eq. (Al). The other thermodynamic function
can easily be obtained by differentiation or integra-
tion of E(p, T) If.

,&o((q) exp[ —jA'o&((q)/ks T]

is expanded around q =0 and put into Eq. (16), then
the small- T behavior of E is correctly given, since
only for values of q close to zero is there a significant
contribution to the integral.

Writing the spectrum of Eq. (13) as

(q),)',q), «(p) r)
ao

(15c) o)((q) = apq + y, T'q'+ y~ T'q

it follows that for p « & ao ', q and A, ~ may be
chosen so that Eq. (15c) is satisfied along with the
requirement pXr « 1, but for (q h. r)' » 1 [e.g. ,

p
——10 ' ap, X, y

—10 ao, and q = 10 ao ' satisfy
these conditions]. Then o & 8 and 5 & 1.

+ysq4+ y4 T'q4+ ys T'q'

+ y6 Tsqs + 0 (Tsq (17)

where the y;, i = 1,..., 6, are independent of T and q,
we find that

E(p, T) = (Ty7) 4!$(5)—(7!—6!) y~ T y7
—(11!—10!) ys(Ty7)

((7) , g(11)
ma '/' 2 2P

(9!—8!) ~(9)
y T7y4+ 10'. 9'. 7, ~(9)

y Tsy4+O y + y + y y T

(18)
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where

y, =ka2/t2a, .

Putting the values of the y;, i =1,.. . , 7, into Eq. (18), the energy can be written

m'(ka T)
~

(7 6 ) f(7) (kB ) (11! 10!)$(11) ( B T)
4rr te p 32~ te p 1287r t'e'p4

(19)15(9!—8!)((9) m'(k& T)' m'(ka T) '
64~' $6e8 5 gse8 6

2

Now using the zero-temperature spectrum, Eq. (7), to calculate the internal energy E(p, T), that is, using only
the first and the fourth terms of the finite-temperature spectrum, Eq. (17), we obtain, using Eq. (18),

m (ka T) (I I! 10!)~(I I) m (ka T)'
4qr te p 128m te p

(20)

to leading order.
It can be seen from Eq. (18) that the first temperature correction term in Eq. (17) gives rise to the first-order

term in the correct temperature expansion for the energy, Eq. (19). However the zero-temperature term in the
spectrum, y2q4, contributes to the correct low-temperature expansion of E(p, T) only to second order, as can be
seen from a comparison of Eq. (19), the expansion obtained using the full spectrum [Eq. (17)] and Eq. (20), the
expansion resulting from the zero-temperature spectrum [Eq. (7)]. Thus the temperature corrections to the
T =0 quasiparticle spectrum have a major effect on the behavior of the thermodynamic functions.

This result is in sharp contrast with the situation in three dimensions as given by Hore and Frankel. ' Using
the full temperature-corrected quasiparticle energy spectrum of a dense charged Bose gas at low temperature, they
have calculated the Helmholtz free energy, F, of the dense charged Bose gas around T =0. They found that

'1/2 ' '7/4
m cop kBT -t /k&Tp B

2 E27P t tQlp

x r(—)+ —Ij 11 kB T
4 ko)p

3~2((—', )r(-,') 't, "" 'k, T"
——'r( —")+ ' ' ' ' + o((k T/t )2)

32 4 ((—) k Tq fNJp

where T, is the transition temperature of the ideal three-dimensional Bose gas and ~p is the plasma frequency of
the three-dimensional Coulomb gas.

In 1970 Fetter use the zero-temperature excitation spectrum previously obtained by Foldy' to calculate the
thermodynamic functions of the dense three-dimensional charged Bose gas around T =0. He obtained

I

1/2 t 7/4 1 4 1 4 31
m aoz kaT &~ ikar 2 I 11— kaT I 15 kaT kBTF=- e ~' r —, + —r r +0

2J2rr4 t tao~ 4 2 4 ho~ 32 4 tee~ t&o~

Clearly the temperature corrections to the quasiparti-
cle energy spectrum here do not change the basic
character of the thermodynamic functions. In the
three-dimensional charged Bose gas the Foldy
ground-state (T =0) spectrum gives the correct lead-

ing order terms in the low-temperature thermo-
dynamic behavior. Low-temperature corrections to
the spectrum produce only third- and higher-order
corrections.

V. ELECTROSTATIC POTENTIAL

We now turn our attention to the electrostatic po-
tential V(r) about a charge Q immersed in the gas.

For a two-dimensional system

V(q) -2qrQ/qe(q, can =0)

where

V(r) I
I
d2, q -.V(-)

(2vr)2 " (22)

For an isotropic gas the angular integration in Eq.
(22) is trivial' and yields

V(r)=Q I dq
Ja(qr)
eq, 0

(23)

Here the defining relation' for the Bessel function of
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order zero,

2w Jp(x) =
z exp( —ix sin&) d8

has been used.
At T =0 the potential can be evaluated exactly.

From Eq. (6)

p(q, o) =0, T = 0) = 1 + q23/q'

Eq. (23) then gives

x3Jp(Rx)
V r = q2J dx

(24)

(25)

l(Rj

-6

where

R =q2r

+ —(1 —C + ln2) R 3 + 0 (R ), (26)

for R &(1. Thus, close to the test charge, the bare
Coulomb potential is recovered, as is expected.

Substituting Eqs. (FS), (F2), and (Fl) into Eq.
(2S) obtains

V( )
225 Q 1 —693 + 0 1

R6 R6 R'2 (27)

for R && 1, a rapid power law fall-off far from the
test charge.

How V(r) behaves in the intermediate region is
not obvious; however because the series in Eq. (F4)
is rapidly absolutely convergent it is an easy matter
to ascertain this numerically. We find that V(r) has
the shape indicated in Fig. 1; curiously, there is a sin-

gle wiggle into negative values between the small-
argument Coulomb behavior and the large r asymp-
totic result.

VI, CONCLUDING REMARKS

%'e now discuss the behavior of the thermodynam-
ic functions of the gas around T =0 which was

displayed in Sec. IV. There the contribution to the
low-temperature expressions for the thermodynamic
functions resulting from the temperature corrections
to the quasiparticle energy spectrum dominates that
of the zero-temperature term in the spectrum.

It could be thought that this behavior is suggestive

The integral can be evaluated exactly, as we show in

Appendix F; its asymptotic form for large R is also
obtained.

Equations (F4), (F2), and (Fl), when put in Eq.
(25) yield

1

V(r) = + 1 — R ——R lnR
2m 33

r 343 4

FIG. 1. Zero-temperature electrostatic potential is

V(r) = {Q/r) l(R). The shape of the curve is exaggerat-
ed. The minimum at R =1.9 has the value —0.096, while
the maximum at R =7.6 has the value 4.2 x 10 . The di-

mensionless coordinate R =q2r where the inverse length q2
is given in Eq. (25).

of some kind of "renormalization" of the system at,
or just above, T =0, and that we have here a faint
signaling of the presence of a weak phase transition
in the two-dimensional charged Bose gas at a finite
temperature.

This possibility seems, however, to be implausible.
Hohenberg's theorem" states that long-range order is
absent at finite temperature in a homogeneous two-
dimensional quantum-mechanical system of particles
which interact via a finite-ranged potential. While
the Coulomb potential is itself long-ranged, the
screening phenomenon produces an effective short-
ranged potential.

It is most likely that the temperature behavior of
the spectrum and resulting thermodynamics in the
two-dimensional charged Bose gas, as contrasted with
its counterpart in three dimensions, are a direct
consequence of the suppression of condensation in
the two-dimensional ideal Bose gas at all tempera-
tures excepting absolute zero. This fact, along with
the change in phase space available to the quasiparti-
cles around T =0, we believe, are the major factors
in producing the different low-temperature effects in
two and three dimensions, respectively. It would be
of great value to study this system further by investi-
gating the behavior of more advanced approxima-
tion-perturbation schemes.

All of the aforementioned considerations lead one
to consider the behavior of the "pure-Coulomb" two-
dimensional charged Bose gas. The interactions in
this system, being logarithmic, are far more long-
ranged than the 1/r potential and it is not clear that
studying this system within the random-phase ap-
proximation is correct. This system wi11 be discussed
at greater length in a forthcoming paper.

Notwithstanding all that we have already said, it
would be most welcome to have some rigorous
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theorems proving the existence or nonexistence of a
condensate in these two-dimensional Coulomb-Bose
systems in the ground state and at finite temperature.
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APPENDIX A

As in HF we use the identity

= Xxj, ~x~ &1
x ' —1

and the prescription, valid in the limit as 0
d2p0

(22r) 2

to obtain from Eq. (3) the following:

(Al)

OO

e(q, 01) =1+ gzj' td'p
22r/iq j 1

1

f2p2

P2 k, TJ
i

p q+ iiq2

m 2m

J~ d2p

1 'I

f2p2

2mk~ T
1

~ ——p ~ q-/i tq2

2m

where

OQ J
x X,i, [Z(C/8) —Z(C/D)], (A2)

J-1 J

—Z

Z(() = J1 dx

is the plasma dispersion function of Fried and
Conte. 2' Now for real values of its argument, Z(()
may be written

Z(x) =irr'/2e " [I+y(ix))

This result together with Eq. (A2) gives Eq. (4).

APPENDIX B

We here obtain asymptotic expansions o f
OO J

y(i'X1/2 jl/2) e
—xj

~ i/2J-1 J

for both x & 1 and x ) 1 in the limit as z 0+.
From Appendix 8 of HF

The above integrals are easily evaluated using
Cartesian co-ordinates p„and p~. Taking q as the p„
direction and performing the integration over p~
yields

i/2

( )
e2/22

'

2mksT
~ q, =1+

2A q

I'(x) is the y function. '9

Then

OO J
y(iX1/2j1/2) e

—xj

J-i J

,

I"-"„r(s)r(1 —s)
2m/ ~~ ' r(——s)

0&c &1

where

OO J
g (z)=$-

J-1 J

and this function has no poles, as a function of o., in
the neighborhood of z =0.

The integral is easily evaluated using Cauchy's
theorem. Closing the contour in the left half-s-plane
obtains an expression for small x, while closing the
contour in the right half-s-plane, yields an expression
appropriate for large x. The results are as follows
«&1:

OO J
(/X 1/2j1 /2) e

—xj
~ &/2J-i J

(=i $ ', '
g ~(z)x''+ (B2)

-o I'(—,'+p)

x&)1:
e -xjy ( /X1/2 j1/2)

I'
+'"„r(s)r(1 —s)

2rri "~ ~ r( s)
2

( 1/2 1/2) —xj M ( ) g+&j = z, r(——p)2

0&c&1 . (81) (B3)
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APPENDIX C

%e now derive expansions of
oo j

@(/»1/2 jl/2) e
—xj

~ 1/2j-1 J

for x & 1 and x & 1 in the limit as z 1—.
As in Appendix B of HF we use the Mellin integral representation of

Zj= e j[ns

and Eq. (Bl) to obtain
1

fa d+i oo

ix / dI, '

2 Vil 4 d-ioo ~ c-ioo

ro C+ioooo j
@(/»1/2 j 1/2) e xJ-

~ 1/2j-1 J
I (s)I (1 s) ( )

—c

r(—' —s)
2

0&c &1, d &0, c+d)1 .

((x) is the Riemann ( function. "
If the t contour is closed in the left half-plane the following expression appropriate for z = 1 results:

cd(ix'/'j'/')e "j=ix'/' X, (—lnz) ds, f(s —c2)» 'zj. . .
"

(—I) I "+'" r(s) r(1 —s)
21rl ~ c &~ f'(——s)

1 2

+ I d
"' " ' (—l )'-'-*, 0«I

22r/ & c i-
2 1

Now closing the s contour in the left half-plane yields the small-x expansion

zj (,1/2. 1/2) ~, ~ (—I) +p((—a —p) ( lnz) »1/2+p + 1
X

(—1)pp! x

j 1 j , p p Q'!I (—+p) (—lnz) p~ I (—+p) —lnz

' 1/2+p

(Cl)

(C2)

If the contour is closed in the right half-s-plane an
expression appropriate for large x is obtained. How-
ever evaluation of Eq. (Cl) is more involved in this
case than for small x, due to the existence of double
poles of [1(1—s)] at s =p, p = I, 2, .. . and the dou-
ble pole of I'(1 —s)((s —c2) at s = I+a, a=0, 1,... .

The occurrence of double poles in the above ex-
pression is a direct analytical consequence of the two
dimensionality of the system being considered in this
.paper. For the three-dimensional charged Bose gas,
as treated in HF, only simple poles are present in the
expression analogous to Eq. (Cl). The analysis of
the expressions which occur in the description of the
two-dimensional Bose gas is therefore rather more in-

volved than that which is required when dealing with
the corresponding three-dimensional expressions.
This, along with the absence of a Bose-Einstein con-
densation in two dimensions, is why the results in

this paper differ so from those in HF.
Nonetheless, the residues of the integrands of Eq.

(Cl) at these double poles can be calculated using
standard analysis. For the residue of

r(s) ' (—lnz)' 'x *

r(——s)3

2

+ I/I( , —p) + ln—(—lnz) —Inx)

where

111(x) =—[Ini (»)]d
dx

is the digamma function, '

0,
x(m) =

k-1 k

m=0

m =1,2, ...

and C is Euler's constant. '

The residue of

I (s), ((s —n)x '1(I- s)
I'(—' —s)2

at s =p, p =1,2, ..., we obtain

—lnzP '
[2[C —x(p —I)] + y(p)

(p —I)!r(-,' -p)»P
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at s =1+u, o. =0, 1,..., is

( I)1+a 1[2C —X(a) + y(1+ a)+ y( ——a) —Inx]
I (——a)x 1+a 2

2

Then for large x Eq. (C2) provides the following asymptotic expansion:
r

z' (. tp. tg) „J . ~ X
(—1) +'((I+p —u)( —lnz) ~ (—lnz)

[ ( ) ( )j
g-i j' ' -o p-o, u! I'( —,

' —p)x' '+' p-o p!I'(—' —p)x'~'+
p&a

(c3)

APPENDIX D

Using the Mellin integral representation of' e "it
is easy to derive asymptotic expansions of

oo j
g-1 J

for small x in the limit as z 0+ and for both large
and small x in the limit as z 1 —.

The results are as follows:
when z =0

z = p)t,'[I —
—, (p) 2) + —, (p) ',)

1 2 1

+ o((p),')')I, (E3)

ph. r « 1 (the high-temperature, low-density limit).
Using Eq. (E2) it is trivial to rewrite Eq. (El) as

—lnz = —ln(1 —e ') = X
-ph, T

J

shows that the right-hand size of Eq. (El) is a rapidly
converging series for small z so that we need only
directly invert Eq. (El) for z ——0, which then yields

, , e "'= X, g,p ~(z)x~,
J-1 J p-O

useful for x « 1; when z = 1

,(, e " = X, (—lnz) g(p, (e ")
g-1 J p-O

(Dl)
This relation is immediately useful for lnz =0
(z = 1), when pXr » I (the low-temperature, high-
density limit).

We also require an expansion for —ln( —lnz) when
z =1. It is easily shown that

good for x )& 1 and

z~
"

(—1)'+
e "'= X ((—' —p —u)( —lnz) x'

~ 1/2 I 1 2
g-1 J p a-o

—lnz '~', ~ p! ' —lnz

(D3)

which is an asymptotic expansion suitable for x « 1.

APPENDIX E

X
z' 1

"'+'" I'(s)f(1+s) ds

& ~ j 2rri" -" (—lnz)'

where Eqs. (El) and (E2) have been used.

(E5)

This integral may be evaluated by closing the con-
tour in the left half-plane. The residue at the double
pole s =0 is —ln( —lnz). Cauchy's theorem then
gives

—ln (—lnz) = p X —g ((I —n) (—lnz)"( 1)n

n

p),'=-In(I -z) .

The identity

(El)

We wish to obtain expressions for z = z (p, T) in
the two limits z 0+ (T ~, p 0) and z 1—
(T 0+, p ~).

The number equation for ideal bosons in two di-
mensions can easily be shown to have the closed
form

APPENDIX F

%e here evaluate the integral

1(ji) =Jt dx

It is more conveniently written

(Fl)

x'
ln (I —x) = $—,(—x

~
& 1

J
(E2) 1(Z) = —

J~ dx—J,(ex)
R o 1+x3 (F2)
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where the result' tial fractions of the form

fa oo
1Jp(ax) dx =—

~0 0

has been used.
The factor 1/(1+x3) can be split into a sum of par-

where the U„are the three cube roots of unity. Then
the three resultant integrals are standard'9 and we ob-
tain

&0
Jp(Rx)

dx 1+x rr[H—(pR) —Np(R)+e ~'~ [Hp(Re2~'~3) —Np(Re'~'~3]+e '~'~ [H (Re z~'~3) —N (Re '"'~ )]]

(F3)

where Np(z) is the Bessel function of the second kind of order zero and Hp(z) is the Struve function of order zero.
Using the Power-series exPansions'P of Np(z) and Hp(z), Eq. (F3) can be written as follows:

1

Jp(Rx) p4
R

1+x [(3n)'] 3(3)' ' 4(3n +1) ' 6(3)' (3n +2)
+ C+in( —'R) -x(3n+1)—

+R5~
„~~ [(6n +5)!!]' (F4)

The asymptotic form for this function as R ~ is easily, found by using the standard asymptotic result' for
Hp(z) Np(z), which, when substituted into Eq. (F3), gives

dx Jp(Rx) 1 225 693 1+ +01+x'
t

as R (Fs)
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