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Relations are derived from which all of the thermodynamics and transport properties can be

calculated for superconductors with magnetic impurities according to Shiba's theory. Scattering
of'all partial waves are included, beyond the usual s-wave scattering treatments. A band of local

excited states appears for each partial wave which is included. As an example of a thermo-

dynarnic property, the discontinuity in the specific heat at the superconducting transition is cal-

culated.

I. INTRODUCTION

Our understanding of the influence of magnetic
impurities on the properties of superconductors has
been extended in recent years beyond the classic
theory of Abrikosov and Gorkov (AG). ' That theory
assumed that the interaction between the magnetic
impurities and the conduction electrons is sufficiently
weak to be treated in the first Born approximation.
A treatment of the magnetic impurity problem which
is carried out to all orders of the interaction has been
provided 'by Shiba and, later but independently, by
Rusinov. ' This theory was developed further by Shi-
ba, and has been used to calculate a variety of ther-
modynamic and transport properties. ' "Much of the
mathematical treatment which was required for those
calculations is similar to that used in calculations
based on the AG theory, and has been given by
Maki. " An alternative "exact" theory of magnetic
impurities in superconductors has been devised by
MCiller-Hartmann and Zittartz (MHZ) and their co-
workers, ' and has recently been improved by ex-
tending it to the case of a nonvanishing concentration
of magnetic impurities. " Unfortunately, it has not
been possible yet to carry out calculations of tran-
sport properties based on the MHZ theory.

Although Shiba's theory applies to the case where
higher-partial-wave electron-impurity scattering is in-

cluded, the published papers which have been based
on the theory have all assumed early in the calcula-
tion that only s-wave scattering is present. This as-
sumption is made for simplicity, and is properly used
to display the qualitative consequences of the theory.
However, accounting for the observed effect of the
magnetic impurities on the superconducting transition
temperature requires that higher partial waves be in-

cluded, ' and the assessment of the results of other
detailed experiments has also begun to demand that
they be taken into account. It is our purpose to

present some of the theoretical predictions of the Shi-
ba theory when the higher partial waves are included.
The analysis proceeds along the same lines as that
which has already been published for the case of s-

wave scattering only, which we will call the restricted
case. We use the notation of Nagi and his co- workers.

.II. ORDER PARAMETER

The basic equation which we use has been given by

Rusinov, and by Chaba and Nagi,

&& (1+U') '"( '+ U') ', (1)

where

ru„=2m T(n + —,'),
4 is the order parameter, T is the temperature, n is

the pair-breaking parameter [see Eq. (17) below], I is

the orbital angular momentum number of the partial

wave, U„ is a renormalized energy defined in Ref. 5,

e~ =cos(51+—51 ),
St+ and St are the phase shift of the lth partial wave

for spin up or down, respectively,

n& = C (1 —~I )l2n bio,

C is the magentic impurity concentration, and Wo is
the density of states for the conduction electrons
(one spin direction only) in the normal state of the
pure host metal.

Henceforth, all sums over I go over integers from 0
to ~. Sums mill appear over n; they will also all go
over integers from O.to ~. Following the methods
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given in the derivation by Lo and Nagi for the re-
stricted case, we find immediately that

(

yt(2n +1) = U„1—X(2i+ I)
8(a, T) ", 5(u, T)

x (1+U')' '( '+ U') ' (5)

where

where

F, = (2i+1)(1 —«),
if one has values for the parameters ~~. Equation
(14) is frequently written in the form

ln(T, /T, p) =(I((2) —'(i((2 +a/27r T,),
where

(16)

(17)

S(n, T) = A(n, T)//( (0, 0),

y = m Tco/5 (0.0) =—1 781

(6)

(7)

T,o is the transition temperature of the pure host me-

tal, and

n= —,
'

[p(5, (0, 0)] =pu„. (18)

The critical concentration C„of magnetic impurities,
needed to force T, down to 0, makes p =1, and is

given by

(=T/T, o.

Employing the usual self-consistency condition

(5,(a, T) =2n TNp~g ) $(1+U )

(8)
C„=@Noh(0, 0)/ XF( .

I

It is useful to note that

p =C/C„.

(19)

(20)

where g is the BCS coupling constant, we continue
with Lo and Nagi's methods and find that

I (I + U(() 2yt (n + —. +p /4y T)

IV. THERMODYNAMIC AND TRANSPORT

PROPERTIES

+ (I((—) —(I(
—+1 p
2 4yT

where (I( is the digamma function

P =XPi
I

p(= (2i+1)u(/n, „,

(10)

(12)

In order to calculate the various thermodynamic
and transport properties, one needs to know the re-
duced, renormalized energy Uas a function of m.

The equation which must be solved to find U is relat-
ed in the usual way to the one which gives U„, Eq. {5),

—= U 1 —X (1 —U2)' (p( —U ) ', (21)
25

so the factor (2i+1)n(/h(n, T) in Eq. (1) is equal to

p(/28, and where

n„= —,
'

[(5,(0, 0)], (13)

III. TRANSITION TEMPERATURE

The transition temperature T, has the usual depen-
dence on p,

In(T, /T, p) =(I((2 ) —(I((—'+pT, p/4y T,) . (14)

This relation can be used to determine p from an ex-
perimental measurement of T,/T, p. Having found p,
one can obtain pi from the relation

p(= pF(/ QFi,
I

(15)

which is the critical value of the pair-breaking param-

eter, that drives T, down to 0. The order parameter
is calculated by finding a value of 8 which simultane-'

ously satisfies Eqs. (5) and (10).

where we denote A(n, T) by I from here on.
It is interesting, for example, to see what the su-

perconducting density of states W, looks like. This is

given by

N, (p() =NpIm[U/(1 —U2)' 2] . (22)

In(T/T, p) = (I((—,) —(I((—, + a/2n T)

—(2) b(a/2rr T) ((5,/2m T) (23)

As magnetic impurity atoms are added to the super-
conductor, states appear in the energy gap, forming
bands of states. For small impurity concentrations
these bands are centered at a series of energies, eIb.
Figure 1 shows an example, where s-, p-, and d-wave

scattering are present.
It is useful to find the order parameter 4 near T,

in order to find thermodynamic properties, such as
the discontinuity in the specific heat (C, —C„) at T„
where s and n refer here to the superconducting and
normal state, respectively. Using the methods of
Maki, ' we find, to second, order in 4, a relation for 5,
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The factor 5 in Eq. (25) can be put in the form

2 $(2/+1)W, 2

I

X (2/+1)A(

(29)

(30)

where

so that

(C, —C„)/C„=—
(/( (2) T, Q /2b(n/2mT) To, (28)

where

0.2 At =1 —et . (31)
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FIG. 1. Density of electron states in the superconducting
state, W„normalized to that in the normal state, N„, as a-
function of energy, F., divided by the order par~meter, 4,
for the indicated values of ep, e], 62, T,jT,p, and T/T, .

Since ~t' lies between 0 and 1, At also lies between 0
and 1 for all / Look.ing at the form of 5 in Eq. (30),
it is then obvious what is the smallest possible value
of C, —C„, for given value of n/2rr T„and therefore
for a given value of T, /T, o. This smallest value is
obtained if at least one ~t is equal to 0' and all the
values of et are 0 or 1 for all I. In this case, 5 = l.

b (x) =—(—,
'

) (/('" (—,
' +x) + (—,

' x) S(/("'( —,
' +x) (24)

and

XF((1 —2e(2)

Fi
t

The function P("((x) is the polygamma function,
d (/((x)/dx . The discontinuity in the specific heat
can then be calculated in the way given by Chaba and
Nagi for the restricted case. ' The result is

V. SUMMARY

We have derived some useful theoretical results for
the effect of magnetic impurities on superconductors,
according to Shiba's theory. ' The most useful results
are perhaps those for U„[Eq. (1)], 8 [Eqs. (5) and
(10)], T, /T, o [Eq. (17)], U [Eq. (21)], 5 near T, [Eq.
(23)], and C, —C„[Eq. (26)]. From these results, all

of the thermodynamic and transport properties can be
calculated. This should provide good motivation for
theoretical calculations of the relative phase shifts
(8('-8().

C, —C„=gm NOT, . Q~/b(n/2m T,),
where

0 =1 —(n/2rrT, )y"'( ,
' +0(/2rrT, )—,

(26)

(27)
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