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The nonequilibrium quasiparticle energy distribution function of optically irradiated supercon-
ductors is obtained from an analysis of the current-voltage curve of superconducting-insulator-

superconductor tunnel junctions. The result is in excellent agreement with the numerical solu-

tion of the appropriate kinetic equations.

Measurements on superconductor-insulator-
superconductor tunnel junctions can be used to ob-
tain valuable information about the energy distribu-
tion of quasiparticles in a superconductor perturbed
from equilibrium by some external mechanism.
Chang and Scalapino' have sho~n that, in principle,
the exact energy distribution function of the quasi-
particles in the nonequilibrium state of a supercon-
ductor can be obtained from measurements of the
change in the current through tunnel junctions biased
at constant voltage. The change in the current pro-
duced by the application of an external perturbation
is related to the quasiparticle distribution function
through an integral equation, Proper numerical solu-
tion of this linear integral equation yields the exact
distribution function. This process of obtaining the
distribution function from changes in the current-
voltage characteristics of the tunnel junction had not
previously been successfully used in the investigation
of the nonequilibrium properties of superconductors.
Other investigators' have been able to fit qualitatively
the change produced by some external mechanism in
the I( V) characteristic of tunnel junctions by the as-
sumption of several functional forms or parameters
for the nonequilibrium quasiparticle distribution
function and the selection of that function or param-
eter which best reproduces the data when inserted
into the integral equation.

In this paper, we report an analysis of the changes
in the I( V) characteristic of optically perturbed su-

perconducting tunnel junctions which yields the exact
quasiparticle energy distribution function, and com-
pare the results of this analysis with various theoreti-
cal models for nonequilibrium superconductors. The
results are in reasonable agreement with the modified
heating model suggested by Parker, ' and in better
agreement with the numerical solution of the kinetic
equations obtained by Chang and Scalapino.

The experiment is relatively straight forward. Sn-
I-Sn tunnel junctions of area approximately 0.4 x 0.4
mm are fabricated on glass substrates and immersed
in liquid helium. The superconducting films are typi-

0
cally 1000 A thick, The junctions are illuminated on

one side with light that is mechanically modulated at
S3 Hz. The exciting optical radiation is spatially
homogeneous over the dimensions of the junction.
The junction is biased at a constant voltage using a
dynamic constant voltage source. ' The change in the
current through the junction at the modulation fre-
quency is detected by a lock-in amplifier. A small
magnetic field is applied if necessary to suppress the
Josephson currents, The optical modulation is suffi-
ciently weak that the spatial instabilities thought to
occur with strong perturbations should not be a factor
in this measurement. 6

Even though the junction is illuminated on only
one side, we assume that the entire junction (both
films) is uniformly perturbed by the optical radiation.
The acoustic mismatch between the superconductor
and the substrate or liquid 'helium, and the thickness
of the films, result in the trapping of the recombina-
tion phonons within the superconductor, The recom-
bination phonons produced in the illuminated film
easily propagate through the oxide barrier and excite
quasiparticles in the unilluminated film. '

%e follow the analysis suggested by Chang and
Scalapino' to extract information on the distribution
function from the measured current-voltage curves.
It is convenient to introduce an effective excess tun-
nel current

5IE = I( V;6L ', AR ',fL (E);fR (E))

—I( V;hL 'AR 'fL(E)'fR(E))

where the superscript asterisk denotes the nonequili-
brium state, 4R L denotes the energy gap in the right
and left films forming the junction respectively, fR L

denotes the quasiparticle energy distribution function
in the right and left films, and V denotes the poten-
tial difference across the insulator. This effective ex-
cess current is not the excess current measured in the
experiment, The measured excess current is

gI = I ( V i' RL', fs, L) —I, ( V;~sL,fs,L),
%'hile Sl~ is not the directly measured quantity, it is
introduced here because (a) it depends only on the
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change of the distribution function and not on the
change of the energy gap, and (b) it simplifies some-
what the numerical computations described below.
The relationship between 5IE and 51will be discussed

shortly.
From Chang and Scalapino, the effective excess

current is the sum of three contributions
&IE = &IE' + &IEb + 5IE where

RE ~ «((E2 g «2) [(E + EV)2 /) 2]}1/2
(2a)

E(E —eV) 8(E —e V —5„)
SIE J( dE -- " [Sf,(E) Sf, (E—ev)]-

((E'-& "') [(E—.V)'-~ "]}'/'
(2b)

E(e V —E)B(eV —E —/2. „)
SIE = ——

~ dF. [SfL (E) + Sfa (e V —E)]
Re "&«((E2 g 2) [(eV E)2 Z «2]}1/2

(2c)

and R is the normal-state resistance, e the electron
charge, and 8 the Heaviside step function
[e(x & O) =O, e(x & O) = l]. Also

SfLE(E) = fL a(E) fL—a(E)—
The effective excess current can be obtained from

the experimentally measured change in the current
by expanding the effective excess current in a Taylor
expansion and calculating the first-order correction
term assuming an equilibrium BCS superconductor,

SI, = SI + — SA+"81
85

Some idea of the difference between 5IE and SI can
be obtained from Fig. 1. Figure 1 compares 5IE and
SI for a small change in the energy gap 55 where
both 5IE and SI have been calculated for a BCS su-
perconductor using an effective temperature T' to
characterize the nonequilibrium distribution func-

3.5—

2V
{mV)

tion. ' Note that below the voltage 24 the effective
excess current is very nearly the same as the meas-
ured excess current. In this region of the I- V curve
any small errors in the first-order correction term
should be unimportant. However, above the gap, the
difference between the measured and effective excess
currents become comparable to, or even larger than,
the measured excess current. Since this difference
for V ) 2h is sensitive to the exact value of the en-
ergy gap, and any possible smearing or energy depen-
dence of the gap, the accuracy of the correction of
the data obtained at voltages above 2b, is doubtful.
Therefore, only data taken at voltages below 2h will

be considered in the analysis.
Another reason to restrict this analysis to changes

in the current below a voltage of 2A is to avoid the
possibility of the bias current itself producing a none-
quilibrium condition among-the quasiparticles. For
voltages above 24 the current is sufficient to inject a
significant number of quasiparticles into the super-
conductors, especially at low temperatures. Below a
voltage of 2A, the bias current can be orders of mag-
nitude smaller, especially at low temperatures.

Since we are assuming that the two superconduct-
ing films composing the tunnel junction are equa11y

perturbed, Eqs. (1) and (2) reduce to

SIE = I ( V;5;f ) —I( V;6;f)
and

sI;= Jl dE p(E) p(E+ v)e(E+Ev-s')g 1

x [Sf(E)—Sf(E+ev)] (4a)

-35-

FIG. 1. Change in current vs the voltage across a Sn-I-Sn
junction. The upper curve is 5l = l(~f(T'), &')
—l(~,f(T), 4) while the lower curve is

SIE = l(V f(T'), I) —l(V f(T), b, "). Both of these curves
are calculated within the BCS model.

fO OO

SIE' ———
J dE p(E) p(E —eV)8(E —ev —5 )

Re
x [Sf(E) —Sf(E —e V)]

SIE= —
) dE p(E)p(ev —E)8(ev —E —5 )1 4'

Re

x [Sf(E) +Sf(ev —E)]
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where right and left sides are no longer denoted, and
p(E) is the BCS density of states characterized by an

energy gap of 5
Combining the three integrals for the current

above and below 2~ yields:

Sle(V) = Slg+SlE~

dE G(E, V) Sf(E), V (2A, (5a)
Re "~«

ments

N ra E.
Sle(V) = $ dE G(E, V)5f(E)

Sf(E) can be expressed as a linear interpolation
between the endpoints E; and E;+~, i.e.,

1

Sf(E) =Sf(E) ' +Sf(E;+t)

(8)

where

G (E, V) = p (E) [p (E + e V) [1 + 9(E + e V —5 ') ]

—2p(E —eV) 9(E —e V —b ) I (Sb)

and

SIE(V) =SIE'+SIE~+Sle

dE F(E, V)Sf(E), V~26, (6a)
Re "~«

where

F(E, V) =2p(E) [p(E+e V)

—p(E —eV)B(E —eV —5 )

—p(eV —E)9(eV —E —5 )] . (6b)

Equations (5) and (6) are integr'al equations which
relate the effective excess current 5I~ to the change
in the distribution function 5f(E). The integral
equations can be written in matrix form by replacing
the continuous variable E with a finite set of values
separated by AE.

QG(E, V)Sf(E)(it,E), V &2A, (7a)
E

5Ip =
XF(E, V)Sf(E)(bE), V~25, (7b)

or

(9)

Combining Eqs. (8) and (9) yields Eq. (10) where
the integrals that must be evaluated have at most a

single singularity that can be removed by an appropri-
ate change of variable.

N+1
Sle(V) = $ Gt(E;, V)Sf(E;), V & 2A, (10a)Re,

where

&Ei+i E;+[—E
Gt(E, , V) = ! G(E, V)

' 9(l!i—i) dE
i

+ Jt G(E V) — ' 9(i —2) dE
E; —E]

(10b)

Similarly for voltages greater than 2A

N+1
Sle(V) = g Ft(E;, V)Sf(E), V~26, (lla)

Re, „)
where

r

1 ~~+i E+& —E
F~(E, V) = —

J dE F(E, V)
' 9(W —i)

Re ~1 E+& —E,

~El
+J F(E V)

' ' 9(i-2)dE
E —E.

t

(1 1b)

G(E, V) +5(E), «2A
F(E, V) ~5(E), V

(7c)

(7d) Sle = Gt+5(E) (12)

Equation (10a) can be written as a matrix equation

The change in the distribution function can in prin-
ciple be obtained by multiplying either Eq. (7c) or
(7d) by G ' or F ' respectively. However, the three
singularities within 6 and F arising from the normal-
ized density-of-states factors make numerical evalua-
tion difficult. An appropriate change of variable can
remove one but not all three of the singularities in 6
and F.

Numerical evaluation becomes easier if the follow-
ing procedure is followed. ' The integration domain
of Eq. (5) is divided into a series of i!r' finite seg-

This equation can in principle be solved for Sf(E) by

finding (G t), a square matrix. Recall that Sle is

obtained from the experimental data by applying a
small correction and G~ is obtained from numerical
integration of Eqs. (10). We will use only Eq. (10)
to obtain Sf(E) because the useful data obtained
from the tunnel junctions is limited to the region
V & 2A for the reasons mentioned earlier.

Even though the elements of the matrix G~ can be
obtained numerically, there is still a difficulty in ob-
taining Sf(E) from Eq. (10). Gt is an ill-conditioned
matrix. ' This means that Sf(F) can be obtained
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Sf(E) =a~g~(E) +a2g2(E) + +a~g~(E), (13)

or

+5(E) =g(E)a (14)

where

g(E) =
gi(Ei) g, (E&)

g)(Ew) gp(E~)
t

from (Gt) ~BI only if 51E is obtained with negligible
error. Any error in SIE is sufficiently amplified by
the ill-condition of G~ that the numerical solution of
Eq. 12 for Sf(E) is erratic and meaningless. Some
insight into the origin of the ill-condition can be ob-
tained from an examination of the family of curves
in Fig. 2 where Gt(EV), is plotted against E with V

as a parameter. A large spike in the function occurs
whenever E = 4 + e V and this spike dominates the
G, (E, V. ) curve. To obtain a satisfactory representa-
tion of the functions G~(E, V), the set of values for
the variable E should include several values near the
cusp. Since the matrix G~ must be square in order to
be inverted, it is difficult to obtain a satisfactory
representation of G~.

However, it is still possible to obtain Sf(E) to an
accuracy commensurate with the data. The function
Sf(E) can be expanded in a series of appropriate
functions with coefficients to be determined from a
numerical fit to the data. Let

and

Combining Eqs. (12) and (14), we obtain

~51 = G~g(E)a

The matrix a is then computed from

a =A '~BI

where

(15)

(16)

A = Gtg(E)

The procedure for finding 5f(E) is now: (i) calcu-
late the matrix Gt, (ii) choose an appropriate set of
functions g~(E), . . . ,g~(E), (iii) calculate the coeffi-
cients at. . . az from Eq. (16), (iv) calculate Sf(E)
from Fq. (14), (v) compare the calculated excess
current from Eq. (12) to the measured excess current
[Eq. (3)j and if the difference exceeds the experi-
mental error, (vi) add another function to the set
g (E) and return to step (ii) of this procedure.

' The result obtained from the application of this
procedure to the data from a Sn-I-Sn tunnel junction
of 4.30 normal-state resistance at a bath temperature
of 1.33 K and exposed to optical radiation is shown
as curve B in Fig. 3 where Sf(E) is plotted against E.
Curve A is the function g~. For this calculation we
chose as g~ the difference between Fermi-Dirac func-
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FIG. 2. Rows of the matrix G~(E/4; V) vs E/5; the
normalized quasiparticle energy. Each member of this fami-
ly of curves is characterized by a value of the voltage across
the junction.

FIG. 3. Change in the quasiparticle distribution function
Sfvs E/5'. Curve A represents 5f =f(T;E) —F(T,E) and
curve 8 represents Sf =f"(E) —f(T,E) where f is the
Fermi-Dirac distribution function and f is the experimen-
tally determined distribution function.
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tions evaluated at the ambient temperature and an ef-
fective temperature determined from the modified
heating model, i.e., g~ =f(T") f(—T). The coeffi-
cient a~ in Eq. (13) was set equal to 1. We make this
choice since we expect the modified heating model to
be approximately correct for optically perturbed su-
perconductors. The effective temperature ?'was cal-
culated from the normalized excess quasiparticle
number n which in turn was obtained from the
change in the energy gap 56 and the relation
n = Sb/2h. Published graphs in Ref. 3 relate r" to n

and T. The remaining functions in the series in Eq.
(13) were E "with n =1,2, . . . . Terms of inverse
power up to 4 were necessary to fit the data to within
the experimental accuracy.

The perturbation that produced the data in Fig. 3 is
not small. The change in the distribution function at
an energy E = 4 is in fact larger than the value of
the equilibrium distribution function at E =—4. Ac-
cording to Fig. 3, the value of Sf(E) at E = 5 is
7 x 10 '. At a temperature of 1.33 K and an energy
of E = 5, the value of the Fermi-Dirac distribution
function is 5 x 10 '. Another way of quantitatively
expressing the extent to which the superconductor is
out of equilibrium is the comparison of the normal-
ized excess quasiparticle density n to the normalized
equilibrium quasiparticle density. For the data in Fig.
3, n =6.4 & 10 while the normalized equilibrium
quasiparticle density is 3.1 x 10 '. Also the effective
temperature T' =1.64 K for the data in Fig. 3 in
comparison to the ambient temperature T =1.33 K.

The accuracy to which the experimental data can
be fit is shown in Fig. 4 where the measured excess
current SEE is plotted against the voltage across the
junction as curve B. A calculated excess current
determined from the change in the distribution func-
tion shown in Fig. 3 is also plotted as curve 8. To
within the width of the line, the actual data and the
calculated curve agree. Also shown in Fig. 4 as curve
A is the best fit to the data using the modified heat-
ing model. All three curves coincide at voltages near
24 but the curve calculated from the modified heat-
ing model is clearly incorrect at voltages below 5 (for
Sn, 5 =—0.6 mV).

We believe the small differences shown in Fig. 3
between the calculated nonequilibrium distribution
function and a Fermi-Dirac function at an effective
temperature T.'are meaningful. We have tried a
variety of functions as expansion functions in Eq.
(13) and while the number of required functions and
their coefficients would vary with the choice of func-
tions, we always obtained the same final result for
Sf(E). Thus the choice of expansion functions does
not appear to be crucial as long as the functions de-
crease with increasing energy. We also found that we
could fit the current-voltage curve of the equilibrium
(unilluminated) junction in the voltage region
~ & V & 4 to within the accuracy of the data. This

LU

40

V (mV)

FIG. 4. Change in tunnel current SIE vs Vwhere
81E=1(V,5;f') —I(V, 5',f). Curve 3 is calculated within

the T'model. Curve 8 is the experimental data. The calcu-
lated 51& using the experimentally determined distribution
function corresponds to curve 8 to within the thickness of
the line.

indicates that the tunnel junction I- Vcurve in this
voltage region was well described by BCS density of
states and simple tunneling theory.

Excess tunneling currents of the kind reported by
Taylor and Burstein were observed at voltages
b, & V & 2b, . It is interesting to note that these ex-
cess tunneling currents do not appear in the data
displayed in Fig. 4. This suggests that the excess
tunneling current in our junctions is independent of
the distribution function since the data in Fig. 4 is
obtained from the difference

Sl =I(V, A,f ) —l(V, S,f)

This result is consistent with the observation of Tay-
lor and Burstein that the type of excess tunnel
current appearing in Sn-I-Sn junctions is approxi-
mately temperature independent.

While Fig. 3 displays the change in the quasiparti-
cle distribution function caused by the external opti-
cal perturbation, Fig. 5 displays the quasiparticle dis-
tribution function itself obtained under the experi-
mental conditions discussed above. Curve 8 displays
the actual nonequilibrium quasiparticle distribution

function f (E) = Sf +f(T,E) where f (T,E) is the
Fermi-Dirac function. Curve A is the Fermi-Dirac
function evaluated at the effective temperature
T =1.64 which best fits the experimental data.
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FIG. 5. Nonequilibrium quasiparticle distribution function
f'(E) vs E/5'. Curve 8 is the experimental result ob-
tained from a Sn-I-Sn tunnel junction. Curve A is the
Fermi-Dirac function evaluated at the effective temperature
T' =1.64 K. Curve C is the Fermi-Dirac function evaluated
at the ambient temperature T =1.33.

Curve C is the Fermi-Dirac function evaluated at the
ambient temperature T =1.33 K.

In Fig. 6 we reproduce the calculated distribution
function obtained by Chang and Scalapino who nu-

merically have solved the kinetic equations appropri-
ate for the nonequilibrium superconductor. They
have calculated the steady-state, nonequilibrium dis-
tribution function for a superconductor irradiated by
thermal phonons characterized by a temperature
much greater than the bath temperature and then ar-

gue that this result should be appropriate for optically
illuminated superconductors. A parameter in their
calculation is the ratio of the phonon escape time ~„
to the zero-temperature pair breaking time v& for a
phonon of energy 2h. The zero-temperature pair
breaking time at an energy of 24 for Sn is found in

Kaplan et al. The phonon escape time from the su-
perconducting films used in the experiment is calcu-
lated from r~ =—4dlqc, where d is the total junction
thickness, g the transmissivity of phonons at the
helium-superconductor interface, and c, the speed of
sound. The resulting ratio for the data reported here
is r, /ra ——8. Thus the experimental results should
be compared to the theoretical results corresponding
to ratios of r„/r& ) 1, i.e., to curve e in Fig. 6.

Also shown in Fig. 6 as the dashed curve is the
result of the modified heating model for the condi-
tions appropriate to their calculation. Note the simi-
larities between the curves in Figs. 5 and 6. The ex-
perimentally determined nonequilibrium distribution
function differs from the modified heating model in

exactly the same manner as it differs from the de-
tailed kinetic equation calculation. The principal

0
2

Et~0

FIG. 6. f'(E) vs E/50 as calculated from the coupled
kinetic equations for quasiparticles and phonons. 40 is the

gap at T =0. The dashed curve corresponds to the best fit
of the T'model. Curves a, b, c correspond to phonon es-
cape times of 3/5v. &, 5/47& and 3r& ~here ~& is the zero-
temperature pair breaking lifetime for a phonon of energy 2A.

difference is the reduction in the number of quasipar-
ticles at energies very near the gap energy, and the
distribution of these quasiparticles over an energy
range between 5 and —2A. Physically, this implies
that the excited quasiparticles lose their excess energy
by some appropriate relaxation' mechanism in a time
comparable to or shorter than the time required for
the quasiparticles to come into thermal equilibrium
with the phonons. In other words, the effective
recombination time is not significantly longer than
the quasiparticle relaxation time, This is in agree-
rnent with the calculations of Kaplan et al. '

In summary, we have extracted the nonequilibrium
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quasiparticle energy distribution function for the case
of optically irradiated superconductors from an
analysis of I ( V) curves of superconductor-insulator-
superconductor tunnel junctions, and have found the

result to be in excellent agreement with the numeri-
cal solution of the appropriate kinetic equations.
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