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Zero- and low-field spin relaxation studied by positive muons
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Zero- and low-field spin-relaxation functions have been studied for the first time by using po-

sitive muons, and results are compared with the stochastic theory of low-field relaxation formu-

lated by Kubo and Toyabe. The dipolar broadening of the zero-field relaxation has been studied

in detail. In ZrH2, the zero-field relaxation function of p,
+ has been found to decay (5)' times

faster than the high-field relaxation function, which is explained in terms of the contribution of
the nonsecular part of the dipolar interaction. Advantages of the zero-field method over the

conventional muon-spin rotation method in practical applications, especially for studies of the

p,
+ diffusion/trapping, are discussed,

I. INTRODUCTION

In this paper, we report on the study of zero- and
low-field spin-relaxation functions using positive
muon (p+). Theoretically, the zero- and low-field re-
laxation functions, where random fields exceed an
external field, were formulated in a general stochastic
treatment of Kubo and Toyabe. ' Experimentally,
however, no work has been done on this subject sim-

ply because NMR techniques are not applicable to
very low resonance frequencies. On the other hand,
using p, +, we can easily observe relaxation functions
at any external field; p,

+ is a radiative probe which
emits a positron preferentially along its spin direction,
so that the relaxation function can be observed from
the time variation of the p, —e decay asymmetry
without rf field, though the time window is limited by
its lifetime r„=2.20 psec. Furthermore, it is a pure
magnetic probe (since its spin is —,) with a large

gyromagnetic ratio y„=2m & 13.554 x 10' /Qe/sec.
Usually, the relaxation of the p,

+ spin is studied via
the muon spin-rotation method by applying a
transverse magnetic field to measure the positron
time spectrum

%„(8,r) =Xoexp( —t/r„)

x [I +AG„(t) cos(8 —cu~t)]

where G„(r), the envelope of the damping of the
Larmor precession, represents the transverse relaxa-
tion function. Another way of measurement is called
the "longitudinal-field" method where we simply

apply a longitudinal external field (including zero
field) to the p,

+ spin and observe the longitudinal re-
laxation function G, (r) in the expression

N, (8, t) = Woexp( r/r~)—
x [I +AG, (t) cos8]

We employ this method at TRIUMF, since, as will be
shown later, this method is superior to the
transverse-field method in many respects.

After a brief description of the experimental pro-
cedure in Sec. II, we will discuss the following topics.
In Sec. III, the first observation of the zero- and
low-field relaxation function in MnSi is reported.
The observed function was found to be a typical ex-
ample of the static limit of the Kubo-Toyabe relaxa-
tion function, indicating that the relaxation is caused
by static nuclear dipolar fields. In Sec. IV, the effect
of muon diffusion is taken into account and general
expressions for G, (r) and G„(r) are derived. It is
shown that even an extremely slow muon diffusion
can be detected by using the zero-field relaxation
function whereas the conventional high-field
transverse relaxation function is insensitive to such
an effect. In Sec. V, the static dipolar width of the
zero-field relaxation is compared with that of the
high-field transverse relaxation. Both an intuitive
classical picture and a rigorous quantum mechanical
derivation will be presented to obtain the relationship
between the two. It is found that the zero-field re-
laxation function can decay (5)'~' times faster than
the high-field relaxation function due to the contribu-
tion of the nonsecular part of the dipolar interaction,
which is experimentally demonstrated by observing
both G„(r) at high field and G, (t) at zero field in a

ZrH2 sample. We will discuss the dipolar width in
the case of rapid p,

+ diffusion in Sec. VI, and sum-
mary will be given in Sec. VII.

II. EXPERIMENTAL METHOD

In Fig. 1, a schematic drawing of the longitudinal-
field setup is presented. Polarized muon beam is

slowed down in a polyethylene degrader, collimated
to typically 1.9 cm in diameter and stopped in the
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FIG. 1. Schematic drawing of the longitudinal-field setup.

sample placed at the center of the longitudinal coils
as shown in the figure. Two sets of positron tele-
scopes are placed at 0 ' (EFl,EF2) and at 180 '
(EB1,EB2) to the beam to detect p, —e decay posi-
trons. Each counter is square in shape (30 x 30 cm2),
and has a 7.5 cm round hole in the center so that it
does not see the muon beam directly. Two time
spectra, one for each telescope, are accumulated.
Since the angular distribution of decay positrons is
expressed by Eq. (2), G, (t) is obtained by taking the
time-differential ratio of two spectra

N, (0, t) —aN, (rr, t)
N, (o, t) + aN, (~, t)

after proper background subtraction. Thc instrumen-
tal forward/backward asymmetry e is usually close to
1 in this setup. In many, cases, a can be determined
self-consiste~. tly by fitting the data, when thc relaxa-
tion time is definitely shorter than the observation
time window, 0—16 p,sec. This simple method has
been proven to be quite powerful an studyang the
spin-lattice relaxation time (T~) of the tt, spin in
magnetic substances. ' This method is readily appli-
cable to the studies of zero- and low-field relaxation
phenomena.

field relaxation function; G, (t) at zero field initially
sho~s a Gaussian-like decay, but is followed by a
recovery of asymmetry to —, . According to the

a

Kubo-Toyabe theory, this recovery of asymmetry to

3
is an unmistakable evidence for the static character

of random fields. In other words, the p,
+ is definitely

(T =285K)

III. RELAXATION DUE TO STATIC NUCLEAR
DIPOLAR FIELDS—p,

+ IN MnSi

As a typical example, we measured G, (t) of the tt,
+

in MnSi at room temperature for longitudinal fields
of 0, 10, and 30 Oe, as sho~n in Fig. 2. From the
figure, we note the characteristic feature of the zero-

6 8
TIME (p, sec)

FIG. 2. Observed p,
+ longitudinal relaxation functions in

MnSi at room temperature with 0, 10, and 30 Oe external
fields. . The solid curves are the best fits to Eq, (10).
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frozen at a site, thus seeing static nuclear dipolar
fields. This point will be made clear in the following.

Let us first assume that the field H = (H, H», H, ) is
static at each muon site. If a muon stops at t =0
with its spin pointing to the z direction, the z com-
ponent of the muon spin evolves with time as

static because the relaxation time of nuclear spins is
known from NMR to be 35 + 5 p,sec, ' which is much
longer than the p,

+ lifetime.
The zero-field relaxation function Eq. (8) initially

shows a Gaussian-like decay, which can be approxi-
mated by

H,' H„'+ H,'
t», (t) = *, + ", ' cos(y„Ht)

H H
(4a) G, (t) —exp( —5't')

=exp[——((H„') + (H»')) y't']
= cos'tl + sin'8 cos(y„Ht) (4b)

where 8 is the polar angle of H. Throughout this pa-
per, we take the z axis-along the external field direc-
tion. The zero-field case will be treated as a special
case of the longitudinal-field configuration.

We further assume that the random fields are iso-
tropic and each component can be represented by a
Gaussian distribution function,

2 .2

P(H) = ~ exp-Vp H
(2~)' '~

where 5'/y„' represents the second moment,

(i =x,y, z), (5)

h, ~/y z = (H~) = (H»~) = (H, )

The relaxation function G, (t) we observe is just
the statistical average of a,(t);.

(6)

G, (t) =„„' J o, (t)P(H„&P(.H )P(H)

x dH„dH» dH, = g, (t)—
which yields

g, (t) = ,
' + —'

, (I ——5't')exp( —
—,
' 5't')

and take the statistical average to obtain

When a longitudinal external field Hp is applied along
the z axis, we simply replace P(H, ) in Eq. (7) with

y„'(H, —H, )'P H, =,t~
exp—

where we explicitly indicated that two components of
random fields, H„and H», contribute to G, (t) On.
the other hand, the high-field transverse relaxation
function in the static limit takes the form (see Sec.
IV)

G„(t) = exp( —
—,
' ~'t')

= exp( ——, (H,') y„'t')
(12)

2A 2A ~o
g, (~) = I — + exp—

CU 0)

to which only one component of random fields, the
component along Ha, contributes. Therefore, G, (t)
at zero field damps faster than G„(t) at high field.
Note that —, ((H„') + (H))) at zero field is, in gen-

eral, not equal to (H,') at high field; the difference
of the width may not be just (2)'t' but can be as large
as (5)'t'. See Sec. V for details. In view of the fact
that p,

+ lives only for 2.2 p,sec while the relaxation
time due to nuclear dipolar fields is usually longer
than the p,

+ lifetime, this effective reduction in the
time scale should be quite advantageous from experi-
mental viewpoint; the nuclear dipolar width can be
determined with better statistical accuracy by using
G, (t)

The recovery of asymmetry to —, in the zero-field

case can be intuitively understood from Eq. (4b); the
projection of o(t) on the z axis ave. rages to —, . In a

finite longitudinal field, the asymptotic value of the
recovery is found to be

g, (t) =1—,[I —exp( —
—,5 t ) coscupt]

2h
OJp

f olp/LL

& J exp( —,
' u') du (13)

+ ~ exp( ——5 r ) sinoJgrd7
2A'

3 p 2
CUp

(10) which is larger than
3 and approaches 1 for large

value of ~p.
where cop = y„Hp.

The solid curves in Fig, 2 represent best fits of data
points to the static Kubo-Toyabe functions, Eq. (10).
All the curves are consistently fitted with a single
value of 5/y„=3.80 + 0.04 Oe. At this temperature,
the spin-lattice relaxation time of the p,

+ spin due to
the electron spin fluctuations is known to be longer
than 100 @sec. Thus, the relaxation is entirely
caused by the random fields from surrounding nu-
clear dipoles. These random fields are regarded as

IV. EFFECT OF MUON DIFFUSION

Let us now turn to a more general case by taking
the muon diffusion into account, and show that the
recovery of G, (t) to —is significantly suppressed

even in the case of extremely slow muon diffusion.
In the paper of Kubo and Toyabe, the modulation

of the field is assumed to folio~ a Gaussian-
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rocess. arne y,. N 1 the correlation of the
ed b the automomentfluctuating field is characterize y

(H;(t + r) H, (r)) = 5'/y„'exp v—t

r —= 1/v is the correlation time ofof the field fluc-where v —= j is
d cribed by a diffusion

Thi i 1 h
the rocess is escri

of Fokker-Planck type. i

f l b of domthe cumulative effect of a large num
t 'b tes to the fluctuation o eprocesses contri u e

field.
however, the process may beIn the present case,

'
ed b a "strong-collision" mo e .better describ d y

a muon jump s from site to site wit a me
c p the muon experiences a s

'
!d d 1 hange as is described!d nota gradua c an

by the Fokker-Planck eqe uation. e i eai
e strong-collision model in w ictuation by the

f' lds before and aftertion between the ie s
~ ~

the jump. The process describe y i

Markovian, out nob t Gaussian-Markovian.

A. Exact solution of G, (t) for

an arbitrary muon hopping frequency

4

n -col!ision model, the time evolution
~ f .......h;.h'

ts of contributions rom m
(0)(t)] 11 11 d tdid not jump until time t g, t, w ic

1 jump g,[ ' (t)l 2 jumps [g,ti'(t)], etc. ,

G, (t) = X g,'"'(t)
nW

It can be easily understood that

'
htforward numerical cal-this form, it is a straig

,( ), h' h are presented for
Fi. 3(). Th 1 th

obtain 6, t, w ic a

several values of
e as the curves shown in the paper o u

k t th two graphs, however,
, Fi. 3(),

A closer loo a e, r

als that the "strong-co ision cu
the K.ubo-Toyabe curves

G
'

M k an assumption. The
a little slower than t e u

based on the Gaussian-Mar ovia
difference is especially notable or e s
(re ) 1) cases.

etr to—1
the recovery of asymme yFor slow hopping,

d and G, (t) shows a hump around
f G(t) bt —3/h. The asymptotic form o

evaluated by using Eqs. (18) and (20 to be

—
3

exp( ——vt) (for t ))3 4 (21)

1 ~ CI

and
f& oo

(19)F,(s) = J G, (t)e "dt

c. IVC, the same, but more geneneral expressions
d'ff t formulation, whered b using adi eren

wes owhow that the transverse re axa io
ed b the same form as Eq.E. 18.

(.) ~ bIn the zero-field case, f, s can e

1 2sf, (s) = —+

( / t'—t)dt —. (20)x 1 —s exp -2
0

(16)

e "'is the probability that the muon did not
ti ', ( ) is the static longitudinal

r E . (10). The next term is ob-
til time I, and g, t is e

relaxation function, Eq.
taine id in the same manner,

gz

6 2

3 4

t(~ ')

rocess that the muon experi-which describes the proc
H' her-orderattimeti (0&t, &t . ig e-

1 derived and we arrive atterms can be successively derive, an
the exact expression,

6 8

f, (s + v)
F,(s) = $ v"f,"+'(s+v)—

(18)

6.2

3 4

t (a ')

d the Laplace transformswhere we introduce

f,(s) —=„g,(t)e "dt

ion itudinal relaxation functions for
l 1 df Etimes, numerically ca cu a eff

'
io f io E (22)(18). (b) High-field transverse relaxation unc io

plotted for different values of ~ for comparison.
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FIG. 4. Height of minimum (a) and hump (b) of the
zero-field relaxation function plotted against correlation time ~.

tract information on slow modulation (r/J. & 1) from
the observation of G„(I) in the conventional preces-
sion measurement. Therefore, the zero-field method
is powerful for studies of diffusion/trapping of p.+.

As is well known, the expression Eq. (22) is

derived based on the Gaussian-Markovian assump-
tion. The strong-collision model for the high-field
transverse relaxation leads to an expression similar to
Eq. (18) [see Eq. (34)], whose inverse transform was
numerically performed and was carefully compared
with the curve of Eq. (22) by Kehr et al. p Just like
our result for G, (r), the strong-collision model was
shown to lead to a slower damping of G„(t). Howev-
er, the difference is small so that the simple analytic
expression Eq. (22) is preferred for data analysis over
Eq. (18).

where the factor
3

can be understood intuitively if

we note that —, of each jump should still preserve the

longitudinal polarization. The height of hump pro-
vides a very sensitive measure of the correlation
time, while the shape in the r & 2/5 region is essen-
tially unaltered. This is a very unique feature of the
zero-field method. In Fig. 4 we show the depen-
dence of the height of this hump on the hopping
time.

By comparing curves in Fig. 3(a) with the zero-
field data in MnSi (Fig. 2), we can safely say that the
muon diffusion should be slower than r —5/6, or
~ ) 15 p,sec, which is much longer than the p,

+ life-
time. This is the reason we conclude that the p,

+ is
frozen at a site in MnSi even at room temperature.

As the temperature is lowered, both the Tt of
"Mn (Ref. 5) and that of p+ (Ref. 3) become short-
er. At T =40 K, for instance, the Tt of "Mn due to
the electron-spin fluctuations is estimated to be 10
p,sec, while that of p,

+ is still much longer than its
lifetime, around 40 p, sec, Then, the nuclear dipolar
field felt by the muon is no longer static, and the
zero-field relaxation function G, (t) should indicate
slow modulation around v4 —3. This suggests an in-

teresting possibility of measuring the nuclear zero-
field spin-lattice relaxation time, indirectly from the
muon zero-field relaxation function,

C. Alternative method to solve
the strong-collision model

P(M, H, r—) = —yM x H P(M, H, t)
9t gM

—
JI P(M, H, r) w(H -H ') d H

'

+ P M, H', t w H' H dH'

(23)

where the first term represents the precession of M
in the field H and the latter two terms describe the
random modulation of the local field.

The "strong-collision" assumption means that a
sudden change of the local field leads immediately to
the equilibrium probability distribution Pp(H ), i.e.,

w(H' H) =vPp(H) (24)

independent of H '. Under this assumption, Eq. (23)
is simplified to

Here, we present an alternative method to solve
the strong-collision model which uses the distribution
function P(M, H, t), the probability density of spin M
and the random field H at a given time t. The func-
tion P ( M, H, r ) follows the equation 'p

B. Comparison with the high-field
transverse relaxation

P(M, H, t) = —y—M x H P(M, H, t)
9t QM

For comparison, we also plotted transverse relaxa-
tion functions G„(r) for high field in Fig. 3(b), which
takes the form

—vP(M, H, t)

+ vPp(H ) Jt P(M, H ', t) d H ', (25)

G„(t) = exp[ —5'r'(e '~' —1 + t/r) ] (22)
with the initial condition

As is evident from Fig. 3(b), it is impossible to ex- P(M, H, 0) = 5(M Mp) Pp(H) (26)
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We introduce here the vector function

Jtt(H, s) =„dt e "&~ M P(M, H, t) d M (27)

for which Eqs. (25) and (26) give the equation

sjtt{H,s) = —yH x JR(H, s) —vent(H, s)

+ Pp( H ) [vga(s) + Mp] (29)
and its average

R(s) —= J pit(H, s) d H (28)
By using the notation y Hp

———(pp„, cur, o&,) and u =—s + v,
we can solve Eq. (29) with respect to ott (H, s);

Ott(H, s) = Pp(H )
tpg + (alp

O)&Q + GO&OJ&

OJz El + QJ&QJ&

Q +Ql

—OJzQ + OJzCd&

—
QJ&Q + OJ+O)z

«„u + re«), [van(s) +Mp]

Q +0)

(30)

We assume that the field H is cylindrically sym-
metric around the z axis, and integrate the both sides
of Eq. (30) with respect to H to obtain

f~'(u) fj "(u) 0

FTt(s) = —f "(u) f '(u) 0 (vga(s) +M )

0 0 fbi(u)

I

dipolar fields, we take the second moment a la Van
Vleck a-t ].""However, much precaution should be
paid for the present case of zero- and low-field relax-
ation. In order to claify the point, an intuitive argu-
ment may be helpful.

The nuclear dipolar field at origin from an i th
point dipole p, ; located at r; is

where fq', fq", and fp are defined as

(31) H, = —,' [3(p; r";)r";-p,;]
f 3

Its z component can be expressed as

(35)

and

Q +co,fp(u)=(, *, )
u u +QJ

(32)

H;, =—3[(3cos20; —1) cos8;
I/

+3 sine; cosO; sin8; cos$;] (36)

fp(s+v)
Qll (s )

I f ( ) Mp (33)

We also obtain

f+ (s+v)
Ott+ s

1 —vf+ (s+v) +

The brackets mean averaging over the distribution
Pp(H). Finally, the expression describing the longi-
tudinal relaxation becomes

Hp » (yqlyt) H (37)

the Larmor precession of p, ; around Hp llz averages
out the. second term (nonsecular part) in Eq. (36);
the mean-square value of the secular component
along Hp reduces to the Van Vleck value,

where 0; is polar angle of r;, 8; is polar angle of p, ;,
'hand @, is azimuth angle of p, ;. In the transverse-field
case, where the nuclear Larmor frequency yiHp is
larger than the width due to random field y„H;,
namely,

(M+=M +i', f+ =fj if()-(34)
o vv =

3 X8;(3 cos'8; —1)'1 (38)
which describes the transvers|'. relaxation. Equations
(33) and (34) are equivalent to Eq. (18) derived in a

different formulation.

V. NUCLEAR DIPOLAR BROADENING

AT ZERO FIELD

where

8; —= l(1+1)y y 8 r;

Its polycrystalline average is

2 4
~vv

09)

(40)

A. Classical picture

Here, we raise a question: what is 42? For the
conventional transverse-field method, where the ap-
plied field is large enough compared with the nuclear

Even at zero field, the surrounding nuclei may be
precessing due to the electric quadrupole (eqQ) in-
teraction. If the eqQ precession frequency coo is

larger than y„H;, the field-averaging similar to the
high-field precession case should result. If we denote



856 HAYANO, UEMURA, IMAZATO, NISHIDA, YAMAZAKI, AND KUBO 20

the unit vector of the electric-field-gradient direction
at i th nucleus by q;, the mean-square value of the
component along the muon spin direction can be ex-
pressed as

((rg'(), = X y'„H, ',
I

the width of the zero-field relaxation function [which
picks up another factor (2)'(2 since two components
of random fields contribute] and that of the high-
field transverse relaxation function should differ by a
factor (5)''. It will be shown in Sec. VC that the
classical argument presented here gives the same
correct answer as the quantum-mechanical treatment.

= —,
' $8'[3(j; r;)cos(); —j, ,]', (41)

nn

(ag()„+((rg()» ———, $8; sin'0;4 (42)

and its polycrystalline average is

nn

(a.a()„+(~g()» = —, X8' (43)

(however, see note added in proof).
1If eqQ is not so strong, or when I = —, , the nonsec-

ular term does not drop out any more and the p,

spin feels the full magnitude of p, ;. From Eq. (35),
we obtain the mean-square value of the full magni-
tude of p, ; to be

where 0; in the zero-field case is defined as the polar
angle of r; with respect to the initial muon spin direc-
tion. Hartmann' pointed out that the presence of
the interstitial p,

+ creates a radially directed electric
field gradient on surrounding nuclei, which can affect
the width of the high-field transverse precession sig-

nal; it was experimentally verified by Camani et al. '

for the case of p,
+ in copper, When there is no exter-

nal field, the nuclear quantization axis q; is each radi-
al direction r";, so that

B. Experimental comparison of G, (t)
and G„(t)—I'+ in ZrH2

To examine the relation predicted by Eq. (48), we

chose ZrH2 (polycrystal) as a sample, and measured
both G, (t) at zero field and G„(t) at high field. ZrH,
is ideally suited for this purpose since no eqQ interac-
tion is present, the dipolar field created by protons is
conveniently large and the p,

+ is known to diffuse
very slowly in ZrH2 from a zero-field experiment by
Doyama et al. (5 In Fig. 5, the observed G, (t) and
G„(t) are plotted. At room temperature, the zero-
field measurement yielded a curve similar to the case
of MnSi (though it indicated a slow modulation
rA =3.5+ 1.0), and crz„was d-etermined to be
0.514+0.008/p, sec. In a transverse field of 5.0 kOe,
G (t) yielded a vv =0.329+0.006/psec. Thus, we
obtain the ratio

—2 —2
PzF/~vv =2.4+0.1

Xy'H; =2/8;—= (r,
I l

(44) I.O

while the mean-square value of the z component be-
comes

Xy&H' = —X8;(3cos'0;+I) =(a-zr), . (45)

(oz2F)„+(oz2F)» =
3 X8;(5 —3cos'0) (46)

As expected, we find that Eqs. (45) and (46) add up
to

Similarly, the components responsible for the longitu-
dinal relaxation are obtained as

O

C3

4

C)

~~ 0.5
&C

bJ

(~z'r). +(~z'r), +(~z2F), = ~' . (47)

If we take the polycrystalline average, or if the muon
site has a cubic symmetry (note that (cos'8) = —, in

either case), we obtain 0
TlME {p. sec}

OZF=3 J Bi 3Ot 20yy (48)

which is
2

times larger than o yy. If this is the case,

FIG. 5. Observed zero-field relaxation function G, (t) and

high-field transverse relaxation function G„(t) in ZrH2 at
room temperature,
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C. Quantum-mechanical treatment

Here, we apply the general quantum-mechanical
theory of magnetic resonance linewidth formulated
by Kubo and Tomita to derive some of the useful
expressions for the muon spin relaxation, and also to
show that the classical argument presented in Sec.
V A yields correct answers.

We write the effective Hamiltonian for the muon
spin S in the form l

= —y„fS,Hp+3Cd (49)

where Xq represents the dipolar interaction,

scq=

pygmy('It

[(S I;)r —3(S r;)(I; r;)]/r . (50)

in good agreement with the factor —,, presented in

Eq. (48).
The zero-field dipolar broadening parameters were

calculated according to Eq. (48), for two different
muon sites. Assuming that the muon occupies a pro-
ton site, the calculation yielded A(H) =0.335/psec.
If we assume that the muon is at an interstitial site
(octahedral site with respect to the surrounding Zr
nuclei), we obtained 6(IS) =0.557/psec. Therefore,
the observed value azF ——0.514/p, sec indicates that
the muon occupies the interstitial site, possibly induc-

ing a slight local lattice expansion. ' This does not
exclude the possibility that some of the muons occu-

py proton sites, however.
We also would like to point out that the experi-

mental fit which gives v~ =3.5+1.0 can be reason-
ably explained by attributing r to proton-proton dipo-
lar coupling. We take account of the fact that the
second moment for like spins (proton-proton) is —,

times larger than that for unlike spins (muon-proton)
at zero field, and assume that the muon is at an in-

terstitial site as mentioned above. Then, we obtain

r& = [&(IS)l&(H)l & (—,') ' ' x (y„/y, ) = 4.3

which agrees fairly well with the experimental value.

(I(„(t)= —$B;[—, (3cos'8; —I)'g„(0,t)

+3 sin'0; cos'0;gv((u( t)]

+ —,
'

y, (t), (s2b)

where ~„=Y„Ho, ~1=—yIHp, and

pt
g„(0(t),

—= Jl (t —r)f„(r)cos(ur dr (s3)

To proceed further, we assume that the correlation
function f„(t) takes the form

f„(t)=exp( —v~t~)

Then,

( ) R
e "'e' ' —I+(v —io()t

(v —i 0()'

(54)

(55)

whose asymptotic behaviors for the static and the
narrowing limits are

g„~((ut) —,( I —cos(u t) /0(', (S6a)

g„„( t(u)

v((u' + v') I + 0('r' (56b)

+3g„t(u&+ (u(, t)]

g„(t) = (ryy[g„(0, t) + g„((u(, t)] + 'y, (t)—
(57)

(58)

The first term in Eq. (58) represents the secular
width, while all other terms are due to nonsecular
contributions.

In the static limit, we find, from Eqs. (56a) and

(58), that 0(( » a. yy needs to be satisfied in order
that all the nonsecular contributions become negligi-

ble. When this high-field condition is satisfied, the
transverse relaxation function in the static limit be-
comes

G„(t) exp( —
2

a vvt )
2 (59)

For simplicity, let us take the polycrystalline aver-

ages of Eqs. (51) and (52);

IJ/g(t) = —(ryy[
2 gy(0(p (u(, t) +

2 gp(0(/, t)

Using the perturbation method following Kubo-
Tomita's procedure, the relaxation functions can be
approximately given by the expressions Gz(t) -exp( sayyt )—— .2 (60)

The zero-field longitudinal relaxation function in the
static limit, on the other hand, takes the form

G, (t) = exp[y, (t)]

y, (t) = —$8;[—,
' (3 cos'0, —I)'g„(0(„—(u(, t)

(Sla)
The enhancement factor 5 was already predicted by

using the classical argument in Sec. V A.

+ 3 sin20; cos20;g„(0(~,t)

+-', sin'0;g„((u~+(u(, t)]

G„(t) = exp [p„(t)]

(5 lb)

(52a)

VI. DIPOLAR WIDTH IN THE CASE OF
RAPID MUON DIFFUSION

Finally, we would like to comment on the relaxa-
tion rate in the case of rapid p,

+ diffusion. When the
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hopping time becomes short, or more quantitatively, when the condition ro « I is satisfied, both G, (t) and G„(I)
become exponential;

G, (t) = exp( —r/T~) = exp a—year. t + +—2 1 3 3
2 I + Cd& Cdl r 2 I +Cd&T I + Gl&+(all T

t

G~(r) =exp( r/T2} =exp (tyytr 1 +—2 3

2(1+ o)12r2) 2T)

(61)

When col « T « o-vv, the high-field relaxation
rate takes the familiar form

O VVT ~

2

(63)

When the hopping time becomes shorter than the
nuclear Larmor period (cuir « I), it should look as
though the surrounding nuclei are at rest seen from
the rapidly diffusing p, +, so that the p,

+ should instan-
taneously see the full magnitude of nuclear dipolar

2 2 5 2
fields, not ~vv b«o zF 2

o vv just like the case of
the zero-field relaxation. In this region, Eqs. (61)
and (62) yield

5
ment by a factor

2
takes place when v exceeds col,

and the p,
+ sees the full magnitude of dipolar fields

including nonsecular x and y components. An
enhancement by another factor 2 occurs when v

exceeds cu„—10coi, where the fluctuating random
fields can induce the transition between the muonic
Zeernan levels.

This latter process may be best understood in
terms of the simple expressions given by the Redfield
theory. "

(67)

2
5~VVT

1 +M~T
(64) (68)

(r

1 5

T2 2 VVTt 1+ 1

1+cd T
(65)

Finally, when T is much shorter than the Larmor
period of p,

+
(&o~r && I), the longitudinal relaxation

time T~ becomes equal to the transverse relaxation
time T2,

If we classically evaluate the mean-square values of
random fields due to nuclear dipolcs when ~IT && 1

[Eqs. (45)—(48)j, the above Redfield expressions be-
come equal to Eqs. (64) and (65), derived from the
Kubo-Tommita theory. The dependence of Tt and T2

on the crystal axis orientation in the narrowing limit,
which has been neglected so far, can be easily ob-
tained to be

1 1
VV

= —
—=So. 7 (66)

7'r((H2) + (H~')) = —, r $8;(5 —3cos'8;)
1 I

There is a factor 5 difference between Eqs. (63) and
(66), which, of course, comes from the nonsecular
part of the dipolar interaction. The same situation
exists in NMR or in ESR, as was first pointed out by
Anderson and Weiss' for the case of exchange-
narrowed paramagnetic resonance linewidth. The
enhancement factor for like-spin systems is —, , so

that this is usually referred to as the —, effect.
In Fig. 6, the transverse relaxation rate I/T2 is

plotted against the p,
+ hopping time, which schemati-

cally presents how the nonsecular part of the dipolar
interaction enhances the dipolar width as the p,

+ hop-
ping frequency is increased or, equivalently, as the
external field is decreased. We note the characteristic
feature of the "5 effect" for p,

+ not found in the mo-
tional narrowing of the NMR linewidth, i.e., the non-
secular part of the dipolar interaction comes into play
at two different hopping frequencies. Because y„and
y~ differ typically by a factor 10, the effect appears as
the two distinct shoulders in Fig. 6. An enhance-

7„' (Hr,') + = , r $8;-(7+3cos'0;)

(69)

Or 5$'„T
0

CC

C0
U

a 2

vv

IX

Or
tA

Cf„„T'

tA
C
Ct

I- P.1

I

10
I

100

FIG. 6. Transverse relaxation rate 1/T2 is plotted against

cu„T, where we assomed &u„=10'&.

(70)

We see that if the p,
+ hops among sites having cubic
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symmetry, neither T~ nor T2 will depend on the cry-
stal axis orientation.

We stress that these nonsecular contribution effects
should be correctly taken into account when deducing
the p,

+ hopping time from the observed p,
+ relaxation

function.

(42) and (43) should read

x (2 —sin 0;) (42')

(rrgt)x+(agt)» =
3 XB; 4sin 0;+ 3 (I + 1/2)

4l I +1

VII. CONCLUDING REMARKS

We have shown that the zero-field relaxation func-
tion, which is inaccessible to NMR, can be studied
easily by using p, +, and that it has many practical ad-

vantages over the widely used transverse-field
method. In particular, slow modulation of random
fields can be studied remarkably well.

The nuclear dipolar width in the zero-field situation
has been examined in detail, both theoretically and
experimentally, in comparison with the high-field re-
laxation width. A factor S enhancement of the
second moment of the zero-field relaxation over the
high-field transverse relaxation has been predicted,
which was also experimentally demonstrated. Mo-
tional narrowing of the muon relaxation function has
also been discussed in detail.

Note added in proof. Quantum mechanically, Eqs.

(trgt)„+(ogt)» = —$8;1+,(43')2 2 s
"" 3(I +1/2)

8I I+1
respectively, when the nuclear spin I is half integer
(where nn stands for nearest neighbor). Since the

1

eqQ energies of I, =+—, are degenerate, the zero-

frequency transitions between I, =+—, have to be
taken into account to calculate the width.
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