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This paper describes a mechanism capable of generating a quadratic field dependence in both the electrical
and thermal magnetoresistivity of closed-orbit, uncompensated metals. This mechanism, consisting of a
partial Corbino e6ect coupled to a linear magnetoresistance, may provide an explanation of the recently
observed quadratic field behavior of the thermal magnetoresistivity of potassium.

Recently„several articles' ' have appeared,
reporting, besides a linear field behavior, a
quadratic field dependence of the thermal mag-
netoresistivity W(H, T)T of potassium. Taking the
influence of the lattice conductivity A., into account'
one could explain but a small part of the quadra-
tic field term, as attributing the whole quadratic
effect to the influence of X, leads to anomalous
values for the lattice conductivity' and the Righi-
Leduc coefficient4 of potassium. However, ac-
cording to the authors of Befs. 1-4, no other
mechanism could be found in the literature that is
capable of producing an additional quadratic field
dependence of the thermal magnetoresistivity. In
this article we describe such an additional mech-
anism, which could induce a quadratic field be-
havior in both the thermal and the electrical mag-
netoresistivity of closed-orbit, uncompensated
metals and which appears to have a considerably
larger influence than the theoretical lattice con-
ductivity' on the generation of a quadratic field
term in the thermal magnetoresistance.

The quadratic field term seems to appear only
in the transverse thermal magnetoresistivity' '
of potassium. The transverse electrical' mag-
netoresistivity as well as both the longitudinal
electrical'. and thermal' magnetoresisticity show
but a linear field dependence. Although in con-
tradiction to the Lifshitz-Azbel-Kaganov (LAK)
theory, "which predicts a saturation of both the
electrical and thermal magnetoresistivity in
closed-orbit, uncompensated metals at high

fields, the electrical and thermal linear field
effect in these metals is well known experiment-
ally and, besides in potassium, has also been
observed in indium" " and aluminum. " " As for
the quadratic field dependence, Fletcher' has
shown that the thermal lattice conductivity may
induce a quadratic field term in the thermal mag-
netoresistivity, i.e., for pure metals with small.
X, and provided the field is not too high, the mea-
sured transverse ther mal magnetoresistivity
W (H) can be approximated by

W (H) =W(H)+A~AgLH2,

where W(H) is the electronic transverse thermal
magnetoresistivity and AR„ is the Righi-Leduc co-
efficient. Assuming the lattice conductivity to be
the sole cause of the quadratic field term, how-
ever, leads to implausible and inconsistent results
for potassium. ' 4 For instance, with that assump-
tion, the temperature deperidence of the extrapo-
lated lattice conductivity X,(T) displays a highly
unexpected and unusual behavior. Besides having
a magnitude which is about a factor 5- 8 times the
X, values as calculated theoretically by. Ekin, ' the
resulting X,(T) curve does not show the expected
T' dependence and also exhibits a maximum at
about 3 K (e.g. , Fig. 3 of Ref. 2). Furthermore,
Tausch and Newrock4 have shown that the above
assumption leads to a substantial decrease of the
Righi-Leduc coefficient A. &L with increasing field,
which is inconsistent with their measurements. "
A more consistent explanation of the experimental
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results indicates that the lattice conductivity can
account but for a part of the quadratic field depen-
dence of the thermal magnetoresistivity. An addi-
tional quadratic field dependence can be found,
however, as a result of a partial Corbino effect"
coupled with the existence of a linear magnetores-
istivity.

In the Corbino geometry the sample consists of
a thin cylindrical disk, perforated by a central
hole, whi&e the magnetic field is applied perpen-
dicular to the plane of the disk. The thermal cur-
rent enters the disk in the middle and the thermal
resistance between the inner and outer boundary
contacts is measured as a function of the mag-
netic field. The field-dependent electronic ther-
mal resistivity is given by

W(H) =W(0)(1+tan 8Rp),

where W(0) is the thermal resistance in zero field
and 8„~is the Righi-Leduc angle, represented by

tan8RL = (AR„H)/W(0) .
In the Corbino geometry the electronic thermal

resistance is greatly enhanced and consequently
the electronic thermal conduction considerably
decreased by the application of a magnetic field,
while the field-independent phononic conductivity
remains unaffected. Indeed, following a suggestion
by Miedema, "we have used the Corbino method
to separate the phononic from the electronic ther-
mal conductivity and to obtain the lattice conduc-
tivity of indium" ' and aluminum. "" It appears
from these measurements that the W(H, T)T vs H
curves of aluminum and indium shpw the same
qualitative features as the equivalent curves of
potassium, as measured by Fletcher' and New-
rock and Maxfield, "i.e. , a quadratic field term.
In our case, however, the quadratic field depen-
dence has a natural geometrical cause and finds
its origin in the use of the Corbino configuration,
as evidenced by Eqs. (2) and (3). When the Corbino
effect is subtracted, the thermal magnetoresis-
tivity reduces to a linear field dependence, " "
analogous to the behavior of the electrical mag-
netoresistivity. Hence, in our case, the quadra-
tic field effect is not an intrinsic effect but arises
from the application of the Corbino geometry.
However, despite the fact that Fletcher' and
Newrock and Maxfield" have used the standard
geometry, consisting of a rectangular strip with
the magnetic field applied perpendicular to it,
the similarity in the qualitative feature of our and
their results is striking indeed.

An explanation for the close parallel between
the results of potassium, as obtained by Fletcher
and Newrock and Maxfield without using the Cor-
bino geometry, and our measurements on aluminum

and indium, acquired with full use of the Corbino
effect, can be found in the articles by Lippmann
and Kuhrt. " (See also Ref. 22. )

For a rectangular plate the magnetoresistivity
deviates strongly from the bulk behavior, when
the length and width of the samples become com-
parable. This occurs because the (electrical or
thermal) Hall field is reduced at the ends of the
specimen, allowing the Lorentz force to remain
partly uncompensated. Lippmann and Kuhrt have
analyzed this phenomenon in detail and their re-
sults can be expressed in terms of the Corbino
effect. Let W(H, b/a) be the thermal resistivity
of a rectangular plate with length a and width 5 in
a field IJ perpendicular to the plate. The configura-
tion where b/a ~ corresponds to the complete
Corbino geometry, for which the Corbino effect
is maximal. The other limit, i.e. , b/a-0 cor-
responds to the geometry of an infinitely long wire,
for which the Corbino effect is zero. A partial
Corbino effect occurs for the configuration 1& b/a
&0, which corresponds to the standard geometry.

Using the I.ippmann-Kuhrt theory" one finds i,n
this case for W(H, b/a)"

W(H, b/a) W(H, O). , b, 4ln2
W(O, b/a) W(0, 0) a

1»— 0. (4)a

Assuming W(H, 0) to possess a linear field depen-
dence, i.e. ,

w(H, o}=w(0, 0)(1+~H)

analogous to the electrical magnetoresistivity of
a long wire of potassium, ' it immediately follows
from Eqs. (3)-(5) that, besides a linear field de-
pendence, W(H, b/a) would also display a quadra-
tic field behavior. Here e represents the slope of
the reduced thermal magnetoresistivity

~w/w, = [w(H, o) —w(o, o) j/w(o, o),

i.e. , n =(b,W/W, )/H.
According to Newrock and Maxfield, ' the quad-

ratic field term has no analog in the electrical
magnetoresistivity of potassium. However, the
electrical magnetoresistivity measurements of
potassium, as for instance discussed by Taub
et al. ,

' have only been performed in one of the
following ways: (i) four probe measurements on

long wires (typically, a=1 m, b 1-2 mm},
(ii) helicon measurements on rectangular plates,
and (iii) induced torque measurements on spheri-

samples 8

It follows from the above discussion that in all
these cases the Corbino effect would be absent or,
as in (i) immeasurably small. To see also a
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partial Corbino effect, i.e. , a quadratic field term-
in the electrical magnetoresistivity, one has to
measure on rectangular samples of the same size
as were used for the thermal magnetoresistivity
measurements. In fact, Lass' has made four
probe electrical magnetoresistivity measurements
on relatively "short" wires (a =30- 60 mm, 5 =. 2

mm) and some of his results might be interpreted
to indicate a quadratic term in p(H) .

As a check on the applied measuring techniques
Fletcher' has- also measured the thermal magneto-
resistivity of an aluminum specimen, presumably
of the same size as the potassium samples. For
the aluminum specimen a quadratic field term
could not be observed. This may be due, however,
to the fact that the Righi-Leduc coefficient A.«
is considerably larger for K than for Al. Accord-
ing to the LAK theory, " in the high-field, low-
temperature limit A„„T is constant and equal to
the free-electron value R„/I.„i.e. ,

AgL T =Its/I, a, (6)

AH'=(a(b/a)A„[W(0, 5/a)/W(0, 0)]+X g' )H'. (6)

However, no experimental data exists for a, the
slope of the reduced thermal magnetoresistivity
of long wires, in which the Corbino effect is
absent. Strictly speaking, these data cannot be
obtained from the linear field term of the existing"
thermal magnetoresistiyity measurements" be-
cause, as can be seen from Eqs. (4) and (5), be-

where .A„ is the Hall coefficient and the Lorenz
constant I., =2.44x 10 ' WAK~. Using the free-
electron values" A„(K) =4.45x 10 ' VcmA 'T '
and R„(Al) =. 1.02 x 10 ~ V cm A ' T ', we find for
potassium: A~L T = 1.82 cm K' W ' T ' and for
aluminum: A«T =0.42 cmK'W 'T '. These re-
sults show that for potassium A«appears to be
about 4.5 times larger than for Al. To obtain a
quadratic field term for the Al sample, therefore,
its 5/a ratio should be proportionally larger than
those of the K samples. Modifying Eq. (1) to take
into account not only the effect of the lattice con-
ductivity but also the effect of the partial Corbino
geometry, i.e.,

W (H) = W(H, b/a) +X A'R~H',

an estimate of the contribution of these effects to
the quadratic field term is potassium can be made.
It follows from Eq. (4) and (7) that the quadratic
term can be written

sides in the quadratic field term the Corbino ef-
fect manifests itself also in the linear field term
of W (II). Although realizing that b,W/W, generally
have different values from b,p/p„ for want of
better data we have approximated

n„=(~W/W. )/H l y n„, =(~p/p, )/H,

the slope of the reduced electrical magnetoresis-
tivity of long wires of potassium, as measured,
e.g. , by Taub et al. ,

' i.e. , (i) n =n,„=n,, To
evaluate Eq. (6) we have further used the approxi-
mations (ii) W(0, 5/a) = W(0, 0) and (iii) A~„T
=ItH/I0 =1.62 cmK'W 'T ', the free-electron
value. For samples with a residual resistance
ratio (RRR) of approximately 3000, n= 0.07 T '

approximately, ' while 5/a=0. 5 typically. ' Hence
for T = 1 K the contribution of the partial Corbino
geometry a(Corb) =n(5/a)A&L =0.063 cm KW 'T '.
This is j.n good agreement with the measured"' co-
efficient of the total quadratic field term at T =1
K, i.e. , g, =0.1-0.15 cmKW 'T ', considering
all the approximations involved. This good agree-
ment may be fortuitous, however, in view of the
unknown value of n, in particular its unknown

temperature and impurity dependence.
Taking for the lattice conductivity of potassium

the measured' value X, =3.3x 10 ' T'Wcm 'K '

or the calculated value A. =25 x 10 T Wcm 'K '

yields a much smaller lattice contribution a(latt)
=y g'„L=0.001-0.008 cmKW 'T '.

To summarize we conclude that a quadratic
field term can be generated by a partial Corbino
effect in conjunction with a linear magnetoresis-
tance. This combination gives a quadratic contri-
bution which is of the same order of magnitude as
the measured quadratic field term. Hence the
quadratic field behavior, as observed in the ther-
mal magnetoresistivity of potassium, may be
largely due to this combined partial. Corbino-
linear magnetoresistivity mechanism. In that case
the quadratic field effect is not an intrinsic effect,
but arises from the geometry of the experimental
situation.
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