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Effective-mass approximation in the presence of an interface
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For an electron in an inhomogeneous system such as a junction with an interface, the validity

of including a sharply varying interface potential in the effective-mass equation is questioned. A

new scheme is presented where the electron wave function is expressed in terms of eigenfunc-

tions of the junction system including the interface. An effective-mass equation with accom-

panying boundary conditions is then derived to account for a slowly varying external potential.
The various results, depending on the different types of interface reflections, are categorized.
The theory is applied here mainly to the space-charge layer in a MOSFET, in particular to the

splitting of the valley degeneracy in the n inversion layer of Si(100)-SiO2.

I. INTRODUCTION

In a junction of a semiconductor with another ma-

terial, such as an oxide or another semiconductor,
the electron motion in the presence of an external
potential is usually treated in the effective-mass ap-
proximation (EMA), in which the effective potential
is taken to include the jump at the interface. The
inversion (or accumulation) layer in a metal-oxide—
semiconductor junction furnishes such an example.
An electric field normal to the semiconductor-oxide
interface draws the electrons (or holes) from the bulk
of the semiconductor to the interface where they are
prevented from entering the oxide by a large work
function. The electron energies and wave functions
are usually calculated in the EMA with an effective
potential consisting of the attractive potential on the
side of the semiconductor and an abrupt potential
barrier at the interface. " The usual derivation of
the EMA3 requires the effective potential to be slowly
varying. It is, therefore, questionable whether the
potential jurnp at the interface should be included in

the effective-mass equation.
In this paper, we present a theory4 which accounts

for the interface barrier outside the EMA and which
treats only the external potential within the assump-
tions of the usual EMA. The usual EMA is derived
by expanding the electron wave function in terms of
Bloch waves of the semiconductor crystal. ' The coef-
ficients of this expansion form an envelope wave
function obeying a Schrodinger equation with an ef-
fective potential which includes any potential over
and above the periodic potential of the lattice. As
this EMA is usually applied to the interface problem,
the interface potential has to be included in the effec-
tive potential. To circumvent this undesirable pro-

cedure, we construct first, instead of the Bloch waves
of the bulk semiconductor, a basis set of energy
eigenfunctions of the inhomogeneous system includ-

ing the interface under no external potential (i.e., in

the flat-band condition, a notion more carefully de-
fined in Sec. II). This means that the interface boun-
dary conditions are already satisfied by the basis
functions. The construction of the basis set is dis-
cussed in Sec. II.

Then, in the presence of an external potentiai (or a

self-consistent one), the electron wave function is ex-
panded in terms of the new wave functions which al-

ready account for the interface. The usual condition
of a slowly varying potential is applied only to the
external potential. A set of effective-mass equations
with concomitant boundary conditions is then derived
in Sec. III. Special attention is given to the
semiconductor-oxide interface. Different kinds of
behavior in the reflection of the semiconductor Bloch
waves by the interface lead to different effective-
mass equations and boundary conditions.

A single band minimum (or maximum) can have
two types of behavior: (Al) the nonresonant type
which leads to the usual EMA with the boundary
condition of vanishing envelope wave function at the
interface, and (A2) the resonant type which leads to
a zero-gradient boundary condition. This is not diffi-
cult to understand if one remembers that the wave
function, which decays in the insulator region, is a
product of the envelope function times the Bloch
wave at the band edge. Either part alone can insure
the decay beyond the interface, leading respectively
to case (Al) and case (A2).

A multivalley band structure can also lead to two

types of behavior: (Bl) the nonresonant type in

which the different valleys are weakly coupled and in
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which the splitting of the valley degeneracy can be
simply expressed, and (B2) the resonant type in
which the different valleys are strongly coupled and
in which the boundary condition for the envelope
function can be either zero value or zero first deriva-
tive. It is shown that if the external potential is far
away from the interface, our theory reduces to the
EMA in the bulk.

In Sec. IV, the p-type silicon with an (001) surface
bordering silicon dioxide is used as an example for

'the general theory. The S matrices for the surface
reflection are evaluated for a model. The effects on
the subband energy levels are calculated. A particu-
larly important application is to the calculation of the
splitting of valley degeneracy of the lowest subband.
Comparison with experimental measurements is dis-
cussed.

A number of theories' besides our own have
been advanced to account for the valley splitting. In
Secs. III and IV, the relation of some of these works
to ours is briefly discussed.

The most interesting result of our theory is the ef-
fect of the interface on the electron dynamics in the
space-charge layer. We believe that our general
theory forms the basis for a more realistic account in

the future of the interface effect on the electrons.
This raises the hope of obtaining some information
on the interface by a study of the inversion and accu-
mulation layers. Possible directions of future work
along these lines are discussed in Sec. V.

II ~ ELECTRON STATES UNDER
THE FLAT-BAND CONDITION

For our purpose, the semiconductor-insulator sys-
tem is envisaged as a semi-infinite semiconductor
and a semi-infinite insulator joined together by an in-
terface region, about a couple of atomic layers thick. '
The flat-band condition is defined specifically as one
in which the one-electron potential outside the inter-
face region is either the periodic lattice potential of
the semiconductor or the potential of the bulk insula-
tor. In this section, the construction of energy eigen-
states in the flat-band condition is considered.

In principle, the procedure is well known. ' " Out-
side the interface region, the electron wave function
is a linear combination of the bulk eigenfunctions at
the same energy. For a crystal, the combination in-
cludes the Bloch waves and evanescent waves at the
same energy. The combinations in the two bulk re-
gions must be joined smoothly through the interface
region. To be specific, we confine our attention to
the fine details in a narrow energy range (of the ord-
er of 0.01 eV) near the conduction- or valence-band
edge of the semiconductor. The range of energy is
assumed to lie well in the energy gap of the insulator
such that the electron or hole work function is of the

order I eV. Thus, a wave function of an electron or
hole from the semiconductor region will decay rapidly
in the insulator region.

It is assumed that the crystal translation symmetry
parallel to the interface for the semiconductor still
holds. The crystal momentum para11el to the inter-
face is a good quantum number. Thus the wave
function in the semiconductor region is a linear com-
bination of Bloch waves and evanescent waves with
the same parallel crystal momentum.

We shall adopt the coordinate system in which the
positive z axis is perpendicular to the interface point-
ing towards the bulk semiconductor. Let
P;t l, Pjt+l, X„with sets of values for ij, h. be the set
of eigenfunctions in the semiconductor with the same
energy E and parallel wave-vector k~~ in the x-y plane,

denotes a Bloch wave with the velocity vector
towards the interface. P&t+~ denotes a Bloch wave
with the velocity vector away from the interface. X&

is an evanescent wave decaying exponentially in the
positive z direction. In the semiconductor region, the
energy eigenfunction is

y(-) $S y(+) X y
J

(2.1)

A. Band with a single minimum

(or maximum)

Consider the simplest case where the band struc-
ture of the bulk semiconductor has a single minimum
at k, - ko for a given fixed value of k~~. For the ener-

gy E slightly above the minimum, there are two

where S~ and T&; are constant coefficients.
If X„denotes the set of evanescent waves at energy

E and wave vector k~~ in the insulator region decaying
exponentially in the negative z direction, the wave
function in the insulator region is

y, = XR„,x„. (2.2)

These two expressions should be joined smoothly
through the interface region. Since later we shall be
mainly concerned with the asymptotic behavior of @;
in the semiconductor region, we choose, for simplici-
ty, to match the wave functions at a plane z =0
placed at where the crystal potential of the perfect
semiconductor ends. At this plane the wave function
(2.1) is joined smoothly to the function of the type of
Eq. (2.2) extended to cover the interface region. In
this manner a set of energy eigenfunctions $; which
takes into account the influence of the interface is
constructed, ready to be used in the next step of our
theory.

The elements S~; in Eq. (2.1) form the S matrix
which plays an important role in the properties of the
electron in the space-charge layer. We now examine
a number of different types of behavior of the S
matrix .
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S =e"' (2.3)

~here 5 is the phase shift, as a consequence of the
conservation of flux.

S is determined from the boundary conditions at
the interface for the wave function. The details are
relegated to Appendix A. S is given by the ratio of
two determinants

Bloch waves, an incoming one (i.e., towards the in-

terface), gk „, with the z component of the wave

vector at ko K and an outgoing wave, Qk +„, .with
0 KS

the z component of the wave vector at kp+ K. The S
matrix is just a number, of the form

E above the band edge is

(COSKZ) IJlk (2.11)

B. Band with two minima

In contrast to case (Al), the envelope function does
not vanish at the interface but its first derivative
does.

The two cases enumerated above are of course
only limiting cases. Dt(0) may happen to be so small
but nonzero that, for the range of values of ~ which
is of interest, D~(0) is comparable to D2'(0)tt. This
constitutes the intermediate case.

S =D( —K)/D(K) (2.4)

tan5 =—D2(K) /D ( (K) (2.6)

In the important case of k0=0, k~]=0 from time-
reversal symmetry

(2.5)

S indeed takes the form Eq. (2.3) with the phase
shift given by

Consider the example of silicon bounded by an
(001) plane. For a given small k~u, the conduction
band has two minima at k, =+ko. Label the valley
around ko as 1 and the one around —ko as valley 2.
At an energy E slightly above the band edge Eo,
there are four Bloch waves, two incoming Ptt t, $2t I

and two outgoing P~t+I, P2t+I with the z components of
wave vectors given by

~here D~ and D2 are the real and imaginary part of
D, respectively. Equation (2.5) dictates

D~'(0) =0 and Dz(0) =0 (2.7)

From the behavior of D~(0), two limiting cases for S
can be distinguished

a. Case (A1) nonresonant scattering D~(0) is .fin-
ite. For small K, the phase shift is

k)- =ko+K

k2+— =—ko+ K

where

= [2m,
" (E —E )/g']'i'

The S matrix is 2 x 2, with the form

S(J(K) = No(K)/D(K)

(2.12)

(2.13)

(2.14)

8 =—~Dz'(0)/Dt(0) = a,~—— (2.&)

defining a scattering length a, . In the interior of the
semiconductor where the evanescent waves have died
down, the asymptotic form of the wave function
(2.1) is

$„—[sinK(z —a,)]fk (2.9)

The amplitude modulation now vanishes at z = a,
from the interface z =0. The approximation used,

Ako+ e [tko

S=—1 . (2.10)

The condition that D(0) =0 is the same for the ex-
istence of bound surface states extending from ener-
gies below the band minimum continuously to
k, =ko. The asymptotic form of the wave function at

is found to be adequate for small K.

b Case (A2) res.onance scattering If Dt(0) van-.
ishes, the leading term in D~(tt) for small K is O(~ ).
Hence, 5

2
vr and

1

t

I —pK —u "K

nK I +P'x (2.15)

The Bloch wave propagating towards the interface is
reflected back mostly as the Bloch wave in the same
valley, but a small amount is reflected back as the
Bloch wave in the other valley. This surface-induced
intervalley scattering leads naturally to an intervalley
coupling, the consequences of which will be con-
sidered later. In Appendix 8, it is also shown that
the S matrix is consistent with current conservation'
and explicitly that the set of wave functions qh; with
various E satisfies the orthogonality relation.

If we separate p into its real and imaginary parts,
P =P~+iP2, then it is shown in Appendix B that P,
is related to the deviation of the energy dispersion-
from the quadratic form. pt can therefore be

These expressions are derived in Appendix B by
matching wave functions at the interface. Again, two
limiting cases can be discerned.

a. Case (Bg) nonresonant scattering The denomi-.
nator of the S matrix D(0) is finite. The S matrix
has the. form, from Eq. (B2),
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neglected for small n. Pz is clearly related to the
phase shift and the intravalley scattering length a, is
equal to —Pz. The asymptotic form of the energy

eigenfunctions are, for small ~,

~~(s-a, )@~„—2 sinK(z —a, ) pk —i tz~ e *
p k, (2.16a)

i~(z-a )@z„-2sinn(z —a,)p k +ia "ne '
pk . (2.16b)

We have used the approximation pk +„=e'"'pk . The

correction to the first order in K can be shown to play
no role in subsequent calculations.

In order to treat bound states due to an external
potential, it is more convenient to express the reflect-
ed wave in a different valley also as standing waves,
by applying the transformation

1'pi. = 4t. ——,o&4z.

-2sinn(z —a,) pk, —i ancosK(z a )$

(2.17a)

q'z =4 +
z

a &4']~

—2 sinn(z —a,) p k +i a "ncosn(z —a,) p k0

(2.17b)

These functions for positive values of K form the
basis set for later use.

b. Case (82) resonant scattering. This occurs when
D(0) =0. This is also the condition for the existence
of a surface state at E =ED. From the orthogonality
or flux conservation requirement, one can see that
the diagonal elements of S are zero and the off-
diagonal elements can be made unity by an appropri-
ate choice of the phase of the Bloch wave. Hence,
the S matrix is of the form

(2.18)
i

The wave functions in the asymptotic region are

4 1 s Ako x0 kO+a-~-
(2.19)

k;. 4k +-. . —
0

A Bloch wave from one valley is reflected by the in-
terface into the other valley. Intervalley coupling is
very strong.

C. Infinite potential barrier at the interface

A numerical computation of the S matrix requires
a knowledge of the band structures of the insulator
and semiconductor as well as that of the interface re-

gion. In a metal-oxide —semiconductor junction, the
oxide is amorphous and the band structure is not well
known. We make use of the high work function (of
the order of electron volts) and approximate the in-
sulator and the interface region by an infinite poten-
tial wall placed at z =0. The matching problem is re-
duced to requiring the wave function (2.1) vanishes
at z =0. The infinite potential barrier model not only
simplifies the computation but retains the qualitative
features of the interface scattering. Since the S ma-
trix depends on the relative distance zo from the in-
terface to the nearest crystal plane of the semicon-
ductor, by varying zo we obtain a range of possible
behavior for the interface reflection, including the
limiting case of resonant scattering, as wi11 be shown
in Sec. IV.

III. EFFECTIVE-MASS EQUATION

Now, to the flat-band condition add a spatially
slowly varying external potential v(r ). We confine
our attention to the one-electron problem and simply
regard v(r) as the total self-consistent potential
which includes the electron-interaction effects. ' The
slowly varying potential v(r) mixes the eigenstates in
the flat-band condition only from a small amount of
phase space. In particular, only one band of Bloch
waves will be included. The derivation of the
effective-mass equation follows the standard pro-
cedure. ' The only difference is that the electron
wave function is expanded in terms of the basis set
of eigenfunctions in the flat-band condition con-
sidered in Sec. II, which already satisfy the boundary
conditions at the interface. This expansion is substi-
tuted in the Schrodinger equation and an equation for
the envelope wave function is derived. We shall con-
sider in this section a few specific cases.

For simplicity, the external potential is considered
as a function of normal distance z from the interface
only. The motion parallel to the interface is taken to
be the usual effective-mass approximation. Possible
deviation from this will be reserved for future study.

For the envelope wave function, we introduce the
notion of an "effective-mass interface. " This ideal
plane z =z,g serves as a boundary for the external
potential v(z) and the envelope wave function which
only exist in the region z & z,~. Because the external
potential is slowly varying, the electron wave function
is dominated by the asymptotic region where the
evanescent waves have become negligible. Then, the
envelope function is an amplitude modulation of the
Bloch wave. The "effective-mass interface" is chosen
at a distance near the true interface such that the
orthogonality of the asymptotic wave functions is not
violated. For example, in case (Al) and case (Bl),
zoff a, and in case (A2) and case (B2), z,ff ——0.

a. Case (Al, ) the single valley nonresona-nt case
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The basis set is given by case (Al) in Sec. II. The
electron wave function when the external potential is
introduced can be expressed as

velope function as

p oo

A (z) = "
A (K) e'2' (3.9)

y(r) =„'I A(K)@„, (3.1) then the actual wave function is given by

H =Hp+v (3.2)

The "effective-mass interface" is at z =a, . For con-
venience, move the origin to the effective-mass inter-
face, which is then given by z =0. For Q„, the
asymptotic approximation (2.9) is used for z )0, and
it is taken to be zero at z & 0.

To convert the Schrodinger equation in terms of
this basis set, we require the matrix elements of the
total Hamiltonian given by

y(r) =A(z)y„,(r) (3.io)

f2 g2
+[v(z) —el A (z) =0 .

2m QZ2
(3.11)

From Eq. (3:7), at the effective-mass interface

From Eq. (3.8), the envelope function satisfies the
effective-mass equation

A (z =0) =0 (3.i2)
where Hp is the Hamiltonian for the system in the
flat-band condition, with matrix elements given by

(@„~Hp~@„) = (Ep+ t K /2m, ')27r5(K —K') (3.3)

v(k) =Jt dze ' v(z)

we can write the potential matrix element as

(@„~v~@.) = v(K —K') —v(K+K') .

(3.4)

(3.s)

Then, the Schrodinger equation is reduced approxi-
mately to

g2 2

, —e A(K)
2mg

oo

+J [U(K K) V(K+K)]A (K) =0
2n'

where K and K' take on only non-negative values. To
evaluate the matrix element of the external potential,
we make use of the slow spatial variation of v and
take

~ Qk P in the integrand to be averaged over a

unit cell to the value of unity. The integral is con-
fined to the side z ~0. By introducing
v( —z) = v(z), and the Fourier transform over all

space,

We note that this boundary condition is derived to-
gether with the effective-mass equation (3.11) from
the integral equation (3.6) and that it is not imposed
ad hoe or by appealing to an additional physical rea-
soning that the electron wave function must vanish at
the interface.

The EMA derived here is identical in form to the
one usually used in the inversion layer of a MOSFET
(metal-oxide —semiconductor field-effect transistor). '
There is a minor difference in energy of the amount
a, (6u/Bz), because the effective-mass interface is
taken at a distance a, from the ideal interface.

b. Case (A2) the single valley res-onant case. The
appropriate basis set is given by case (A2) in Sec. II.
The procedure for the derivation of the effective-
mass equation is the same as in case (Al). The
cosine nature of the basis function (2.11), however,
causes the.matrix element of the potential to be

(yg~v~@g) = v(K —K') +v(K+K') . (3.13)

The difference from Eq. (3.S) that the two terms now
add forces one to define for K )0,

(3.14)

where e=E —Ep.
Now, we extend the values of K to negative

numbers as well and define

A( —K) =—A (K)

Then Eq. (3.6) becomes

(3.6)

(3.7)

in contrast with Eq. (3.7), if one desires to arrive at
the same form of the effective-mass equation (3.8)
or (3.11). Hence, in the present case, with the en-
velope function defined by Eq. (3.9), A (z) does not
vanish at the effective-mass interface. Instead, from
Eq. (3.14), the boundary condition is

(3.is)

fK dK'—e A (K) + u(K —K') A (K ) =0
2m' 2m

(3.8)

with K in the range (—~, ~). If we define the en-

If the external potential is extended to z & 0 with
mirror symmetry at z =0, then in case (Al) only odd
parity states are allowed and in case (A2) only even
parity states are allowed.

c. Case (Bl) the two valley nonresonan-t case. In
terms of the basis set, Eq. (2.17), the electron wave
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function is given by

p(r) = X J~ A (tt)%' „
o 1

(3.16)

(+ „lvlqr „)= (2sinwzlvl2sinK'z).

The matrix elements of the external potential are
evaluated in the approximation of slowly varying po-
tential and neglecting intervalley terms such as
(Pk l vlf q ). The diagonal element is

which yields the boundary conditions

A (z =0) =0 (3.26)

If the intervalley potential terms w(z), w" (z) are
neglected in the coupled set of effective-mass equa-
tions, the usual result of double valley degeneracy is
recovered. If ~ and ~'are small, by the degenerate
perturbation theory, the splitting of the valley degen-
eracy is given by

(3.27)
«v(K K) v(K+K) (3.17)

where
as in Eq. (3.5), with v( —z) =v(z) also. The off-
diagonal element, (3.28)

(9't„lvl%'z„) = 2sinKz —,a ——,v(z) 2sinK z
1

I QZ

=w(K K) w(K+K) (3.18)

and
w(z) =(ct "/2i)(Bv/Bz), z &0 (3.19)

where w(tt) is the Fourier transform of w(z), given

by

with A (z) being the envelope function for each val-
ley with the potential v(z) uncoupled from the other
valley, normalized in the range z & 0.

d. Case (B2) the two-valley resonant case. With the
basis set of case (B2) in Sec. II, subject to the same
approximation for the potential matrix element as
case (Bl), we have

(4'~~l v14~v) = v(&

(3.29)

w( —z) = w(z)
Similarly

(3.20)
For this form of the potential terms, if we let

At(tt), K &0,
A(K) =' —A, (—tt), K (0, (3.30)

Since we have included neither the intervalley contri-
bution (Pk l v l tit k ), as was done in Ref. 5, nor the

spin-orbit coupling which is the valley coupling
mechanism of Kummel, the intervalley matrix ele-
ment arises entirely out of S~2, the scattering from
one valley to the other by the interface.

As in case (Al), the form of the potential terms
(3.17) and (3.18) dictates the extension of the range
of k to negative values by

(3.22)

A(z =0) =0 (3.31)

or even, i.e.,

then the Schrodinger equation reduces to the same
effective-mass equation as Eq. (3.8) or (3.11).

Now with the even-parity potential, v(—z) = v(z),
the envelope function A (z), Fourier-transformed
from A (tt), can be either odd, i.e.,

The Schrodinger equation is then reduced to a cou-
pled set of effective-mass equations.

aA/ezl, -0 . (3.32)

g2 Q2

z
—e A (z)+ X v (z)A (z) 0

2mg QZ
(3.23

y+(r) =+A+(z)y„, —A+(z)y „ (3.33)

The even- and odd-parity wave functions are given by

~here

v(z) w(z)

The envelope wave function is given by

A.(z) = —„"e'"A.(n)
I 2s'

sinttz A (K)

(3.24)

(3.25)

with the (+) sign'for even and the (—) sign for odd
parity. The coexistence of states of both parities is
brought on by the resonance nature of the S matrix.

'In the foregoing, we have demonstrated that, even
with the usual assumptions made in the effective-
mass approximation for the bulk semiconductor,
there are additional effects due to the interface, pro-
vided that the interface potential is not included in
the EMA.

'

These interface effects should disappear if
the external potential a is entirely confined in the
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bulk of the semiconductor away from the interface.
It can be shown explicitly that the effective-mass
equations derived for all four cases above, indeed
reduce to the bulk limit if v is moved into the interi-
or. In Appendix C, this will be done for case (Bl)
and case (82). The procedure for the single-valley
cases is similar.

IV. APPLICATION TO INVERSION LAYER
ON p-Si (001) SURFACE

Electron energies and wave functions in the inver-
sion layer of the (001) surface of p-type Si have been
calculated in the usual EMA. ' "The lowest sub-
band comes from the two conduction-band valleys
(0, 0, + kp) where kp =0.85 x (2 rr/a ), with lattice con-
stant a, and has, therefore, a twofold valley degen-
eracy. In this section, the general theory described
above is employed to calculate the energy splitting of
this valley degeneracy. The computation consists of
two parts: first the S matrix and then the solution of
the coupled effective-mass equations. To avoid a

large amount of numerical work, we compromise by
employing (i) the k p band-structure model of Car-
dona and Pollack, '6 (ii) a model for the interface of an
infinite barrier in a plane at a distance zo from a
(001) atomic plane, and (iii) the separation of motion
parallel to the surface by the usual EMA.

The next subband, ' "Eo', is supposed to come
from the conduction valleys (+kp, 0, 0) and
(0, + kp, 0). This furnishes an example of the
single-valley case and will be treated briefly at the
end of this section.

A. Band-structure model for bulk silicon

Fifteen plane waves with reciprocal-lattice vectors
(000), (111), (200) are used to form symmetrized
plane waves at I, consisting of 2 x I ~, I i5, 2 & 125,
2 x I 2, I i2. These are diagonalized with pseudopo-
tentials V3=—0.105 a.u. , VS=0.02 a.u. , Vi~ =0.04
a.u. to form the basis of 15 periodic wave functions
at I . The energy and wave function throughout the
Brillouin zone are given by the k p method, with the
momentum matrix elements given in Ref. 16.

We approximate the S matrix by the values at
kii =0, because the Fermi wave vector for the inver-
sion layer is small compared with the dimension of
the Brillouin zone. Then, we need only consider the
solutions in bulk Si with real and complex wave vec-
tors (0, 0,k) along the crystal axis, i.e., belonging to
the 6 symmetry. The 15 & 15 k p Hamiltonian ma-
trix is reduced to a 3 && 3 matrix for doubly degen-
erate 45 states, a 3 x 3 matrix for Ai states, a 5 x 5
matrix for h2 states and an isolated 61 matrix (a
scalar).

B. States for a given energy

Given the energy E, we need to find all the
relevant Bloch waves and evanescent waves. The
15 x 15 k p Hamiltonian yields 30 solutions of k for
a given E. Now the number of linearly independent
plane waves as a function of x and y from the set of
15 plane waves projected on the plane z = constant is
9. In order to solve the boundary conditions $; =0 at
the interface using Eq. (2.1), the number of outgoing
Bloch waves plus evanescent waves decaying along +z
direction must be also 9. Including Bloch waves go-
ing in the opposite direction and evanescent waves
decaying in the —z direction, there should be 18
values for k. Thus, care must be exercised in select-
ing the 18 correct solutions out of the 30. In the
general case of an infinite-sized Hamiltonian matrix,
the excess solutions represent repetition of the same
solution in different Brillouin zones. In the truncated
matrix here, the superfluous solutions are likely to be
inaccurate. Hence, solutions with Rek outside the
first Brillouin zone are discarded,

Fof E = Fp+ ir K /2m, just above the conduction-
band minimum, the 3 x 3 matrix for A~ yields four
running waves with wave vectors +ko+ K. The 5 x 5

A2 matrix yields four evanescent waves with wave
vectors +i &&0.095 a.u. and +i x 0.835 a.u. , neglecting
terms of O(K'). The 3 x 3 55 matrix yields four pairs
of evanescent waves. The Ai' yields two evanescent
waves.

For a fixed z, these solutions can be expanded in
terms of the nine planes waves in two-dimensional
x-y space, with wave vectors (00), (11), (20). Since
k~i =0 has the I" symmetry in two-dimensional
space, " these 9 plane ~aves form into combinations
of 4 && I i, 12, 2 x I 3, 2 x I 4. Since only the three-
dimensional Bloch waves with Ai symmetry and
evanexcent waves with h2' symmetry are compatible
with the I i symmetry, the other evanescent waves
can be ignored.

C. S matrix

Choose the origin of the Cartesian coordinates to
be at Si atom. Let the idealized interface be at z =zo.
The four plane ~aves in x-y space with I"i symmetry
at z =zo are

2n 2' 2n
4p=. 2(cos x cop s cos zp

a a a2', 2' . 2'+sin x sin y sin zo
a a a2' 2m . 2i

43 = i (cos xcos y ~io

2m . 2m 2msin x sin y cos zoa a a
4m 4m44=cos x+cos ya a
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The Bloch waves Qk of dt symmetry are expanded in

terms of them, at z =zp,

(4.2)

The evanescent waves X& of h2 symmetry are given
by, at z =zp,

4

Xx = X br'& (4.3)

S~q(K) = N(~()r)/D(K)

The denominator is

(4.4)

ct(kp+ K) ct(kp K) bt

D()r) = cz(kp+)r) c2(kp —)r) b2

c)(kp+ K) —c)(kp —K) b3

with

(4.5)

The phases of the bulk Si wave functions are
chosen such that )I))", =

Q k and that the evanescent
waves are real. Hence, the coefficients ct(k), cz(k),
b;„are real. C)(k) is purely imaginary. c4(k) van-
ishes because the lowest h~ conduction band contains
no (200) plane waves.

For Eqs. (4.2) and (4.3), we select the incoming
Bloch waves t})+k „and the outgoing Bloch waves

I})+k + and two evanescent waves with wave vectors
p K

i X0.095 a.u. andi X0.835 a.u. which decay ex-
ponentially as z +~. Following the general pro-
cedure outlined in Appendices A and B, we substi-
tute these expansions in Eq. (2.1). The vanishing of
the wave function $, =0 at z =zp leads to a set of
linear equations, from which the S matrix is obtained
in the form

I

-0.&

lot l (A}

0
Zo/a

I

I

I

I

I

I

I

I

== 01
I

I

I

I

I

I

I

I

I

. I

I

I

) )I

0.047

than that of the inversion layer. This means that no
intrinsic surface states are formed at the interface,
thus excluding the possibility of the resonance case.
The value of ~n~, 0.43 A, for the interface located
midway between two planes of silicon atoms
(zp = —a) is typical of the nonresonant values. Until

we have a better model for the interface region, this
value of

~
n~ will be taken as the estimate for the Si

(001) surface.

FIG. l. Intervalley scattering matrix coefficient
~
a( for p-

Si (001) surface as a function of position of the interface
from a crystal plane at zp =0 to midway between two crystal

1
planes at zp=+

8
a.

J = Jt Jlb4)/b4& (4.6) D. Convergence problem

The 4 x 4 determinant for D ()r) has been reduced to
3 x 3 using the fact that c4(kp —K) =0. The numera-
tors Ntt and N)t are determinants with ct(kp —K),
c2(kp K), c)(kp —K) in place of column one and
column two respectively of the determinant (4.5) for
D ()r).

The S matrix clearly varies with zp, i.e., it is depen-
dent on where the interface is placed related to an
atomic plane. The denominator D(0) vanishes at
zp =0.047a. This gives an example of the resonant
case (B2). For values of zp where D(0) is not small,
expansion in K yields the coefficient o, for S2~ = o,K.

In Fig. I,
~

rx~ is plotted as a function of zp, except for
a small neighborhood near zp =0.047a where the
resonance phenomenon occurs. The presence of
resonance means that the surface states can be
formed even for the infinite potential barrier model.
In real silicon MOSFET devices, the density of
charges trapped by the surface states is much smaller

By adopting the Cardona-Pollack model" for the
band structure, it is not feasible to extend the
number of basis functions at 1 beyond fifteen. How-
ever, we can acquire some measure of convergence
by investigating the results of using smaller basis
sets.

Take the basis of nine lowest periodic functions at
I' consisting of 2 x I' t, I zr, I )5, I'25. Along the [00k]
axis, the Hamiltonian is reduced to a 3 && 3 matrix for
4~ states, a 2 x 2 matrix for A2 states and two 2 x 2
matrices for the doubly degenerate 55 states. There
are three linearly independent functions of I ~ sym-
metry in the (x-y) space on a z =constant plane,
given by the first three functions in Eq. (4.1). At a
given energy E just above the conduction-band edge,
there are four Bloch waves of symmetry h~ and two
evanescent waves of symmetry h2 which are the only
solutions compatible with I ~. The one decaying wave
has a wave vector i x 0.11 a.u. , to be compared with
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I I
=[E(rl") —E(rls)]/kpT'=023 A (4.7)

where T is the momentum matrix element between
the I i" state and the I i5 state. ' Note that the S-
matrix element is independent of the position of the
interface, contains no contribution from the evanes-
cent waves and is smaller than the preceeding values
by almost a factor of two. We conclude that the
two-band model does not provide a satisfactory
representation of the wave functions at the energy
near the conduction-band edge. This two-band
model is close to the Ohkawa-Uemura model' though
not identical to it. The relation has been discussed in

detail elsewhere. '

E. Valley splitting

With the S matrix in hand, we can calculate the en-

ergy splitting of the twofold valley degeneracy. In
case (82), the splitting is of the same order as the in-

tersubband energy difference. However, we have al-

ready ruled out case (82) as being unlikely to occur
on Si (001) surface.

For case (81) by Eq. (3.27) the valley splitting is

proportional to a and also to (Bv/Bz). An estimate
of the latter is made for a self-consistent potential

( ) = (N +2Npep/ 2N
gz Ks

the previous value of i x 0.095 a.u. in the 15-plane-
wave basis. The S matrix is given by Eqs. (4.4) and
(4.5) with b/ in place of b/. The value of InI is

changed from the 15 basis function value at z0 = —g

by a negligible amount to two significant digits in un-
0

its of A.
A still simpler k p approximation which repro-

duces the shape of the conduction band along 5 is
that with two basis functions, one at I i5 which is in

the lowest conduction band and one at the upper I i,
just above the I i5 state. The 2 & 2 k .p matrix for
the Hamiltonian yields four Bloch waves at an energy
just above the conduction-band edge. There is no
evanescent wave in this model at all. Since only the
two outgoing Bloch waves contribute to the right-
hand side of Eq. (2.1), the basis set in the x-y plane
now contains only two plane-wave combinations of I i

symmetry, i.e., gz and (s of Eq. (4.1) which originate
from the (111) plane waves. Then, the boundary
condition is equivalent to setting the coefficients of
the two basis functions I i", I'~q to zero at z =z0. We
have

with

v; (z) =4vrQe'/K, (z+g) (4.9)

Q = (K, —~p)/16sr(K, +Kp) (4.10)

where K0 is the oxide dielectric constant and z is
measured from the interface. 5 is a positive distance
of the order of the lattice constant. However, a de-
finite value for 5 deduced from first principles is at
present lacking.

The image potential contribution to (8v/Bz) is

given by

N; =(Q/(z+5)') . (4.11)

To estimate N;, we take the accurate variational
form of the wave function due to Takada and Uemu-
ra20

A (z) = ( z
b')' 'z exP[—

z
(bz)s '] (4.12)

The variational parameter b is obtained by minimiz-
ing the ground-state energy (per particle) of the
whole system in the Hartree approximation including
the modified image potential

tributions from the parts of the potential due to the
depletion charges, the Hartree potential, and the im-

age potential respectively. The exchange and correla-
tion potential in the local density approximation" '

yields no contributions.
As is well known, the image potential, being in-

versely proportional' to z, has an unphysical diver-
gence as z 0. This divergence becomes stronger
still in Bv/rlz. It should be removed for two reasons.
The microscopic reason is that, when a charge gets
close to the interface region, the polarization distribu-
tion can no longer be neatly represented by a point
image charge and thus dampens the 1/z dependence.
The saturation should commence when z becomes a
fraction of the lattice constant. The second and ma-
croscopic reason is that the rapidly varying part of the
I/z potential for small z, which might still remain
after the first defect is corrected, violates the assump-
tion of a slowly varying effective potential and should
be included in the interface potential barrier. The
value of the potential in the effective-mass equation
represents an average over at least one unit cell of
the crystal. One plausible way to avoid the steep part
of the image potential is to choose the "effective-
mass interface, " a notion introduced in Sec. III, a
small distance into the region in which the charge re-
sides, A rough way to account for both effects is to
take the image potential to be

2me N eff
Ks

(4.8)

where K, is the Si dielectric constant, the terms pro-
portional to the depletion layer density Nd„i, to the
inversion layer density N;», and to N;m are the con-

s r(2) /r b + 4/re 35 2t/3r(2)N
m,
'

K b 108

4me2+ bFt(b 5)
Ks

(4.13)



20 EFFECTIVE-MASS APPROXIMATION IN THE PRESENCE OF. . .

where

N = Njnv + VNdep

y = —X2' =2 72

(4.14)

(4.1S)

= a/2
6=a/4

6=0

and

(4.16)F(p)=J dtt(t t+p) "e '.
Thus, b is a function of N, ff and so is N;, given by

6

o 5

~
E

X
Al

z 3

Ntm = Qb'Fz(b@

with Fz defined by Eq. (4.16).
Equation (4.8) can be rewritten

( ) =(0.77 meV/A)[N —2Ãt +(2 —y)Na, at]
Qz

(4.17)

1 2 3 I 5 6 7 8 9 10

N t10&&cm 2)

(4.18)
with all the densities N in units of 10"cm . The
quantities b, N;, and N —2N; are evaluated for a

range of values of 5 as a function of N, defined in

Eq. (4.14). In Fig. 2, N —2Ãt, which is a measure
of (llu/l}z) when Na, at is negligible, versus N is plot-
ted. 5=0 corresponds to the usual usage of the im-

age potential. 5= ~ corresponds to dropping the im-

age potential term completely. The modification of
the image potential by a finite 5 of the order of a af-
fects b and hence the unsplit energy levels rather
weakly but changes (Bu/riz) drastically. An example
at N =2.4 &10' cm is shown in Table I. The val-

ley splitting depends quite sensitively on the value of
5.

A recent measurement of the valley splitting of the
lowest subband by Kohler, Roos, and Landwehr '

yields AE =0.75 meV at N;„„=2.4 &10' cm . Nd, pi

appears to be small. This splitting is deduced from
the phase change of the Shubnikov —de Haas oscilla-
tions in a tilted magnetic field. Table I shows that
while the full image potential gives too low a value
for 5E; shifting the potential through a distance of

1 1

4 a or —,a yields a range of values in reasonable

agreement with experiment.
An estimate of the valley splitting can also be ob-

tained from the cusp structure in magnetoconductivi-

FIG. 2. Density dependence of the average force
(Bv/Bz}. The plot is actually N —2N;m vs N for various

values of 5 which modifies the image potential. The sym-

bols are defined in Eqs. (4.18} and (4.14).

ty as a function of N;„„ in a high magnetic field ob-
served by Kawaji and co-workers. At a field of 14
Tesla, the cusp occurs at the third Landau level
(counting the lowest level as the zeroth) which gives
N jny 4.74 x 10 ' cm . In a fixed field at low densi-
ties each Landau level consists of four lines with the
spin splitting larger than the valley splitting. The val-

ley splitting increases with the density until it equals
the spin splitting. Then two states with opposite
spins and different valley combinations coincide in

energy and create a large peak bracketed by two
smaller peaks on either side, instead of the four peak
structure at low N;„„. From the spin splitting using a

g factor of 2, we can get hE =1.62 meV. Kith a g
factor of 2.5 at this density, according to Fang and
Stiles, 2 4E =2.03 meV. The value of 1.62 meV is
consistent with that of Kohler et al. Our calculated
values of 1.23 —1.31 meV for 8 =-a —-a (approxi-

1 1

4 2

mately double the values in Table I) are again in

about the same sort of agreement as before with ex-
periment. In the cusp structure, the density of states
at the Fermi level is high and, therefore, the many-

TABLE I. Effect of the image potential on valley splitting. %kepi 0, N;» =2.4 x 10' cm

l~l =0.43 A.

b(10-2 A) Wj (10'2 cm 2) 0 77 (W 2Wjm) (meV/A) ZZ (meV)

0
1—a
4
1—a
2

5.99
6,09

6.16

6.60

0.51

0.35

0.28

0

1.08

1.32

1.43

1.86

0.47

0.57

0.62

0.81
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3

CV

C)

2

6=a/2

6= a//

Bloch states near the (kp, 0, 0) valley of Si with (001)
surface bordering the oxide. For a given k~~ near this
valley, the number of propagating states is 2,
corresponding to case (Al) or (A2). For this valley,
the mass in the normal direction to the interface is
much lighter than that for the (0, 0,kp) valley. Hence,
the lowest energy level is higher than that for the
(0, O, kp) valley and is termed the Ep' level. 2 t~

As a simple model of the Si bulk band struture
near the (kp, 0, 0) valley, we use instead of the 15
basis functions at I', the four at (kp, 0, 0) closest to
the band gap with wave functions approximately
given by

i (kp-G)x
tata, = Xte, G = 2m/a

i (kp —G)x
tata, = Xt e

i(kp G)x
lita = X4 e

I

(4.19)

0
I I

0.2 0.4 0.6 0.8

Ndeg ( lQ Cm )

FIG 3. Depe. ndence of (tip/Bz) on the depletion charge
density at N;„y =2 x 20 cm . Neff is defined in Eq. (4.8).
5 is defined in Eq, (4,9), modifying the image potential.

F. Ep' state

As a purely academic exercise, we illustrate the ap-
plication of our general theory to the case of a single
band minimum, i.e., cases (Al) and (A2). Consider
the eigenstate in the inversion layer composed of the

body enhancement is expected to be relatively weak. '
The broadening of the Landau peaks by defects
makes it possible for the cusp structure to occur even
if the two central levels dd not quite coincide. Thus,
the estimated valley splitting can err on either side.

Ohkawa'4 has interpreted the cusp structure as due
to the valley splitting equal to half the spin splitting
and obtained for g =2, AE =0.81 meV, in agreement
with the smaller value of the Ohkawa-Uemura
theory. ' %e believe that when the valley splitting is
equal to half the spin splitting, one should expect a
structure with four peaks and not a large central peak
flanked by two smaller ones as was observed. ". That
their theoretical value for valley splitting is almost
half as large as ours is due to the use of the two-band
model as shown in Sec. IVD.

To demonstrate the possible effects of substrate
bias on the valley splitting, we plot in Fig. 3, for
¹j~y 2 & 10' cm ', the dependence of N, ff, which is
proportional to hE as given by Eq. (4.8), on the de-
pletion charge density for a range of values of 5.

E = E(6 ) + lt2tr2/2m, (4.20)

slightly above E(ht) and below E(hz), the two Bloch
wave functions are given by

tit(kp, 0, + K) = tits + d5Ktlra (4.21)

The mixing with the top valence state A5, alone is
sufficient to account for the magnitude of the
transverse mass m, . The two evanescent waves are
formed by the A2 and 45y states

X B2'tita2' +BSfa5 (4.22)

At the interface plane z = zp, all these functions are
linear combinations of sin(2my/a) and cos(2my/a).
By the procedure of Appendix A, we obtain the
scattering length

d5 [85 sin(4m/a) zp +iBz' cos(4m/a) zp]

B5cos(4n/a)zp iB2 sin(4n/a)zp

(4.23)

The resonance occurs at zp = z, where

4mz, B5
tan

a I B2

i (kp —G)x= X4 e
si

~here Xi, Xi are the Bloch functions of the lowest
conduction band at (2rr/a, 0, 0) and X4, X4 are the
ones of the highest doubly degenerate valence band
at (2m/a, 0, 0). All four functions at the X point are
given in symmetrized combination of (011) plane
waves. The 4i and 42 states are the lowest and next
lowest conduction-band states. The 65y A5 states are
two degenerate states of the highest valence band.
At an energy
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The coefficients d5, 85, 82 are evaluated by using
the momentum matrix elements (bt{p,{b5,) =1.139,
(hz {p,{55~)=1.1332 and the energy differences
E(4~) —E(45) =0 30.0, E(ht) —E(hz) =—0.054, all
in atomic units calculated from the 15 basis k p
model. Then, the resonance occurs at z,/a =—0.028.

The scattering length a, for the (kp, 0, 0) valley is
different from the intravalley scattering length a, for
the (0, 0, + kp) valleys. The difference contributes a
term (a, ') (Bu/Bz)' —a, (Bu/Bz) to the energy differ-
ence E0 —ED between the lowest states of the two

types of valleys. Here v is the self-consistent poten-
tial in the presence of the electrons occupying the
lowest subband of the (0, 0, + kp) valleys, and the
averages are taken over the wave functions of the
lowest states from the (kp, 0, 0) and (0, O, kp) valleys
respectively, While a, is insensitive to the position of
the interface except in the neighborhood where the
resonance occurs, a, ' varies rather strongly with the
position of the interface because of the large value of
d5 (2.0 A). This simple calculation suggests that Ep'

is more sensitive to the actual interface potential than
ED. A recent calculation by Stern ' based on a graded
surface EMA model shows a strong dependence of
E0' —F0 on the width of the interface region Our
result, arising out of the different nature of the Bloch
waves involving in the surface reflection, has a dif-
ferent physical origin from Stern's.

dependence of the surface reflection on the
transverse motion of the electron. A more careful
inclusion of the transverse motion is desirable to
study the possible deviation from the EMA.

Our use of the modified image potential in Sec. IV,
though serves to demonstrate the necessity of round-
ing off the 1/z dependences, is entirely phenomeno-
logi&al. A microscopic theory for the image potential
in the interface region and a more careful derivation
of its expression in the effective-mass equation are
clearly desirable.
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APPENDIX A: S MATRIX NEAR A
SINGLE BAND MINIMUM

V. DISCUSSION

We have given the general procedure of accounting
for the interface effect outside the EMA but treating
any spatially slowly varying external potential within
EMA. Clearly such a procedure has many possible
applications besides that of the inversion layer prob-
lem which we have treated. Even within the space-
charge layer in MOSFET, we have yet to use this
method to study other surfaces of Si and other sem-
iconductors.

Our calculation with p-Si (001) surface shows that
the interface has profound effects on the electron
dynamics in the inversion layer. Because in our cal-
culation, an idealized model of the interface is used,
it does not do justice to the full range of possibilities
of the general theory on how the nature of the inter-
face affects the electron motion. By varying substrate
bias or parallel component of the magnetic field, the
average distance of the electron from the interface
can be changed and therefore, there is the possibility
of the variation of the interface effect on the elec-
tron. We should, therefore, study a more realistic in-

terface potential. It would be very interesting if it
should prove possible to invert the process, to use
the electron properties to infer the nature of the in-

terface.
As mentioned in Sec. III, we have neglected the

This Appendix contains the details leading to the
expression (2.4). Let {( j be a complete set of
orthornormal functions of coordinates x and y on the
interface only. The boundary values at the interface
(z =0) of the Bloch waves and the evanescent waves
in both media can be expanded in terms of this basis.
Let c (kp+ ~).denote the coefficient of expansion for
the Bloch wave pq +„, b ~ and b „ the coefficients

0 Ks tlat

for the evanescent waves X~ and X„respectively. The
continuity of the wave function at the interface then
yields the relation

e~(kp K) = c~(kp + K) S + X b~gT~ + X b~&R&

(Al)

In the same way, the continuity of the z derivative
of the wave function leads to the boundary condition

(kp K) =d (kp+K)S+Xe „T„+Xe~„R„

(A2)

where d (x), e„,e„are, respectively, the expan-
sion coefficients in terms of the basis set {g j of the
derivatives of the Bloch wave Bgq +„/Bz and the0+K

evanescent waves BXq/Bz, BX„/Bz evaluated at the in-
terface z =0.
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1

c(kp+ K) b b
D(K) =det dkp+Ke e

2

(A3)

Solution of the linear equations (Al) and (A2)
yields the S-matrix expression given by Eq. (2.4),
with

velocities of the Bloch waves at k~+-. The properties
(82) are consistent with these conditions.

To show that the real part of P, Pt, from Eq.
(2.15) is related to the deviation of the energy disper-
sion from the parabolic relation, let the energy
around valley 1 be

E =Ep+( t2/2m, ) [(k, —kp)2+2y(k, —kp)2] . (84)

0+kp —x 4k +~0
(A4)

whe're c(kp+ K) stands for a column vector with ele-
ments c (K) and b stands for a matrix with elements
b g.

For the special case of kp =0 and k~~ =0, the phase
of the Bloch function can be chosen such that

With the definition of K given by Eq. (2.13), Eq.
(2.12) has to be modified to

k] =kp+K —fK(+)

k2 =—kp+K fK(+)

The velocities are

(85)

C~(—K) =C~(K), d~( —K) =d~ (K) (AS)

and b &, b &, e &, e &are real and functions of K'.

Hence,
/

D(—K) =D"(K) (A6)

The evanescent waves can be chosen to be real. Thus,
u(1+) -—u(2 —) = (h/m, ')(K+2yK')

u(1 —) =—2(2+) =(h/m, )(—K+2yK )
(86)

Substituting these expressions for the velocities and
Eq. (2.15) for the S matrix into the flux conservation
conditions (83), we obtain

Pt =2y . (87)

APPENDIX B: S MATRIX FOR DOUBLE
BAND MINIMA

The procedure parallels that in Appendix A. The
only difference is that there are now two incoming
Bloch waves at kp —K and two outgoing ones at
kp + K. The S matrix is of the form Eq. (2.14) with

c(kp+K) c( kp+K) b b
D(K) =det

d(k, + ) d(—k + )
. (81)

Ntt(K) and N2t(K) are given by the determinants ob-
tained by substituting c(kp K), d(kp —K)'as one
column in the first and second column respectively of
that for D(K). Nt2(K) and N22(K) are given by the
determinants obtained by substituting c(—kp —K),
d(—kp —K) as one column in the first and second
column respectively of that. for D (K)

From these forms for N»(K) and D(K), and time
reversal symmetry it is straightforward to show that

(@,„~y,„)=2~(1 —p, )S( — ')

+(pt —2y)4iKK/(K K )

($2„~@2„)=2 (21r+ p&K) 5(K —K)

—(pt —2y)4i KK /(K K ')

(88)

This relation is independent of the detail of the sur-
face barrier.

The set of wave functions $; are solutions of the
Schrodinger equation with the same boundary condi-
tions and therefore are orthogonal to each other. We
show here explicitly that for the asymptotic forms Eq.
(2.16) with small K approximation the orthogonality
still holds to O(K). The contribution of the evanes-
cent waves to the overlap integral is negligible be-
cause of their spatial confinement. The contribution
from the overlap between intervalley Bloch waves are
negligible. The overlap between intravalley Bloch
waves is evaluated to the first order in ~. Then,

Sll(K) =S22( K), S12(K) =S21(K) (82)
(4t.142") =o

The orthogonality follows from Eq. (87), a conse-
quence of flux conservation.A small K expansion then leads to the form (2.15).

The wave function @; represents a beam of parti-
cles impinging on the interface and two reflected
beams. Conservation of particle flux'2 leads to the
relations

~(1-) + ~(1+)Is» I2+ ~(2+) Is» I2 =o,
~(2-) + ~(1+)Is,212+ ~(2+) ls2212 =o .

(83)

where v(1+) denote the z components of the group

APPENDIX C: REDUCTION OF EMA TO
BULK LIMIT

Consider the external potential v(z —
A.), centered

at z = A. , vanishing outside the range ~z —h.
~
( i. We

wish to show here that, when X && I, the effective-
mass equations of Sec. III reduces to the bulk form.
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„[~ '(0)]' , (CI)

where A'(0) is the value of the z derivative of the
envelope wave function at z =0. Since A '(0) dimin-

Case (Bl) is simple. It is instructive to see how
the valley splitting disappears as ~e increase X. from
zero to a larger value than l. %hen A. && I, the un-
perturbed envelope function A (z) for each valley
without coupling ~ill decay exponentially as z 0
from z = A. —l. By means of the effective-mass equa-
tion, the average field can be expressed as

ishes exponentially as A. becomes much larger than I,
the valley splitting vanishes in the bulk limit.

In case (B2) again the wave function A (z) decays
exponentially from z = A. —l to z =0 as A. becomes
much larger than l. Then, the difference between
making the envelope function vanishing at z =0 or
hgving zero slope there becomes unimportant. The
even- and odd-parity states (under reflection in the
plane z =0) become degenerate. A+(z) become the
same and Eq. (3.33) can be rewritten as two wave
functions A (z) Q+k which are the usual bulk
expression.
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