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Calculation of the electronic properties of Mo in a first-principles nonlocal-pseudopotentiai approach
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The first-principles nonlocal atomic pseudopotentials previously derived from the density-

functional formalism are applied in a self-consistent study of the electronic properties of bulk

Mo. Using a mixed-basis representation for the crystalline wave functions, both the localized

and the extended features of the electronic states are efficiently described. We show that by use

of a completely nonempirical approach the basic electronic properties of the system, such as the

band structure, density of states, charge density, and Fermi surface, are favorably reproduced

within the pseudopotential formalism.

I. INTRODUCTION

The pseudopotential method which has been suc-
cessfully applied to the study of electronic and struc-
tural properties of many nontransition-metal sys-

tems, ' has recently been extended to transition me-
tals. ' ' This case is more difficult in general'because
of the inadequacy of perturbative approaches to the
strong transition-metal core pseudopotentials, the
inefficiency of a plane-wave basis set for describing
the localized features of the d-wave functions, and
the pronounced orbital nonlocality of the pseudopo-
tentials. In addition, an empirical pararnetrization of
the bare-ion potential has been largely inhibited by
the incompleteness of the measured single-valence
electron term value spectra of transition metals.
Despite the difficulties, non-self-consistent empirical
pseudopotential calculations have been carried out on
a number of transition metals ' by fitting the ob-
served optical reflectivity of the bulk solids.

Although generally good agreement is obtained with

the experimental spectra and Fermi surface, the
underlying pseudopotentials are only partially suc-
cessful when transferred to study the electronic prop-
erties of phases which are substantially different from
the reference system used for fitting the potential
(i.e., the bulk elemental solid). This results from the
fact that in the empirical approach both the core
pseudopotential and the (dynamic) valence screening
fields (interelectronic Coulomb and exchange) are
combined together to a charge-density independent

form V, ,(G) which in turn is adjusted to fit some
bulk properties. As no attempt is made to feed back
the variational crystal charge density into-V, mv(G),
the latter cannot effectively describe the charge relax-
ation in systems different from the reference one.

Recently, ' "we have presented a new class of
nonlocal atomic pseudopotentials for the first five
rows of the Periodic Table, which are self-
consistently derived from the density-functional

representation" to the all-electron system. These
pseudopotentials involve no (prefixed or adjustable)
parameters other than the atomic number. In their
derivation, no. fitting to either atomic or solid-state
experimental data is needed. Instead, they are ob-
tained by a direct inversion of the density-functional
effective single-particle equation pertaining to a pseu-
do atom characterized by local-density Coulomb and
exchange-correlation interaction and the (yet unspeci-
fied) nonlocal static external field VI(r) The pseu. -

dopotential VI(r) is then solved for under the con-
straints that: (i) the ground-state valence energy
eigenvalue spectra of the pseudo atom be identical to
that of the all-electron atom characterized by the
same form of density functionals and (ii) the wave-

function pseudizing process is described by a unitary
rotation in the subspace of occupied all-electron
("true") orbitals, g„&(r), i.e., the pseudo wave func-
tions X„I(r) are given as a linear combination of both
core and valence functions P„1(r) with coefficients
C„'„. These rotation coefficients are then fixed by

requiring that the pseudo wave functions be (a)
nodeless for each of the lowest solutions of every
symmetry, (b) normalized, and (c) have the max-
imum similarity possible under conditions (a) and (b)
to the "exact" all-electron density-functional wave
functions P„I(r) in. the valence region. When addi-

tional degrees of freedom are available (e.g. , systems
.having more than one core orbital) an additional
minimum radial kinetic energy constraint is imposed.
The reader is referred to previous articles' " for the
detailed discussion of the choice of this physical model.

This approach not only assures that both the ener-
gies and the wave functions of the pseudo Hamiltonian
closely resemble the corresponding all-electron results
for the reference ground-state atom, but also results
in a very small energy dependence of the pseudopoten-
tial: when a ground-state first-principles pseudopo-
tential is applied to calculate electronic properties of
excited species (having very different wave functions
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and energies) good agreement (-10 s Hartrees) with
all-electron results is found over a large range of ex-
citation energies. We have recently applied these pseu-
dopotentials to study phase stabilities of binary solids'
and to electronic properties of semiconductors. "

In contrast to the semiempirical pseudopotential ap-
proach, 6' the first-principles pseudopotential method
does not assume any ansatz form for VI(r). In turn,
its shape both in the core and the valence regions is
automatically determined (numerically) by the max-
imum similarity and minimum kinetic energy con-
straints. We find that these potentials are strongly
repulsive in the core regions, quantitatively reflecting
the effects of the replacement of the radial nodes in
the all-electron wave functions by nodeless, smooth
maximum-similarity pseudo wave functions. We find
in fact that this repulsiveness, as reflected in the oc-
currence of zero-energy turning points rI of the
screened pseudopotentials [where VI(r) =0], scales
with the generalized l-dependent electronegativity of
the atom and provides a remarkably accurate phase
separation of both octet and suboctet binary sys-
tems. '4 This small r repulsiveness in general pro-
duces crystal wave functions that do not lend them-
selves to a rapidly convergent Fourier representa-
tion. ' In some simple applications to bulk Si,"
and to diatomic molecules such as 02, "and Si2, "we
find in fact that these high-momentum components
of the wave functions are indeed needed for an ade-
quate representation of the charge anisotropy in the
bond region. Using a Gaussian —plane-wave mixed-
basis representation' to the crystalline wave func-
tions, both the localized and the extended features of
the electronic states are accurately described.

The differences between the semiempirical and the
first-principles pseudopotentials in the core region
might at first seem irrelevant to the properties of the
valence electrons. They are however related to the
important energy dependence of the pseudopoten-
tials. When used in self-consistent field calculations
for systems other than those used for fixing the po-
tential (e.g. , ground-state atom) the "softness" of the
model semiempirical potentials in the core regions
allows a flow of excess valence charge into the core re-
gion, where the underlying frozen core pseudopoten-
tial description is least valid. Hence, ~hereas the
model potential well describes (by definition) the
reference system used for its construction, it is impli-
citly energy dependent in that its description of per-
turbed systems (e.g. , excited atoms, molecules, etc.)
gets progressively poorer as the perturbing energy in-
creases. In contrast, the repulsiveness of the first-
principles potentials in the core regions allows only
minor penetration of the valence states into the core
region via low-probability tunneling, resulting thereby
in a very small energy dependence. This point is fur-
ther illustrated belo~.

In this paper we present the results for the band

structure, density of states, Fermi surface, and charge
density for bcc molybdenum using the first-principles
pseudopotential. Using the mixed-basis representa-
tion, the angular-momentum nonlocality of the pseu-
dopotentials is taken into account in a simple
manner. As the calculation is carried out in recipro-
cal space, the conventional muffin-tin approximation
to the charge density and potential is completely
avoided. Extension to the calculation of the bulk
ground-state properties (equilibrium lattice constant,
cohesive energy, and bulk modulus) are presented
in a separate publication. '

The electronic structure of Mo has been previously
calculated by the augmented-plane-wave (APW)
method by Loucks, ' Petroff and Viswanathan, and
Cinti et al. All these were carried out in a non-
self-consistent manner using the spherically sym-
rnetric muffin-tin part of the superposition of free-
atom charge densities. Koelling et al. ' have per-
formed a relativistic APW calculation and included
non-muffin-tin corrections between the spheres.
Iverson and Hodges have performed a
renormalized-atom calculation, while recently,
Moruzzi et al. have reported a self-consistent
muffin-tin Korringa-Kohn-Rostoker (KKR) energy-
band calculation. None of the above mentioned cal-
culations have reported the charge-density results

. while only the calculation by Petroff and
Viswanathan 5 and Cinti et al. 2 included some opti-
cal results. A more detailed study of the optical
properties of Mo has been performed by Pickett and
Allen based on the AP% results of Petroff and
Viswanathan.

II. METHOD OF CALCULATION

A. The pseudopotential

We have used the first-principles Mo pseudopoten-
tial developed in Refs. 10-12. The method of gen-
erating such pseudopotentials has been previously
described and will not be repeated here. Figure 1

shows the components of the nonlocal Mo potential.
The adequacy of these potentials can be partially

assessed by comparing the exact all-electron atomic
results with those obtained from a similarly self-
consistent (numerical) pseudopotentiai calculation.
Such a comparison is given in Table I, from which it
is clear that not only the pseudopotential energy
eigenvalues match very accurately those of the all-
electron results, but that the orbital moments are
similarly very close. As the pseudo wave functions
are represented in this formalism as a unitary rotation
in the space of the true all-electron wave func-
tions, ' "core orthogonalization of the former repro-
duces the exact results (aside from numerical errors,
cf. Table I). This feature is not enjoyed by any of
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primarily to produce a fast convergence in momen-
tum space, e.g. , Refs. 6, 7) might introduce an
unwarranted energy dependence, ' its form-
unrestricted generation directly from the variational
eigenvalue problem' "yields a nearly energy in-
dependent and accurate potential.

The pseudopotentials sho~n in Fig. 1 are much
deeper and more localized than those pertaining to
nontransition elements. ' The depth of the I =0, 1,
and 2 potentials is —5.80, —5.77, and —35.54 Ry,
respectively, and the classical turning points occur at
0.84, 0.89, and 0.20 a.u. , respectively. Clearly, the
conventional plane-wave representation of the crys-
talline wave functions is largely ineffective for such
systems. %'e next discuss the mixed-basis representa-
tion' for the electronic states.

S. Eigenvalue problem

FIG. 1. First-principles nonlocal pseudopotential of Mo
(Ref. ii).

the empirical or semiempirical pseudopotentials.
Even more strikingly, we find that application of
these Mo pseudopotentials (derived from the
ground-state atomic wave functions) to excited confi-
gurations (e.g. , Mo Ss'Spt4d', Mo SstSpt4d4, Mo.
Ss Sp 4ds Mo'+ 5s25p 4d and Mo'+ Ss'Sp 4d )
produces energy eigenvalues and orbital moments
(r) that deviate by less than 1 and 5%, respectively,
from the corresponding all-electron results. This
confirms the low-energy (and state) dependence of
these pseudopotentials and the underlying insensitivi-
ty of the core potentials to changes in the valence
configuration. %e find that whereas the fitting of the
pseudopotential to simple analytic forms (designed

The crystalline wave function X&(k, r) for the Bril-
louin zone (BZ) wave vector k and band j is
represented h'ere as a sum of a plane-wave part and
localized LCAO (linear combination of atomic orbi-
tals) Bloch functions C&„(k,r)," "

x, (k, r) =XC-'„-e' "+'
G

+ X XD~~) (k)4~ (k, r)

where C&+o and D„" (k) are the expansion coeffi-
cients determined variationally. The LCAO Bloch
function tp„(k, r) is constructed from the p, th basis
function on sublattice n as

tP„~(k, r) =N ' ' X.e 'd ~(r —R„TN), (—2)

TABLE l. Comparison between the energy eigenvalues (in eV) and orbital moments (r) and
(r2) (in a.u. and a.u. 2, respectively) of the exact all-electron, the pseudopotential, and the core
orthpgonalized pseudopotential for the Ss Sp 4d~ state of Mo.

Property A II-Electron pseudopo tential Core orthogonalized
Pseudopotential

65s
ESp
e4d

-3.9329
—0.8838
-5.1143

-3,9330
—0.8&38
-5.1142

(r)5,
(r) sp

(r)4d

3.5666
5.2169
1.8557

3.4163
'5.1089
1.7997

3.5664
5.2168
1.8556

(r )5,
(r )5p
(r )4d

14.6555
32.5897
4.2706

13.9677
32.0041
4.1341

14.6551
32.5898
4.2703
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where R„and v denote the direct primitive lattice
vector and the sublattice coordinate, respectively, and
N is a normalization constant. The basis orbitals
d„(r) are chosen as a linear combination of Gaus-
sians as

— r2
d„(r ) = Ni r(K( (8, $) X (((t(( e

where Ni is a normalization, Ki (e, $) are the Kubic
harmonics of angles 8 and @, and p, denotes the in-
dices I and m collectively. The contracted coefficients
a(2~ are determined from the outset such that d„(r)
have desired properties (e.g. , fit the small r behavior
of the atomic pseudo wave functions).

In the present approach we expand the LCAO
Bloch functions in a Fourier series as

convenience into a local part VL(r) and a nonlocal
part VNL( r )

V, (r ) = x X V, (r —R~ ) P( —= VL+ VNL
p I

= V, + $$ [ Vi( r R,—) —VL] Pi,
p I

such that VL is smooth in momentum space, while

VNL is localized in direct space. Here V, (r) denotes
the atomic pseudopotentials (Fig. 1) and Pi is the
core projection operator. The interelectronic
Coulomb screening is related to the variational charge
density

(p„(k, r) =M 'I' Xe' "+ 'd (k+6) T (6)

(4)
p(r) = XN&(k)IXJ'(k, r)XJ(k, r)

I (8)

where Mis a normalization constant, d~ (k+G) is
the Fourier transform of the basis orbital d„(r) (ob-
tained readily in closed form for either Gaussians or
Slater-type basis orbitals), and T (6) is the structure
factor

T (G) =Xe
p

obtained by summing over all atoms p belonging to
the nth sublattice.

The screened effective potential is given in the
density-functional approach as

W(r) = V„(r)+ V,.„,(r)+ V.(r)+ V„„(r) .

The core pseudopotential V„(r) can be separated for

by the Poisson equation

(-,),I' P( ') d,
Coul

whereas the exchange (V„) and correlation (V „)po-
tentials are nonlinear functionals of the density p(r)
for which we choose the Kohn and Sham" p' 3(r)
form (with an exchange coefficient of u = —) and the

Singwi et al. form, respectively.
Within the plane-wave form of the total wave funC-

tion [Eqs. (1) and (4)], the matrix representation of
the potential (6) is very easily evaluated. '9 The ele-
ment between two localized Bloch functions is

((p„(k, r) I
W(r) I(p(((k, r)) = X X T (6) T(((G')d~ (k+6)d(((k+6') (k+6 I W(r)

I
k+6')

G G'

where,

(k+6 I W(r) I
k+6') = (k+6 I VL+ Vcog(+ V„+ V~„I k+G') SoG, + (k+6 I VNLI k+G')

(10)

The first matrix element is obtained by first representing the screening field VL+ Vc,„l+ V„+ V„„in a Fourier
series [by fast Fourier transforming33 V„(r), V „(r), and p(r) and obtaining Vc,„((Q) as p(Q)/I Q2I] while

the off-diagonal second element is obtained by analyzing the plane waves I k+6 ) in a partial wave and Bessel
series

(k+6 IvNLI k+6') = Xs (6 —6') X(2I+1)P((cosIIG 6')F((k+G, k+G')0 (12)

where S is the structure factor and I'I is the
Legendre polynomial. The quantity Fi(Q, Q') is ob-
tained by a simple radial integration

F((Q, Q') = V((I Q& I) I vNL I J((l Q'r I) &

In the present calculation we choose as the local

potential VL the I =0 component of the pseudopoten-
tial. ' We use 1=2 as the highest angular momen-
tum component of the pseudopotential, as higher
momenta probably contribute very little-to the crys-
talline wave function at the energy range of interest.
The nonlocal potential VNL hence has an s-p and an
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s-d contribution. Figure 2 shows a contour plot of
the corresponding momentum representation of
F~(Q, Q') for I = I and 2. It is seen that these contri-
butions peak at about Q = Q' =7.35 a.u. ' for the s-p
nonlocality (with a secondary minimum at

Q = Q' =0.5 a.u. ') while the s-d nonlocality has a

single maximum at Q = Q' = 2.76 a.u. ' and decays
monotonically at higher momenta. Most of the
strong scattering events occur along the Q = Q' line
for the s-d nonlocality while the s-p nonlocality is
seen to scatter effectively for almost all Q —Q

' direc-
tions. Only the low momentum extrema of the s-p
nonlocality is important in determining the band
structure as the secondary maxima occurs in a
momentum region where the (repulsive) kinetic con-

10.5

q'

0
10.5

QG~-'

ggygg
0.096~

q'

oc
0 10.5

FKJ. 2. Contour plots of the momentum representation
of the nonlocal Mo pseudopotential [Eq. (13)]. (a) Fi(q, q')
contour step 0.0057 Ry. (b) F2(q, q') contour step
=0.0373 Ry,

tributions (or order
~ Q —Q

' ~') are dominant. The
local pseudopotential VL(Q) = VI o(Q) and the off-
diagonal nonlocal matrices F~(Q, Q') and F2(Q, Q')
form the only input (other than the lattice structure)
to this calculation. These are in turn simply deter-
mined by the first-principles atomic pseudopoten-
tials ""

The other relevant matrix elements (overlap and
kinetic energy) are trivial and will not be discussed
here.

The variational charge density [Eq. (8)] is obtained
by evaluating the symmetrized wave functions
X (k, r) over a grid in the irreducible BZ. WhereasJ
in insulators and semiconductors it is possible to use
the "special k~ points" with their associated weights
W(k~), the presence of a Fermi surface in metals re-
quires a generalization of these to both wave vector
and band de pendent weights II ~ ( k~ ) .36 We hence
sample the irreducible BZ into 32 tetrahedra and used
the energy eigenvalues at the tetrahedra corners to
evaluate the density of states and Fermi energy ~F, at
a given interation. 3' The weights II'j(k~) are then
evaluated from the fraction of each tetrahedron
which lies below ~F. These are then used to replace
the Fermi-Dirac occupation numbers N&(k) in Eq.
(8). Table II gives the final weights obtained from
the self-consistent results at 14 k~ points in the ir-

reducible zone. It is clear from this table that the
weights associated with the upper three bands vary
considerably with the band index for fixed k~ due to
the complex features of the Fermi surface.

Adequate accuracy in the resulting band structure
and charge density requires the establishment of a sa-
tisfactory convergence of the wave function and po-
tential expansion. A judicious choice of the Gaussian

~ ~ (i)exponents y; and contraction coefficients a~ in Eq.
(3) would lead to a rather small number of plane
waves in the basis (I), as more of the localized
features of the wave function are represented by the
real-space Bloch sums. While large Gaussian ex-
ponents would require high cutoff values in the
Fourier expansion of 4„(k,r) [Eq. (4)], unduly

small exponents might lead to approximate linear
dependence in the basis (monitored by the smallness
of the overlap matrix eigenvalues3s). We find that
the use of a single I = 2-type Gaussian &i.e., I =1,
and —2 «m «2 in Eq. (3)] with an exponent of 1.9
a.u. ' produces adequate convergence of the wave
function over the entire BZ. With this choice, an ac-
curacy of 0.05 eV in the energy eigenvalues requires
approximately 90—100 plane waves in the basis [Eq.
(1)] and 530 plane waves in the expansion of the lo-

calized Block functions [Eq. (4)]. As the size of the
secular equation is determined by the former
number, the relatively large cutoff associated with the
expansion (4) poses no problem. For comparison, a

similar accuracy in a pure plane-wave calculation [i.e.,
D" (k) =0 in Eq. (I)] requires about 430 waves inpea
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TABLE II. Self-consistent wave vector and band-de endent w
'

p 's
jp[XJ(kpr lxll kp, r)~, where X(k, r) is the s

sum o weights is normalized to unity.

kz point band 1 band 2 band 3 band 4

1 1 1
(————)8'&' 8

(0,—,', 0)
1 1 1

(———)8'8'8
1 1 1

(————)4'4' 4
1 3 1

(————)8'8' 8

(——0)
1 1

(0,—,, 0)
1 3 1

(———)8'8'8
1 1 1

(———)4'4'4
3 3 3

(————)8'8' 8
1 1 1

(————)4'4' 4
3 3 1

8'8' 8

(—,—, ——)2'2' 2

(0, 0, 0)

0.020 833 3

0.020 833 3

0.031 250 0

0.020 833 3

0,041 666 0

0.052 083 3

0.015 625 0

0,036458 3

0.010416 66

0.010416 66

0.036 458 00

.0.026 041 60

0.005 208 33

0.005 208 33

0.020 833 30

0.020 833 30

0.031 250 00

0.020 833 30

0.041 666 00

0.052 083 30

0.015 625 00

0.036 458 30

0.010416 66

0.010416 66

0.036 458 00

0.026 041 60

0.005 208 33

0.005 208 33

0.020 833 00

0.019904 60

0.031 250 00

0.020 032 40

0.039 931 80

0.050 367 50

0.012 880 40

0.034 51986

0.010416 66

0.006 446 70

0.030 672 55

0.022 071 70

0.002 039 30

0.005 208 33

0.005 692 60

0.003 13820

0.003 555 30

0.003 15920

0.003 565 40

0.003 334 40

0.0

0.0

0.0

0.000 242 20

0.001 021 80

0.000 51440

0.0
0.002 634 66

the wave-function expansion.
A compatible convergence in the Fourier r

tation of the ot
e ourier represen-

o e potential and density requires larger cut-
off values due to the contribution of back-scattering
events. We find that about 959 lp ane waves are suf-
icient to produce the desired accuracy.

The calculation
''

n is initiated by approximating the ef-

y a superpositionfective potential W(r) in Eq. (6) b
o screened atomic pseudopotentials. " The energy

are en evaluatedeigenvalues and wave functions are the
on a gri of points in the BZ (8 points for the initial
iterations and 14 points for the last two), from which
the density p(r) [Eq. (8)] is evaluated. This is then

screening field (6) until a consistency of ab 10 'a out
y

'
tained between successive iterations. The

overall accurac y of the band structure is estimated t
be about Q. l eV.

ae o

2.0

1,5

E,
0

III. RESULTS

A. Band structure

—0.5
H G N Z I' A P DN D P F H

k

The self-consistent band structure of M b
in the rese present exchange (a =-, ) and correlation"
density functional approach is given in Fig. 3. In

FIG. 3. Self-con '- onsistent nonlocal pseudopotential band
structure of Mo in th
functional mo

e exchange and correlation den 't-
1 model. Dashed lines represent doubl de

si y-

representations.
n ou y egenerate
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Table III we have collected the energy eigenvalues at
some high-symmetry points, relative to the calculated
Fermi energy. The same table contains the results of
three other studies for which energy-band eigen-
values have been previously published. "'

Although the present results are qualitatively simi-
lar to most of the previously published results, few

notable differences occur:
(i) The bottom of the s band at 1 t is substantially

closer to the Fermi energy (and to the bottom of the
d-based band at Hi2) than in all other muffin-tin cal-
culations, indicating larger s-d hybridization in the
present results. The photoemission data of Kress and
Lapeyre'0 seem to indicate an overall band with
I i

—eF somewhat below 6 eV, in better agreement
with the present results. The bottom of the s band
seems to be characteristic of the position of the ele-
ment in the row of the Periodic Table as the I"i —eF

gap measures the relative binding energy of the I =0
state in these materials. This in turn reflects the
variation in the strength of the I =0 pseudopotential:
as one progresses down the row in the Periodic
Table, the number of core states of I =0 symmetry
increases and the pseudopotential cancellation for this
symmetry improves, resulting in a ~eaker l =0 pseu-
dopotential and a smaller s binding energy. " This
observation is consistent with the reduced. s binding

energy found by us for %, 6 using a similar approach.
(ii) The p-like Nt state is lower than the

corresponding state in other calculations and is split
off from the d-like N~ state more than in the APW

results. This again implies more advanced p-d hy-
bridization in the present calculation. Similarly, the
excited Wl state (seventh band) is substantially lower
(2.4 ev) than the corresponding band in APW calcu-
lations. Cinti et al. 2 have observed that in order to
get good agreement between their AP% results and
the photoemission data in the (110) polarization, the
calculated value of this Ni state has to be shifted
downwards by about 3 eV, in agreement with the
present results. An empirical pseudopotential calcu-
lation by Alward et aI. on row-V transition e1ernents
similarly suggests that the fitting of the observed re-
flectivity data for these materials in the energy range
below 4 eV requires an adjustment of about 1.1 eV in
the corresponding AP% results for the Ni —Xi gap
(band 1 —3).

(iii) The relative separation of the P4 (d~~~+
symmetry) and the H|2 state (d 2+ d 2 2 symmetry)

is smaller by about 1 eV in the present calculation re-
lative to other results. Alward et al. s have noted that
a reduction of 1 —2 eV in this gap relative to AP%
results is in fact necessary in order to get an electro-
statically stable ground-state charge distribution in
row-V transition metals.

8. Density of states and

the photoemission spectra

To obtain a density of states, the lowest ten energy
bands were calculated for 35 independent k points in

TABLE lll. Comparison between the present self-consistent exchange and correlation band
eigenvalues of Mo and published results. All results are given in eV relative to the Fermi energy
calculated by the respective authors.

State APW
Ref. 25

Renormalized Atom
Refs. 28 and 39

KKR
Ref. 29

Present
Results

I
g

I ss'

I 2s

H2s

His
Ni
N2

N,
N,
Ng
N'3

N,
Pg

P3
P)

—6.64
—1.09

1.46
14.93
—5.49

3.87
9,51

—5.06
—3.11

1.66
1.67
2.18
4.58

11.85
—2.44

2.29
10.81

—5.92
—1.49

1.37

—6.24
4.16

—5.52
—3.71

2.42
1.69
2.27
5.06

—2.62
2.35

—6.50
—1.41

1.34

—5.93

—5.40
—3.54

1.58

—2.60

—5.67
—1.52

1.51
23.25
—5.21

3.21

. 9.21
—5.42
—3.61

1.36
1.68
1.92
3.63
9.41

—2.88
2.12
9.50
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—
8

of the BZ and then transferred on a grid of 512

points throughout the whole zone by making use of
the point group symmetries of the crystal. The
Fourier coefficients of the energy bands

Ctl) I
X (k) —k Yl

K
(14)

were obtained using a fast Fourier transformation.
N is the number of grid points. The number of grid
points R was then increased by a factor of 64 to a
mesh of 32 768 points. Interpolated values for e„(k)
are found by an inverse Fourier transformation on
the large mesh setting C&R =0 on the additional

points. The rms error of this interpolation scheme is
less than 0.1 eV for all bands except at crossing
points ~here the error can be of the order of 0.2 eV.
In Table IV we compare for a k point which does not
belong to the original 35 points the results of the fit
with the energy bands calculated directly by solving
the eigenvalue problem. The agreement is within
less than 0.1 eV. The density of states is given by

D(e) =—Xg(e —e„(k))N-
k, n

(15)

For the histogram in Fig. 4, we used an energy chan-
nel width of 0.1 eV. The Fermi energy eF is found
from the integrated density of states

N(.) =
J D(.') d.', (16)

using the criterion N(eF) = Z„, where Z„ is the
number of (valence) electrons per atom (Z„=6 in
the case of molybdenum).

The calculated density of states is shown in Fig. 4.
Three main structures are observed below the Fermi
energy and two peaks with 2 eV above E~. These are
compared in Table V with the available photoemis-
sion data. ' The peaks at —3.96, —2.92, and —1.67
eV are very close to the high-symmetry points N'2

(d~ -type), P4 (d~+ +~-type), and I'25

(d~+ +~-type) while the doublet observed above

I I I I I I I I I I I I I I I I I I

2.5—

2.0—
E
0
0

t/)

1.0—
UJ

O

0.5

10

8

z
6

0 I I I I I I I I I f I I

-6 —4 —2 0 2 4 6 8 10 12

Energy (ev)

FIG. 4. Density of states of Mo and the electron number.

the Fermi energy coincides with the p-type NI, state
and the d 2-type I i2 state, respectively. The peaks

below the Fermi energy are similarly close to the con-
stant initial energy transitions (—3.5 and —1.7 eV)
observed in the (100) polarized emission experiments
of Cinti et al. 26 (peaks C and D). By varying the ini-
tial photon energy, Cinti et al. were able to tenta-
tively identify the location of the Ht2 (peak E, at —5
eV) and the I'25 (peak 8 at —1.5 eV) states, in good
agreement with the present results (—5.2 and —1.5
eV, respectively). An additional structure (A) at 0.5
eV belo~ the Fermi energy" has been identified as
a surface resonance state.

The reflectivity spectra of Mo has been previously
obtained by a few workers. These include the study
of Kirilova et al. 42 in the energy range below 4.9 eV,
Kapitsa et al. (1.4~e~ll eV), Veal and Pauli-
kas'" (0.5 ~e~6 eV) and Weaver et al. '
(0.1 & e & 35 eV). No detailed analysis of these
results is intended here. Instead, we will only com-
ment on the assignment suggested by Weaver et al. 4'

based on the muffin-tin non-self-consistent band
structures available at that time.

Based on systematic comparisons with the spectra

TABLE IV, Comparison of Fourier fit with exact results
for the energy bands of K = (0.1875, 0.031 25, 0.3125).

TABLE V, Calculated and observed structures in the
density of states of. Mo, relative to the Fermi energy (in eV).

Band
exact

Eigenvalue [eV] Photoemission
Ref. 40 Ref. 41

Present
Results

APW
Ref. -25

—2.995 25
—1.995 90

0.056410
2.809 92
3.458 12
6.872 74

—2.92944
-1.991 16

0.004 08
2.834 7

3.449 87
6.920 89

—3.9
~ ~ ~

—1.6
1.0
2.0

—3.6

—1.6

—3.96
—2.92
—1.63

1.61
2.10

—4.28
—2.92
—1.56

1.50
2.45
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of V, Nb, and Ta, it has been suggested that the two
prominent low-energy peaks at 2.35 and 4.1 eV arise
from g, X, and G~ G~ transitions, respectively,
while the wide absorption in the 11.5—20-eV region
arises from transitions to unspecified empty d states.
Using a minimum slope difference criteria between
initial and final states, we find that the peak along

X, should occur at 2.'55 eV at about —, the dis-

tance from I to N and that a similar G~ G~ peak
(bands 1 to 4) should occur at 4.55 eV at about half
the distance between N and H. As the location of
the high-energy unoccupied d states in this work is
much higher than the corresponding quantity derived
from APW results (compare I'25 in Table III), the
present result would predict strong absorption
between states near W2 and W~ (-1.3 eV) where the
band$ are very flat, as well as at 18 eV where final
states of compatible symmetries exist both at N and
H. The corresponding transitions calculated in the
APW framework appear a few eV lower in energy. A
complete calculation of the transition matrix elements
is however required before more quantitative results
can be presented. We note that the present estimate
of the transition energies is not expected to accurate-
ly reflect the true optical elementary excitations, as
the local density functional approach used here does
not include self-interaction cancellation as well as
self-energy (reiaxation and correlation) effects.

The present calculation yields a density of states of
8.57 states/(Ry atom) at the Fermi energy. This
should be compared with the similar values of 8.68
states/(Ry atom) obtained in the warped muffin-tin
calculation of Koelling et al. 2~ and 8.84 states/Ry
atom obtained by Moruzzi et al. ~9 Using the meas-
ured specific heat data of Roser et al. , this suggests
a Fermi-surface average X value of 0.25. As pointed
out by Koelling et al. , this value is much smaller
than that inferred from the McMillan equation
(—0.40), using the observed transition temperature,
Debye temperature, and isotope shift parameter.

along the nearest-neighbor distance, whereas the H~2
[Fig. 6(b)] and W~ [Fig. 7(a)] states typify nonbond-
ing d z state (with some d 2 2 contribution, which is

not seen in the plotting plane that forms a nodal
x' —y2 plane) with its lobes pointing towards the
next-nearest neighbors. The four equivalent maxima
in the d~+~+ states occur at a distance of about

5
a

from the atom (where a is the lattice constant) and
constitute the largest non-muffin-tin contribution to
the charge density within the "atomic sphere"

C. Charge density

The bonding characteristics in Mo can be studied
from the nature of the variational charge density.
We first concentrate on the contribution of some
high-symmetry points to the charge density (Figs.
5 —7).

The bottom of the valence band in Mo (I ~) is a
pure s state which is delocalized on a fairly large por-
tion of the unit cell [Fig. 5(a)]. As one progresses
towards the Fermi energy, d character is seen to be
strongly admixed [Figs. S(b), 6(a), and 6(c)]. There
are two principal types of d bonding: the 125 state
[Fig. 5(b)], the H25 [Fig. 6(a)], and the P4 [Fig.
6(c)] are characteristic of the bonding type d~+~+
in which four fairly localized d lobes are directed

FIG. 5. Band charge density in Mo at the I point in the
(110) plane. Full dots indicate atomic positions. Values are
given in e/ceil, normalized to unity; (a) I ~, (b) I 25, and (c)
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4L

Esf

Esr

FIG. 7. Band charge density in Mo at the N point in the
(110) plane. Full dots indicate atomic positions. Values are
given in elcell, normalized to unity; (a) N& (band 3), (b)
N) (band 4).

FIG. 6. Band charge density in Mo at the H and P points
in the (110) plane. Full dots indicate atomic positions.
Values are given in e/ce11, normalized to unity; (a) H&2, (b)
H2&, and (c) P4.

(~ —,a)."" The vicinity of the d-type states Ht2
and N~ to the bottom of the s band induces some s-d
hybridization into the former, characterized by shal-
low bond-oriented lobes [Figs. 6(b) and 7(a)]. A
similar p-d hybridization occurs at the P4 state
[resulting in next-nearest neighbor directed lobes in

Fig. 6(c)]. The basic bonding mechanism in this ma-
terial stems therefore from localized bond-directed d
orbitals interacting with an extended background of s
and p states which hybridize with the d states at the
band edges.

Above the Fermi energy, one encounters the non-
bonding d 2+d 2 2 states of the I't2 type [Fig. 5(c)]
which strongly hybridize with states of p symmetry
along the I -% direction. This is clearly seen at the
N~ point [Fig. 7(b)] which constitutes a pure p state
which delocalizes over most of the unit cell and simi-
lar states along the D and X directions (not shown).

The total valence pseudo charge density of Mo is
shown in Fig. 8. Along with a metallic background at
the cell boundaries, the localized features of the
bond-oriented d states are clearly seen. The value of
the charge maxima (4.3 e/cell) is significantly larger
than the value previously obtained for W (3.0e),36 in
accord with the higher s-binding energy of Mo, asso-
ciated with its deeper I =0 pseudopotential. "
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N H

FIG. 8. Total valence pseudopotential charge density of
Mo in the (110) plane.

N

D. Fermi surface

Detailed theoretical and experimental studies of the
Mo Fermi surface (FS) have been given by several
authors. A relatively complete survey is presented in
Ref. 27. We have used the results of our Fourier fit
to obtain information about the Fermi-surface di-

mensions of Mo within the first-principles pseudopo-
tential method in Fig. 9. We have plotted the cross
section of the Fermi surface in the (100) and (110)
planes in analogy to Ref. 27. Bands 3 —5 contribute
to the FS. Contribution of band 3 is purely hole-like
and consists of an ellipsoid around N and an oc-
tahedron around H. Band 4 is an electronlike jack
around I, finally band 5 contributes a small
electronlike lens centered along the b-symmetry line
which is nearly circular. In Table VI we compare the
FS cross-section dimensions along high-symmetry
directions with the calculations of Koelling et al.
obtained from a relativistic APW (RAPW) calcula-

FIG. 9. Calculated cross sections of the Fermi surface in

the (100) and (110) planes of Mo.

tion, the results of Boiko et aI. 47 obtained from the
radio-frequency size effect (RFSE) and the results of
Cleveland et al. 48 obtained from the de Haas —van
Alphen (dHvA) effect. Considering the relatively
small amount of primary points included in the
Fourier fit the agreement is quite remarkable. We do
not get, of course, a jack-octahedron separation be-
cause our calculation is nonrelativistic.

IV. CONCLUSIONS

The first-principles nonlocal pseudopotential
method is shown to provide an accurate representa-
tion of the bulk electronic properties of molybdenum.

. Within this approach, the band structure, the density

0
TABLE VI. Fermi-surface cross-section dimension in A ' for Mo.

Direction This
Work

Ref. 27
RAPW

Ref. 47
RFSE

Ref, 48
dHvA

Band 3 (hole)
Octahedron [10o]

[110]
0.80
0.66

0.81
0.60

0;79
0.60

0.81
0.61

N ellipsoid Nr
NH
NP

0.35
0.25
0.36

0.36
0.22
0.40

0.29
0.22
0.38

0.33
0.22
0.37

Band 4 (electron)
Jack [10o]

[11o]
1.20
0.54

1.15
0.52

-1.16
0.49

1.10

Band 5 (electron
Diameter

[1oo] 0.30
0.32

0.26
0.35

0.31
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of states, charge density, and the Fermi surface can
be reproduced in reasonable agreement with other
calculations and experiment. Together with a
mixed-basis representation of the crystal wave func-
tion which accounts for both the delocalized nature
of the s and p electrons and the strong localization of
the d electrons, this nonempirical self-consistent
pseudopotential approach provides a very efficient

technique for electronic-structure calculations.
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