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We present a generalized version of the Hellmann-Feynman theorem which is then applied to

problems in surface physics. In particular, we derive a number of exact results for an atom ad-

sorbed on a surface. The limitations of the theorem are also discussed.

I. INTRODUCTION

For many years, there hps been considerable in-

terest in the Hellmann-Feynman (HF) theorem. ' '
Various specific formulations of the HF theorem
have been given that are thought to give maximum
insight into its physical content or to be most suited
for practical calculations for a variety of different sys-
tems, A well-known special case is the electrostatic
theorem, which shows that the force of the electrons
in a molecule on a nucleus in it can be expressed
solely in terms of the electron density of the
molecule. Another intriguing result, due to Foldy, 4

expresses the binding energy of an atom (as a func-
tion of its atomic number) solely in terms of the elec-
trostatic potential of the electrons at the position of
the nucleus. Recently, Budd and Vannimenus'
derived an important relation between the electrostat-
ic potential at the surface of jellium metal and the
bulk electron energy based on the HF theorem. %e
will return to the above examples in the context of
the present work, but, of course, there have been
many other valuable applications of the HF theorem.

The Hellmann-Feynman theorem has always been
fascinating because of its basic simplicity; the idea
that it could lead to rather simple formulas applying
to many-body systems is very attractive. On the oth-
er hand, it has always been a subject of much debate
as to just how much physics such formulas contain
and even more so as to their usefulness in quantita-
tive analyses. In this paper this question arises, and
we will discuss it in the end. Meanwhile we shall
derive a generalized version of the electrostatic
theorem, that, however simple, to our knowledge,
has not been given before. It unifies many well--
known results, for example those mentioned above.
But, beyond that and more importantly, we feel this
formulation is eminently suited as a starting point for
the derivation of many more applications, a fact on
which we would like to focus attention by giving
some new results for an atom adsorbed on a surface.

The paper is organized as follows. In Sec. II the
generalized version of the electrostatic theorem is

derived and discussed. In Sec. III the relation
between this general result and the specific examples
mentioned above is clarified, while in Sec. IV we
demonstrate its power to obtain many new results by

applying it to the problem of adsorption of an atom
on a jellium surface. Finally, in Sec. V, we will dis-
cuss the question concerning the practical usefulness
of our new results and that of others which might be
obtained in a similar fashion.

II. GENERALIZED ELECTROSTATIC THEOREM

This is the general Hellmann-Feynman theorem.
Over the years this theorem has been. applied to

many specific systems, one of which is that of a

molecule, where the electronic eigenstates are to be
determined given a fixed (Born-Oppenheimer ap-

proximation) nuclear charge distribution

p(R) = (e( XZ 5(R —R ) . (2.2)

(Z, is the atomic number of nucleus a, and R is its

position. ) If one considers the parameter A. in Eq.
(2.1) to be a coordinate of one nucleus, say P, then

upon a small change of this coordinate one finds
from Eq. (2.1)

IIRp i
r —Rpi3

+e' X z.z,

asap

~ap
(2.3)

In its general form both the Hellmann-Feynman
(HF) theorem and its proof are extremely simple.
Let the Hamiltonian 3C of a system depend on an ar-

bitrary parameter h. , and let P(A.) be any eigenstate of
DC(A.) with eigenvalue E(A.). It then follows immedi-

ately from the normalization condition
(Q(h) ~Q(X)) =1 for all h. , that

=(y(~) „y() )& . (2.1)
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with

( ) —= N Jj~4( ', ; {R.})~'d '

being the electron density in the electronic eigenstate
Q(r; {R }) at fixed configuration {R } of the nuclei.
The notation means: ~ represents the coordinates
and spin variables of all W electrons in the molecule,
and ~' is all variables represented by v except the po-

sition variables r of one electron. Expression (2.3) is
known as the eleetrostatie theorem. It says, that the
force —BE/8Rji on a nucleus P can be given in
terms of the exact electron density alone, hence be-
ing determined by electrostatics only, with the under-
standing, of course, that the correct electron density
n (r) has to be found from the solution of the
Schrodinger equation

h e Z e Z Z egg, '+ —' X —' —X + $ a y(r, {R.})=Ey(r, {R.}) .
2me i i j rij iaI R, a fil ~ p ~~ji

i W) aWP

(2.4a)

The electrostatic theorem is an illustrative example of
two aspects of all special cases (and their specific for-
mulation) derived from the general HF theorem. On
the. one hand it gives a qualitative physical picture of
the implications of the HF theorem. On the other
hand, one has to know the exact solution of a
quantum-mechanical problem —in this case the exact
molecular electron density —since the HF theorem
holds only for exact eigenstates. Since the real diffi-
culty is to find this density, not the computation of
the force on a nucleus once the density is known,
whether the HF theorem is ever of practical use is

debatable, i.e., whether it can sometimes actually
help one solve the Schrodinger equation itself, or
give quantitative physical information without full
knowledge of its solution.

%'e shall now generalize the electrostatic theorem,
to describe the case of a small arbitrary variation sp
in an arbitrary positive charge distribution p(R).
Also, it will appear to be modified in such a way that
it does not involve the electron density, as in expres-
sion (2.3), but rather the electrostatic potential. Let
DC~ be the Hamiltonian of a system of %electrons
and an arbitrary fixed positive charge distribution p(R)

p(K) i JdRdR, p(K)p(K')
'Vrj (2.4b)

X,(}j(r;p) = E [p](}i(r;p),

is a functional of p. Upon a small arbitrary change
Sp one finds in complete analogy with the standard
derivation of the Hellmann-Feynman theorem, '

SE[p]
@ ( )

&p(r)
(2.5a)

In the following we use atomic units, m, = h =
{e ~

= I
[cf. Etl. (2.4a)]. Every eigenvalue E[p] of the
Schrodinger equation,

r
upon a small change 5p in the positive charge distri-
bution, is given by

AE= —J~gp(r)yp(r) dr, (2.6)

which follows from a straightforward application of
perturbation theory.

It is interesting to compare this result with classical
electrodynamics. ' In that case, the change 4E in the
total energy upon any small change 5% of the total
charge distribution N(r) is given by

hE = —
J SN(r)(p(r) dr . (2.7)

0 np(r') —p(r')
r dr'

the exact electrostatic potential, and

(2.5b) Here (p(r) is the electrostatic potential [same con-
ventions as in Eq. (2.5b)] corresponding to the initial
charge distribution N(r) and given by Poisson's
equation

n~(r) =N J (}(("(r',r;p)y(r', r;p) dr' (2.5c) V'(P ( r ) = 4n N ( r ) .

the electron number density in the stationary state
i}j(r;p). Or, in integral form, the change j( E in the
total energy of the system, initially in any eigenstate,

It should be recognized that expression (2.6) is also a
classical result. The quantum mechanics of the prob-
lem (consisting of the calculation of the correct elec-
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tron density from the wave function) has been com-
pleted and the classical limit is taken: the expectation
value n~(r) of Eq. (2.5c) in the state P(r;p) is actu-
ally identified with the macroscopic electron density
by virtue of the fact that there is a large number of
electrons in the system, and the electrostatic potential
qh(r ) defined by Eq. (2.5b) satisfies Poisson's equa-
tion. That expressions (2.6) and (2.7) are different
at all is caused by the fact that in the former case
the change is made starting from an eigenstate of the
whole system, in the latter by starting from an arbi-
trary state. So, all the Hellmann-Feynman theorem
says is that if one changes the total charge distribu-
tion 5N = Sp+ 5n~ starting from an electronic eigen-
state at fixed positive charge density p, the energy
changes to order Sp but only to order (Sn)2 in the
electronic part, as can be seen from perturbation
theory. Therefore expression (2.6) is just a special
case of Eq. (2.7) as indicated above.

Although expression (2.6) is just a simple modifi-
cation of Eq. (2.3), the usefulness of this specific for-
mulation to surface problems has gone largely unnot-
ed. Some applications which are special cases of Eq.
(2.6) have, however been given" and we shall dis-
cuss those in Sec. III. Also, the general form [Eq.
(2.6) 1 has been obtained for the ground state. ' In
that work the proof of Eq. (2.6) relies on the
Hohenberg-Kohn theorern9 for the ground-state ener-
gy. Invoking this powerful theorem for the ground
state facilitates the proof and makes it considerably
more elegant; however, its validity is not required to
prove Eq. (2.6), since the latter follows from pertur-
bation theory from all eigenstates, as in the
Hellmann-Feynman theorem. The main point we
would like to make, however, concerning the general
expression (2.6) is that it lends itself to many im-
mediate applications because Sp(r ), the change in

the positive charge density, occurs in the integrand.
This is a parameter that one can control externally in
contrast to the case of the ordinary formulation of
the electrostatic theorem which involves the electron
density, a quantity to be calculated first from the
(often forbiddingly difficult) quantum-mechanical
problems before one can perform the integral.
Therefore, as we shall demonstrate in Sec. IV, the
electrostatic theorem given by Eq. (2.6) gives
numerous simple applications of the HF theorem
even before one ventures on the solution of the
many-electron problem. In the end, all of these will,
of course, involve the exact electrostatic potential.
So, the issue, whether the HF theorem can be of any
practical use in solving or circumventing the
Schrodinger problem, remains as always. However,
the mere simplicity of the formulas in terms of the
electrostatic potential in contrast to, e.g. , expression
(2.3) justifies the hope that they may be more useful
for practical purposes than many given in the past.
We shall return to this question in Sec. V.

III. DERIVATION OF NELL-KNOWN RESULTS
FROM THE GENERAL FORMULA

The simplest application of the general formula
(2.6) is Foldy's result~ relating to the binding energy
of an atom as a function of its atomic number Z.
Consider an atom with nuclear charge Z located at R.
Then, upon changing the charge of the nucleus by
hz, i.e., Sp(r) =EZS(r —R), one immediately ob-
tains from Eq. (2.6) hE = —Azp(R;Z), or

= —4(R;z) . (3.1)

Sp(r) = —ZpS(r —Rp) + ZpS(x —(Xp+SXp))

xS(y —1',)5(z —Z,) .

Substitution in Eq. (2.6) immediately gives

hE = Zp@(Rp) —Zpqh(xp+ SXp, Yp, zp),

Here, P(R;Z) is the potential energy of the electrons
in the unperturbed atom at the position of the nu-
cleus. Some remarks should be made, that often ap-

ply to results derived from Eq. (2.6). While our
derivation of Eq. (2.6) demands that the number of
electrons be fixed, there is no requirement for

Sp(r) dr to be zero. Hence, the system need not
remain neutral upon performing a small change in
the positive density p. Integrating the left-hand side
of Eq. (3.1) between Z and Z +1, we obtain the
difference in energy between a singly ionized atom of
atomic number Z + I and a neutral atom of atomic
number Z. Now, $(R;Z) is the electrostatic poten-
tial of a neutral atom supposedly known as a function
of Z. Upon integrating the right-hand side from Z to
Z+1, we then make an error, since @(R;Z) as an
interpolation between integer values of Z and Z +1
corresponds to a neutral system, where the number
of electrons is kept equal to the number of protons,
as pointed out by Foldy. Another point to be men-
tioned is that, according to Eq. (2.6), qh(R;Z) is the
total electrostatic potential, which also contains an in-
finite part due to the nucleus, since it is evaluated at
R. This is due to the fact that the nucleus is treated
as a classical point charge. Whenever such an infinite
contribution occurs, it should simply be discarded, '

so that in the present case $(R;Z) is the potential
(energy) of the electrons at the position of the nu-
cleus. A similar result for molecules derived by Wil-
son" can also be obtained immediately from Eq.
(2.6).

Another important and straightforward application
is the derivation of the usual form of the electrostatic
theorem for a molecule [expression (2.3)). If we

change the x coordinate of one of the nuclei in a
molecule, say P with charge Zp at position Rp, we
have
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of

BE Z B@
p- (3.2)

point that many more applications of Eq. (2.6) in the
spirit of Eq. (3.3) can be given, as long as Sp(r) is
simple enough and suitably chosen. We will now
turn to such applications.

one has

8@
Qx Rp

and

~ Z.(X.—Xp)

aa-'p I Ra Rpl

)I' n ( r ') (x' —Xp)

IRp —r'I'

Z Zp(X —Xp)

BXp ~p R'p p

' n (r ') (x' —Xp)
X df

I
Rp-r'I'

Here $ depends parametrically on the positions and
charges of all nuclei. For clarity, we do not indicate
this dependence. Since

( ) X,' n(r')

IV. APPLICATION TO THE ADSORPTION OF
AN ATOM ON A JELLIUM METAL SURFACE

Let us now derive some new results with respect to
adsorption of an atom on a jellium metal surface,
that follow very easily from Eq. (2.6). We consider
the geometry of Fig. 1(a). A jellium slab of uniform
positive charge density po with volume V extends
from x = —L to x =0 along the x axis, the surfaces
being planes perpendicular to it. An atom of nuclear
charge Z

I
e

I
is adsorbed on the surface x =0, its nu-

cleus being located at x = d. The energy E of this
system is a function of the four parameters po, Z, d,
and L. Because of the simplicity of the geometry,
results for the dependence of E on these parameters
are easily obtained from Eq. (2.6). The electrostatic
potential [convention of Eq. (2.5b)] is cylindrically

This is the usual form of the electrostatic theorem
[cf. Eq. (2.3)). Note that, as in the first example, we
have to discard the infinite self-energy part of the po-
tential due to nucleus P at Rp.

A third, very beautiful application is related to the
jellium model of a metal. Consider a slab of jellium
(of volume Vand uniform positive background den-
sity po), then, as is shown by Budd and Van-
nimenus, ' one obtains

0

0

(z)

d

= d o(po) —4 '(po)
V dpo

(3.3)

Here 8/ Vis the bulk energy per unit volume, Po(po)
is the value of the electrostatic potential at the sur-
face of the slab, and $ "is the average electrostatic
potential over the volume. Specifically for the
ground state, E is (fairly) well known from the
theory of the uniform electron gas, hence the value
of the electrostatic potential at the surface (relative to
its average value over V) can be obtained from Eq.
(3.3). This is actually an example where the
Hellmann-Feynman theorem leads to an exact result
(the value of who) quite directly, that can be obtained
only with much work numerically from the solution
of the Schrodinger equation. ' Budd and Van-
nimenus have also given the expression (2.6) in a
subsequent paper, ' but as we mentioned earlier its
validity for all stationary states does not follow from
their proof. [They did prove their resuit (3.3) for all
stationary states, but this involved application of the
HF theorem (2.1) with respect to the thickness of the
jellium slabl. More importantly, we like to make the

-L -L+5d

(b)

0 ha X

X

FIG. 1. (a) Jellium slab of uniform positive charge densi-
ty po, volume f, extending from —L to 0 on the x axis with
an atom of nuclear charge ZIeI at x =d. (b) New confi-
guration found by moving the entire jellium slab b, d along
the x axis. (c) Sp(R).
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symmetric and, with charges Sp(r) of the same symmetry, we have

5E= J1—Q(R;pp, ZdL)Sp(K) d R= —2' J1 dx J~ dr rP(xr;po, Zd L)Sp(xr) dr (r =y +z ) .

1. Distance of the atom to the surface

A relation for the energy as a function of the distance d of the adsorbed atom to the surface can be obtained by
considering the following small change Sp(R) [see Figs. 1(b) and (c)]:

Sp(x, r) = —po, —L ~x ~ —L +Ad,
Sp(x, r) =+po, o ~x ~ Ad,

Sp =0, elsewhere .

One simply displaces the slab by a small amount 4d, Then, without denoting the dependence on parameters that
are irrelevant in this case

f -L+hd pd, d

hE =E(d —hd) —E(d) = —2rr„' dx Jl dr r(—po)g(x, r;d) —27r I dx „(dr r(po)@(x,r;d) dr

=2m po'd ~ dr r$( L, r;d) ——2m poi), d J~l dr rg(D, r;d)

Hence

1 9E
po $d po, ZEAL

or
'I

1 8E @s(d) ~ s
Spo Bd p(), Z L

(4.1)

=2m [@(—L,r;d) —@(O,r;d)] r dr,

2. Thickness of the slab

The change in energy as a function of the thickness
L of the slab (keeping pa, d, and Z constant) is sim-

ply obtained from [see Fig. 2(a)]

Jpo, —L —5.L ~x~ —L
Sp(x, r) = '

, 0, otherwise

Then

Here $ s(d) is the average of the exact electrostatic
potential over the surface with the atom at x = d, $0
is the average of the exact electrostatic potential over
the surface without the atom present [since for
L ~, $(—L, r, d) is the potential of an unperturbed
metal surface). S is the surface area. E is the total en-
ergy of the system, but the same relation holds for
the interaction energy E;„=E —E~ —E&, ~here E~
and E~ are the total energy of the metal and atom,
respectively, when infinitely far apart, since neither
E~ nor E& depends on d. Since

lim @s(d) =@Os

5E =E(L +EL) —E(L)
i

-L
2mpo '~ dx '~ dr r$(x, r;L)

—2mp05L Ji dr rP( L,r;L), —

or, in the limit of a very thick slab (L ~)
r t

—s= —poS@0 (po),
BL zpo

(4.3)

the derivative of E with respect to d tends to zero as
d ~, as it should.

One may also displace the atomic nucleus by Ad in
the x direction so that

Sp(R) = —ZS(R-d) —ZS(R —(d+5 d)) .

Then

8 E = Z Jr d K @(K;d) [5(R —d) —5(R —(d+ 6 d))]

= Z [ @(x= d r =0;d) —@(x= d + 5d r =0;d)],
or

-L-h, L —L

(a)

0 d

0

9E
Bd po, Z,L

1

Z Bqh(x, r =0;d)
Qx

, x d

(4.2) FIG. 2. (a) Jellium slab is increased in width by AL. (b)
Positive charge density is increased by hp.
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where @Os as defined in Eq. (4.1). Unlike the case of
Eqs. (4.1) and (4.2), where the system remains charge
neutral upon the change Sp, here E(L +hL) is the
energy of a charged system, since the total positive
charge has been increased or decreased (depending
on whether hL is positive or negative), while the to-
tal number of electrons remains constant throughout
the change. Therefore, we run into the same situa-
tion as discussed by Foldy4 with respect to the atomic
binding energy.

I

I

l

I

I

0

3. Uniform background density

For this case consider
r

hp, —L ~x~0,
I
0, otherwise

as in Fig. 2(b). Then

—L-6L

(b)

or

IE =E(po+Ap) —E(po)

= —2m „dx„]dr r$(x, r;po),

FIG. 3. (a) Full curve is the positive charge density be-
fore; the dashed curve is the density after the change Ap.
This change conserves total charge. (b) 4p.

' BE'

, Bpo, zdL

= —Vy '(p, , z, e,L) . (4.4)

Here qh is the average of the exact electrostatic po-
tential over the volume of the metal sample. A's in

Eq. (4.3) the change Sp does not connect two charge
neutral systems, since E(po+ hp) corresponds to a

positively or negatively charged metal depending on
4p being positive or negative. Because of this fact
neither Eq. (4.3) nor Eq. (4.4) seem particularly in-

teresting by themselves. One would rather like an
expression for the change in energy of an atom ad-
sorbed on a surface upon a change of the uniform
background density keeping the metal neutral. Such
an expression is easily obtained from Eqs. (4.3) and
(4.4) (see Fig. 3).

result coincides with the Budd and Vannimenus for-
mula (3.3). For the interaction energy
E;„=E E~(po) —E—q we obtain, using Eq. (3.3) for
E~(po),

1

1 5Eint

~, ~», dz
=40(PO) 4 (~ Po Z) ~ (4.6)

i.e., the change in the interaction energy of a given
atom upon a change in the background density equals
the difference in the average electrostatic potential
over the sample with and without the atom adsorbed.
The thickness of the sample, chosen to be very large,
becomes an irrelevant parameter in the result (4.6).

BE

Po, z,d, L

1

Qp+ AL
BL zd po

4. Charge of the atomic nucleus

If one changes the nuclear charge by b, Z,

=—V 4 vh p
—poS 4 OshL .

Now, we have to choose AL = —L hp/po in order to
keep the metal neutral. Hence

and

Sp(x, r) = aZS(K —d)

AE =—d, Zqh(x = d, r =0;d, Z)
t

=40(po) —4 (Po Z. ri) .~ 'po .z

In the limit

(4.5)

= —$(x =rir =0;d, Z, po, L) .
BZ po, d, L

(4.7)

lim qh (d po Z) =$0 (po)
d ~oo

the volume average of a metal without the atom, this

Again, the system does not remain neutral under Sp.
It may be more interesting to consider a change that
does keep the system neutral, or in the case of Eqs.
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(4.5) and (4.6). or

SE~Z-='E ~Z
SZ BZ po dL

+ aL, with aL = —aZ/pos(jE
8L podz

= [@Os(po) —@(x=d, r =0;d)]az,

E —s(p ) —P(x =d, r =0;p dZ) . (4.8)
SZ p(),d

One can also consider the change in interaction energy
upon changing the atomic number by hZ keeping the
whole system neutral

8E nt= ~E —[EM(N —~Z;L —~L;po) —E~(N;L;po)] —[Eg(Z+ bz, z+ EZ) —E„(Z,Z)] .

Here E~(N;L, po) is the total energy of an unperturbed neutral metal slab with N electrons (length L, positive
background density po) E„(Z~,Z )2is the total energy of a free atom with Z~ electrons and atomic number Z,

Using Eq. (4.8) for &E, Eq. (4.3) for the metallic part, and Eq. (3.1) for the atomic part one has

SE... = [$q(x =d, r =0;Z) —@(x=d, r =0;po, d, Z)] +84 —&I .
SZ pod

(4.9)

Here @q is the electrostatic potential of a free atom,
S4 is the change in energy of an unperturbed neutral
metal upon adding 4Z electrons to it, and Sl is the
change in energy of a free neutral atom upon remov-
ing bZ electrons from it. Apart from the latter quan-
tities, which depend on the metal or atom only, the
change in interaction energy is given by the differ-
ence of the electrostatic potential at the position of
the atomic nucleus with and without the metal sur-
face present. It is amusing to note the similarity of
the results (4.9) and (4.6); however, a direct integra-
tion of the right-hand side of Eq. (4.9) (if it were
known as a function of Z), to obtain E;„as a func-
tion of Z, is at best a crude approximation, just as in
the case with Foldy's result for the free-atom upon
integration of Eq. (3.1).

tential and various other properties can be calculated
exactly. We could then see which information can
also be obtained from our results of Sec. IV and
whether or not it is gained more easily. For the
present case we were able to find only one such ex-
ample, that of a plasmalike medium I (with back-
ground dielectric constant ao) separated by a planar
boundary S from a dielectric medium II (with dielec-
tric constant a) in which a point charge q is embed-
ded at a distance d from S (see Fig. 4).' "The plas-
ma is described by Poisson's equation 5@=p'$,
~here p is the Thomas-Fermi screening wave vector.
For this system some important features can be ob-
tained readily from our result (4.2). The electrostatic

V. DISCUSSION

We have demonstrated in Secs. II—IV how the gen-
eralized electrostatic theorem (2.6) is at the root of
various well-known specific formulations, and also
how eminently suited it may be for the derivation of
new results on various physical systems. As an ex-
ample of some importance we considered the case of
an atom adsorbed on a very simple surface, but one
might think of many others in the field of surface
physics, e.g. , adsorption of monolayers, adsorption
on surfaces with simple steps and kinks, "etc. How-
ever, the question regarding the practical importance
of all such results still remains to be discussed. We
confine our remarks to the adsorption problem.

First of all, it would be instructive to have some
models of adsorption for which the electrostatic po-

Region
Eo

Region 3I

FIG. 4. A charge q embedded in a dielectric with dielec-
tric constant ~ near a plasma half space which is described by
a Thomas-Fermi wave vector p.
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potential in medium II is given by'4'5 [convention of
Eq. (2.5b)]

$n(s, r;d) =—+ 'I dk Jo(kr) e "~'
II

dk Jo(kr)e ~U(k, d),
~ Jp

with

(e/ao) k —(k'+ p') '~'
e-kd

(~/.,)k + (k'+ p')'"

In the limit of r 0 and x d, the point ~here we

have to evaluate P in order to apply Eq. (4.2), the
first term becomes thc singular self-energy part of
the point charge q, and has to bc discarded. Hence,
applying Eq. (4.2) for this system, we have

BE
Bd

= —q
9@(x,r =0;p,q, d)

Bx

2 f
= lim ~ dk Jo(kr)( —k) U(k, d)e ~

r~o g 40

(k2+ p2)'~ —(a/5p) k e-'"'.
(k'+ p') ' '+ (a/ao) k

From this result the qualitative conclusion follows
immediately' . if e & ~0, the integrand is positive defin-
ite and hence no adsorption minimum can occur; for
e ) ~0 the integrand changes sign and an adsorption
minimum may occur. If we scale the distance by
k =px, then

(x'+ I) '~' —(e/eo) x (,~)„
8(2pd) 2e ~ o (x2+ I)'~'+(e/eo)x

q P ) dx xe—(2Pd)x

8(2pd)

q p
2e (2pd)2

or upon integration

g(d) E( ) q p " d q
x' a(4d)

'

In the limit of an ideal metal: eo ~ or ~/ao 0, we

have

which is the image potential energy of interaction for
a point charge at distance d from an ideal flat metal
surface. If one calculates the above integral numeri-
cally for various values of a/6p the results of Fig. 3(a)
of Ref. 1S are reproduced. However simple, this ex-
ample shows that important information can be ob-
tained directly from the results of Sec. IV very easily;
notably, in this case, one is able to say under what
conditions an adsorption minimum will not occur. It
seems possible, that in more complicated problems
some physical results can be obtained from the for-
mulas of Sec. IV, that are much harder to arrive at
otherwise. In fact, the Budd-Vannimenus theorem is
a perfect example of this with respect to the jellium
metal surface problem.

This brings us to another case to be made for a
serious look at simple expressions following from Eq.
(2.6). In the case of atomic binding energies there
may be, at this point, not much use anymore for a
result like the one given by Foldy, since orie is able
to treat the atomic-electron problem in a very sophis-
ticated manner within the framework of the Hartree-
Fock approximation (and beyond). However, for the
adsorption problem the state of the art of deriving
the interaction potential directly from the electronic
structure (i.e., by essentially solving the Schrodinger
equation) is still much less satisfactory. In this con-
text, it appears that results like those of Sec. IV may
at this stage be very useful in more than one respect.
First of all, they may serve as self-consistency criteria
for sophisticated numerical solutions of the interac-
tion potential, in the same way as Eq. (3.3) does for
numerical calculations of the electronic structure of
the jellium metal surface. Second, with full
theoretical understanding of the adsorption
phenomenon currently lacking, parametric solutions
of this problem may lead to important qualitative
understanding. In this case the electrostatic potential
would be a known function of some parameters, for
which the relations in Sec. IV then pose self-
consistency conditions. Again, drawing a parallel
with the jellium surface problem, such approaches
have provided very useful steps in the understanding
of the jellium surface' and work along these lines in-

volving the Budd-Vannimenus theorem (3.3) is still

being done. "
Finally, as we noted earlier, the fact that the HF

theorem holds for exact eigenstates (or the exact
electrostatic potential) only, restricts its applicability
in some respects. It is well known that substantial er-
rors may be introduced, if it is applied to directly cal-
culate energy differences upon changing a parameter
in the Hamiltonian while using an approximate eigen-
state (or approximate potential), since then the ener-
gies may change linearly with the electron density as
well. On the other hand, even approximate poten-
tials may give surprisingly good results when corn-
pared with experiment (for instance in the case of
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Foldy's formula for the atomic binding energy based
on Hartree or Thomas-Fermi theory for the poten-
tial). It is possible that such agreement may turn out
to be fortuitous, but this should be assessed for each
case separately. %'e feel that the possibility of direct
calculation of adsorption energies from the results of
Sec. IV with the aid of approximate electrostatic po-
tential should therefore not be neglected.

%e have not underscored the discussion remarks
above by giving an application to a model complex
enough to be realistic which would thus require sub-
stantial numerical work. Such an application is out-

side the scope of the present paper, but is clearly very

important to determine the ultimate practical signifi-
cance of our results.
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