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In this last of three papers dealing with the correlation-function approach (CFA) to multicom-
ponent alloys we look at the first-order approximation beyond the mean-field approximation
(MFA) for ternary alloys. We first discuss the properties of binary phase diagrams (using clus-

tering systems by way of example) in order to understand what information can be obtained
from the CFA. We then briefly discuss previous theoretical attempts to go beyond the MFA
for binary alloys using CFA-like formalism. Having examined binary alloys we then formulate
the problem for ternary alloys, and present the results for the correlation functions for this sys-
tem. The resulting equation for the transition temperature is a quartic in T„where T, is a sta-

bility temperature at which the alloy decomposes into separate phases, or assumes an ordered
1

ground state, We look explicitly at the case of a symmetric ternary alloy, m„=m& =
2

(1—mc)
with positive interactions of equal magnitude, We find that the resulting phase diagram can be
appreciably changed from the MFA. We then discuss implications of the technique.

I. INTRODUCTION

In the first in this series of papers' we introduced
and discussed the correlation-function approach
(CFA) to multicomponent systems. In particular we

applied the technique to calculating the transition
temperature for a quaternary alloy within the mean-
field approximation (MFA). The basic ideas of the
CFA (to be described in more detail below) are attri-
butable to Tahir-Kheli and have their roots in classi-
cal fluctuation theory. In the following paper' in the
series the CFA was applied to calculating, again
within the MFA, the transition temperature for a ter-
nary alloy in which static irreducible three-body po-
tentials are present.

It is our intent here to use the CFA to investigate
the behavior of the simplest nontrivial multicom-
ponent system —the ternary alloy —based on first-
order corrections beyond the MFA. This should give
us some indication of how the system moves away
from mean-field behavior, and in addition should
also say something about the validity of the CFA
when one goes beyond the MFA.

In order to lay the basis for our discussion of ter-
nary alloys, in Sec. II we briefly review the properties
of binary phase diagrams, using in particular cluster-
ing systems for an example. In Sec. III we discuss
the CFA for binary alloys, but with emphasis on ap-
proximations which have tried to improve on the
MFA. We then review some previous work in ter-
nary and multicomponent alloys in Sec. IV. In Sec. V

we formulate the problem for ternary alloys with
pairwise interactions and present the results for the
correlation functions. The CFA is briefly discussed
in Sec. VI and our formal results for the transition
temperature are given. Finally in Sec. VII we present
results for a symmetric alloy, m„= ms ——

2
(I —mc), in

both the MFA and the approximation of this paper.
We then discuss the technique.

II. BINARY PHASE DIAGRAMS

The phase diagrams of interest here are the tradi-
tional ones of metallurgy, i.e., composition versus
temperature diagrams. The theoretical determination
of these phase diagrams has long been an active area
in the statistical mechanics of solid solutions. ' The
interest in phase diagrams is prompted, of course, by
their great technical utility, as well as by the theoreti-
cal challenge of reproducing real diagrams from
model systems.

The last few years have seen an upsurge in study-
ing and understanding ordering and clustering solid
solutions, 6 ' and consequently the phase diagrams for
these systems. This increased activity has been
prompted in part by the pioneering work of Hillert,
Cahn, and Hillard on spinodal decomposition in
binary systems, 6 and by the great strides made in
the past decade in understanding phase transitions
and critical phenomena. ' Naturally there has been
overlap between these areas, "' as well as in other
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systems far from equilibrium. ' Regardless, the basic
problem is to calculate phase diagrams from equilibri-
um statistical mechanics and use these, if possible, to
determine information about ordering, or clustering,
kinetics.

A schematic phase diagram, based on a regular
solution model, for a binary alloy with a miscibility

gap (we use the clustering, or phase separating, sys-
tem as an example from here on) is shown in Fig.
l(a). Here we can distinguish three regions: (I)

'stable, (II) metastable, and (III) unstable. These
three regions are separated by the miscibility gap,

(a) MlSClBiLlTY

8g p
Qm&

(2.1)

where g is the free energy per particle and m& is the
concentration of A atoms, and the spinodal,

8 g p
Qm&2

(2.2)
0.5

8g Bg 2gE
Qm„' pm„' $ —p

(2.3)

where E is Young's modulus, v is Poisson's ratio,
and for lattice constant a,

(2.4)

This produces a suppression of the spinodal and the

The highest point at which the two curves touch, i,e.,
Eqs. (2.1) and (2.2) are simultaneously' satisfied, de-
fines the critical point.

If the disordered alloy is quenched from the stable
region (T » T,) into the metastable region, then
phase separation takes place by a nucleation and
growth process. On the other hand if the quench is

into the unstable region then clustering can take
place via spinodal decomposition. These ideas are
highly simplified and one must be cautious when
treating real systems. This is because most real sys-
tems do not have symmetric phase diagrams based on
the regular solution model [as in Fig. 1(a)], and we

must always be careful about extending equilibrium
concepts to problems which are intrinsically dynamic.

However for solid solutions we can improve on the
regular solution model by including strain-energy ef-
fects, as was first pointed out by Cahn. ' Basically an
alloy can phase separate in two different ways6: (i)
the two regions having different lattice constants can
form an incoherent interface between the phases,
across which there are lattice discontinuities, or (ii)
the lattice constants of the two phases coherently
meld together. In this latter case there will be elastic
energy in the system, and this will consequently have
an effect on the phase diagram.

For isotropic solids the net effect of this elastic en-

ergy is to modify the equation of the spinodal by

(b) lNCOHERENT

I I I

0.5
NA

coherent miscibility gap, so that the phase diagram
looks somewhat as in Fig. 1(b). We consequently
have a incoherent miscibility gap, a coherent miscibil-

ity gap, and a coherent spinodal.
Thus if one is to study the thermodynamics of

even the binary alloy a knowledge of which phase
boundary is being measured is crucial. " " This
depends of course on the sample, the sample
preparation and the type of experiment being done.

FIG. 1. (a) Schematic phase diagram for a clustering

binary alloy sho~ing the spinodal and the miscibility gap.

Regions I, II, and III are, respectively, the regions of stabili-

ty, metastability, and instability. The critical point is defined

as the point where the two curves touch, (b) Schematic

phase diagram showing the effect of elastic energy in

suppressing the miscibility gap.
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Of primary importance is the spinodal curve since it
separates the phase diagram into stable and unstable
regions. Once the alloy is quenched into the unstable
region, how the system decomposes or orders is
dependent, among other parameters, on the relative
location of the spinodal. " In addition as one ap-
proaches the phase boundary from either side various
pretransition phenomena are expected due to compo-
sition fluctuations. ' Again, accurate knowledge of
the phase boundary is important for understanding
these phenomena.

In Sec. III we wi11 look at various approximations
to calculating the transition temperature for binary al-
loys based on a correlation function approach. We
will see that this approach basically leads to
knowledge of the incoherent, or chemical spinodal.
We note, however, that the coherent spinodal for an
isotropic solid solution can readily be obtained from
the incoherent spinodal by using the prescription of
Eq. (2.3).

III ~ CFA FOR BINARY ALLOYS

mA msu" (gp) = mA mB ((rg (rp ) (3.1)

where ( . ) represents the usual thermal average
and ~g are the site-occupation operators,

/

J+ I, for a v atom at site g

I
0, otherwise . (3.2)

The CFA' is based on determining singularities in
the diffuse scattering intensity as the system ap-
proaches criticality. Basically, as the temperature of a
binary alloy is lowered from the disordered regime
(T )) T,) the diffuse scattering intensity 1(k)
diverges at some critical wave vector k„and tem-
perature, T, I(k) is dire. ctly proportional to the
Fourier-transform of the Warren-Cowley short-
range-order (SRO) parameter" "and subsequently
can be related to the interactions between the com-
ponent species.

For clustering systems the critical wave vector is
the long-waveiength one k, = (0, 0, 0), i.e., the fer-
romagnetic ground state, while for ordering systems
k, is finite, and an antiferromagnetic ground state ob-
tains. For binary systems the SRO parameter is
given by

From Eq. (3.1) we see that we also have the sum
rule

u"B(gg) = —Xu" (k) =1 .
k

(3.4)

A number of authors have calculated uAB(k)
within various approximations for binary alloys,
which are isomorphous with the usual spin- —, Ising

model. '" W'e should mention in particular the work
of Krivoglaz and Clapp and Moss, who arrived at
similar forms for u" (k), i.e. ,

AB(k)
I —Pm„ms V(k)

where P = (kB T) ', kB = Boltzmann's constant,
V(k) is the average ordering energy,

V(k) =2 V" (k) —V""(k) —V (k),

(3.5)

and 5 is determined such that the sum rule, Eq.
(3.4), is obeyed.

We see that by measuring u"B(k) we can obtain
information about V(k), and that as T T, and
k k„we get a singularity in u"B(k) when

I —p, mAmB V(k, ) =0 . (3.6)

Thus a theoretical calculation of u"B(k) can give us
the transition temperature as a function of concentra-
tion and interaction. .

Modification and improvements of the approxim-
ant of Eq. (3.5) have been proposed by Philhours and
Hall ' and Hoffman based on the spherical model,
by Tahir-Kheli'9 based on a high-temperature ex-
pansion, and by Shirley and Wilkins" based on an
expansion in z ', where z is the number of nearest
neighbors. The utility of the various forms seems to
differ with the system under study. ' 3' However here
we wish to emphasize the high-temperature methods
of Tahir-Kheli. Basically Eq. (3.5) can be looked
upon as the first term in a high-temperature expan-
sion in P. Expansions up to P' have been obtained'o
and have, in many cases, been shown to be an im-
provement" on the approximant of Eq. (3.5). In the
limit of the equicomposition alloy, i.e., the zero-field
Ising limit, the transition temperature approaches that
obtained from series expansions. ',

Now the Fourier-transform of the SRO parameters
u"B(k) also obeys the thermodynamic sum rule'6 for
k =k„

The Fourier-transform of uAB(gp), which is propor-
tional to the diffuse scattering intensity, is given by

mAmsu (k) =kBTAB
— &'g (k ) (3.7)

uAB( k ) Q ABu(gp) e /k (g P)

uBA(gp) $ uAB( k ) elk (g —P)
N—

k

(3.3a)

(3.3b)

Thus we see that singularities in u"B(k), via Eq.
(3.5), are giving us information about the spinodal
curve of the system, i.e., Eq. (2.2). Consequently we
see that the transition temperature we, have been
talking about is that of the spinodal, i.e., a stability
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temperature, and it is defined by taking the limit on
Eq. (3.5) for k k, and T T, Th. e curve so de-
fined separates the phase diagram into regions of sta-
bility (or metastability) and instability. 6 '34

The thermodynamic sum rule, Eq. (3.7), is derived
from classical fluctuation theory, and has been ap-
plied to alloys in a number of ways by various au-
thors 6-s, is, i9, 35 The essence of the CFA is to em-
phasize the left-hand side of Eq. (3.7) and to calcu-
late the correlation function n" s(k) directly in order
to obtain information about the spinodal. The in-

verse problem of calculating the free energy, and
then the spinodal, is the usual method of studying
solid solutions. Within the MFA, calculations done
by both techniques give the same results for the spi-
nodal, and as such should be considered complemen-
tary. However, one of our purposes here is to evalu-
ate the CFA for approximations beyond the MFA.
We will do this after we briefly discuss ternary alloys
and other multicomponent alloys in Sec. IV.

IV. MULTICOMPONENT ALLOYS

We wish to briefly review some of the previous
work on multicomponent alloys, with particular em-
phasis on ternaries, in order to see where the results
of this paper fit in. To begin with, we recognize that
experimental' and theoretical 4 work on ternary
alloys has been scant in comparison to that on binary

alloys. Furthermore, studies of quaternary al-

loys, ' " and multicomponents, are even
scarcer.

Generally the theoretical studies on ternaries can
be classified as those which are done in the ordered
regime (T ( T,) and those done in the disordered re-
gime (T ) T,). Those done in the disordered regime

by Tahir-Kheli and Taggart are in the spirit of the
CFA. The vast majority of work has been in the or-
dered regime and has used either a Bragg-
Williams —type MFA, '4 or a free-energy expansion
in reciprocal space. 4 The classic work in clustering
ternary systems based on the regular solution model
is that of Meijering. 37

Since the CFA yields information about the
spinodal —in this case a spinodal surface for a ternary
system —we are particularly concerned with the ques-
tion of stability versus instability. Meijering's work
essentially classified the stability behavior of the ter-
nary system based on whether the average interac-
tions were attractive or repulsive. Again, this
analysis was based on the regular solution model.
Morral43 later presented a very elegant geometric in-

terpretation of stability in ternary systems and looked
particularly at the regular solutian model. Finally de
Fontaine, using free-energy-expansion techniques
in reciprocal space, has analyzed the stability of mul-

ticomponent systems. For the case of the regular

solution, his results are equivalent to Meijering's.
For a review of the stability problem the interested
reader is referred to de Fontaine's two fine re-
views. 6 s

Work done so far in going beyond the MFA, which
is basically equivalent to the regular solution model,
has used Kikuchi's cluster-variation method.
This has been shown to be marked improvement on
the traditional MFA, or Bragg-Williams approxima-
tion. It is with this background that we look at the
first-order approximation beyond the MFA for the
CFA to ternary alloys. We begin this by formulating
the problem in Sec. V.

V. FORMULATION AND
CORRELATION FUNCTIONS

The formulation of the static three-component sys-
tem has been presented before, so we will just
present the salient features here. We will assume
that static pair interactions exist between atoms on a
rigid lattice of N sites. The configurational energy of
the system can be written

H = —, $ X V" (gp)
&z p gzp

(5.1)

V"~(gg) = V""(gg) =0 . (5.2b)

The configurational Hamiltonian defined by Eq.
(5.1) is a three-component static one and as such is
isomorphous to a spin-1 Ising Hamiltonian. This is
evidenced by transforming to spin variables
(S =1;A'=1),

~A [(Sz)2 + Sz]

8 1 (Sz)2

;=—,
' [(s;)'-s;]

and recasting Eq. (5.1) in the form,

(5.3a)

(5.3b)

(5.3c)

X = —p, ~ XS' —p2 X (Sr')2 —X It (gp) AS'
g g g.p

—X 12(gp) s,*(s;)' —X &3(g p) (s;)'(s')'
gp gzp

(5.4)

Here the interaction parameters 1&(gp) are linear
combinations of the interactions V"~(gp)38 and the
chemical potentials p& are determined such that the

where the sum over g and p is over all lattice sites,
and the sum on v and p is over atomic labels
(v, p=A, B,C). The site-occupation operators have
been defined in Eq. (3.2) and the pair interactions
have the usual symmetry under site and species la-
bels, i.e.,

V" (gp) = V"'(pg) = V "(pg) = V "(gp), (5.2a)
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number of particles is conserved, i,e., the concentra-
tion of species v is given by

N„m„= "=(og) . (5.5)

In addition we assume that all lattice sites are occu-
pied, i.e.,

N=$N„, (5.6)

(rg =1 . (5.7)

It is a straightforward procedure"' to derive exact
correlation function equalities for the system gov-
erned by Eq. (5.1) or Eq. (5.4). These correlation-
function identities can then be formally expanded for
arbitrary chemical potentials (concentration) to arbi-
trary order in P. Consequently one can calculate, in
principle, any correlation-function (pair, triplet, etc.)
to arbitrary order in P. The procedure, for the gen-
eral case, rapidly becomes tedious and cumbersome,
However the site-site correlation function (o.g"o~c)
has been calculated for the general case to O(P3).39

However it is our intent here to look at just the first-
order correction to the linear expansion in IB, i.e. , the

and

(o,"o.,c) = (I —8„)m„mc —Pm„mcA&" c(gp)

+P'A"'(gp) + O(P') (5.8a)

(o "o~) = mz + sg~mz (1 —m„) —Pm& A~""(gp)

P2AAA(gp) + O (P3) (5.8b)

Since we have used grand-canonical averaging, the
other correlation functions can be determined by cy-

clic permutation of A, 8, and C.
In Eq. (5.8) we have used the notation

MFA, by investigating the pair correlation function to
O(P')

Looking at this correction to the MFA is motivated
by (a) the fact that the terms to O(P') are much
more tractable than those to O(P3), (b) the fact that
in our procedure we also need the correlation func-
tion (o~ o~"), which has not been calculated to
O(P'), and (c) the fact that the first-order correction
will often suffice to judge the adequacy of the MFA.
We should be cautious though of the cyclic nature of
o"~(k).

The pair correlation functions calculated from this
procedure can be written

At" (gp) =U" (gp)(2m„me+ms)+U" (gp)ma(2m„—1)+U (gp)ma(2mc —1),
A&""(gp) = U" (gp)2mc(mz —1) + U" (gp)2ms(mq —1) + U (gp)2msmc

(5.9a)

(5.9b)

U"&(gp) = V"~(gp) ——'[ V""(gp) + V»(gp)] . (5.10)

In addition we have,

m„mc(1 —mc)
A AcLgp)

(I —m„)

x ( [mz (I —2m&) U(gp) —2m& mc U (gp)] A,""(gp) —2m& mc U (gp) A&" (gp) —
&

(mc —ma)

"[(1 —mz) (1 —2m&) U(gp) 2 —mc(1 —2mc) [2 Uac(gp)]2 —4mc(l —2m') U(gp) Uac(gp) j)

m m
([mc(1 —2m&)2U" (gp) —mcU(gp)]A~" (gp) —mcU(gp)A~ (gp)

(1 —mc)

+
2 (ma —m~) [(I —m„)(1 —2m~) [2U" (gp)] —mc(l —2mc) U(gp)'

—4mc(1 —2m') U(gp) U"a(gp) j)

+ mq mc X [mq At""(gf) [2m~ U" (fp) —(I —mc) U(fp)1 + mc AF (gf)

x[m„U(fp) —(1 —mc)2U (fp)] j (5.1 la)
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m„'(1 —mg)
A2 gp ( )

x ([mc(1 —2m')2U"s(gp) —mc U(gp)]A~" (gp) —mc U(gp) A~ (gp)+ 2 (m8 —mq)

~ [(1—m„) (1 —2m') [2 U"s(gp) l' —mc(1 2mc) U(gp) —4mc(1 —2m&) U(gp) U" (gp) })

m m
( [mq (1 —2m') U(gp) 2m—q mc Uac(gp) ] A,""(gp) 2m—A mc Usc(gp) A"c(gp)

I —mg

'(m-c —ms) {(1—mq) (1 2m') U—(gp) —mc(1 2mc—) [2 U (gp))

—4mc(1 —2m') U(gp) Usc(gp) })

+ m ( m A(gf. ) [mc U(fp) —2(1 —m~) U" (fp)) + m A" (gf) [2m U (fp) —(1 —m&) U(fp) I }

(5.11b)

where

U(gp) = U" (gp) + U (gp) —U"c(gp) . (5 12)

We now want to use these pair correlation func-
tions to calculate the spinodal surface for a ternary al-

loy. We should again emphasize that these correla-
tion functions are valid for arbitrary concentration,
and arbitrary range and strength of interaction.

for

)m„m, a"&(k)
(

(6.3a)

lation functions in a spin-space spanned by S~ and
(gs) 2

The CPA is thus to look for singularities in the
scattering matrix, and consequently obtain informa-
tion about the spinodal surface. Thus the system in-

stability occurs when the magnitude of the scattering
matrix

VI. CFA AND THE SPINODAL SURFACE

m„m~a"~(gp) = m„m~ —(o~oi),
m„(1 —m„) a""(gp) = (agcy) —m„' .

(6.1a)

(6.1b)

The pair correlation functions of Eqs. (5.8) can be
used to calculate SRO parameters via generalizations
of Eq. (3.1), i.e.,

which from Eq. (6.2) is equivalent to

8'g(k)
Qm„9m p

for

. (6.3b)

%'e can also generalize the thermodynamic sum rule,
Eq. (3.7), for multicomponent systems and write for
k ~kc

m„m~a"~(k) -ksT 8'g (k)
Qm„Qmp

(6.2)

The various values of a"'(k) for an n-component
system form the elements of an (n —1)-order matrix
for the scattering intensity. This is particularly trans-
parent if one considers all the independent pair corre-

For the ternary alloy under consideration here this
implies that we look at the correlation matrix,

'I

m~(1 —m„)a"s(k) —m„mca"c(k)
—mqmca "(k) mc(1 mc) a (k)

(6.4)



G. BRUCE TAGGART

C(k) = Co[1+PI",(k) +P21' (k)] . (6.6)

We can now invert the series expansion in order to
bring the scattering matrix into the form of Eq. (3.5),
i.e.,

C(k) =5[1—Py (k) —P y (k)] (6.7)

where 5 is determined so that the total scattering in-
tensity is conserved, i.e.,

XC(k) =Cp. (6.8)

If we substitute for the elements of C( k) using our
results from Eqs. (5.8), we can formally write

C(k) =C +PC, (k) +P C (k) +O(P'), (6.5)
or

Gibbs triangle. The surface in composition space is a
spinodal surface for the ternary alloy and separates
the space into regions of stability and instability.
Since we are dealing with a high temperature, or
disordered, formalism, we interpret the solutions of
Eq. (6.11) such that the largest, positive solution is
the point at which the instability sets in. Any com-
ments about real solutions below this first instability
should be made with extreme caution.

For the sake of clarification we are going to exam-
ine the binary section of a ternary system which is
known to undergo spinodal decomposition, and which
has been discussed previously in the MFA, using a
different technique. 4' The system we wish to consid-
er is a clustering ternary which has equal nearest-
neighbor interactions and symmetric concentration in
two components, i.e.,

y, (k) =r, (k),
y, (k) =r, (k) -r, (k)'.

(6.9a)

(6.9b)

The elements of C(k) are related to the correla-
tion functions (for cubic lattices) via k, =(o, o, o),

U"'(k, ) = U"'(k, ) = U"(k,) =zU,

~g = ~c =x, mg =1 —2x .

(7.1)

As the system approaches criticality the magnitude
of the scattering intensity diverges, i.e.,

far

k kc, T Tc

(6.10)

and thus from Eq. (6.7),

~1 —Pyt(k) —P ~(k)
~

=0
for

k k, , T T, .

(6.11)

If we neglect the P2 term in Eq. (6.11) we retrieve
the mean-field results of Tahir-Kheli, ' who used this
technique. Likewise we obtain the same results as
Murakami et al. ' who used a Bragg-Williams tech-
nique, and Tahir-Kheli who used Green's function
techniques in the random-phase approximation. We
note that Eq. (6.11) yields a quartic equation in p, in
this approximation. Generally, for an n-component
system in which the correlation function has been ex-
panded to P, we obtain an m(n —1)-order polyno-
mial in P, . In Sec. VII we consider a specific exam-
ple.

VII. RESULTS AND DISCUSSION

For the approximation of this paper Eq. (6.11)
yields a quartic equation in p, whose solutions define
a surface in composition space. The general solution
is a function of arbitrary concentration and of arbi-
trary range and strt".ngth of pair potentials. Conv'en-
tionally the resultant phase diagrams are drawn on a

This particular case has been discussed by de Fon-
taine" using free-energy-expansions in reciprocal
space. He has also shown that the coherent spinodal
must always be below the incoherent, or chemical,
spinodal for multicomponent alloys. One can thus
look at the chemical spinodal, as calculated here, as
an upper bound. Likewise de Fontaine has construct-
ed a formalism to take into account the effects of
elastic energy on the incoherent spinodal for mul-
ticomponent systems. This is in the same spirit as
Eq. (2.3) for binary alloys.

If we neglect the terms in Eq. (6.11) which go as
P2 and make the substitutions (7.1), we obtain the
MFA (or regular solution) result,

r' —2x(2 —3x)r+3x'(1 —2x) =(1 (7.2a)

with solutions

rz =3x(1 —2x),
(7.2b)

where r ' = PzU. We have plotted these results in
Fig. 2. We note that the two curves intersect at the
point v = —,, x = —, . De Fontaine has observed that

1 1

the coherent spinodal also goes through this point
and consequently, as opposed to binary alloys, mul-
ticomponent systems could phase separate without
strain even if a large size effect exists between the
component species, if the separation occurs at the in-
tersection of incoherent spinodals.

By including the terms in Eq. (6.11) proportional to
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Pz we obtain a quartic equation in r which can be written

T —a3(x) r + aq(x) r —a~ (x) r + ao(x) =0

where

a3(x) =2x(2 —3x),

az(x) = x~(2 —3x) z —3xz(1 —3x) z —(I/z) 2x(1 —2x) (18x~ ——x +2),

a ~ (x) =6x3(1 —3x)z(1 —x) —2x'(1 —3x)z(2 —3x)

+ (1/z) [x (I —2x) (I —12x) (I —3x) ~ —2xz (1 —2x) (2 —3x) (18xz ——x + 2)],

(7.3)

(7.4a)

(7.4b)

(7.4c)

and

ao(x) =x'(1 —3x)4 —9x'(1 —3x) '(1 —x) '

+ (1/z) [2x (1 —3x) (I —2x) (18x —z' x + 2) —3x3(1 —3x) (1 —x) (I —2x) (I 12x)]

+ (1/z) [x (1 —2x) z(18x~ ——x + 2) ~ ——xz(1 —2x) ~(1 —12x)~(1 —3x)z] . (7.4d)
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FIG. 2. Binary section of a ternary phase diagram for a
clustering system with equal nearest-neighbor interactions

1
and mz = m~ =—(1 —m&) = x. The mean-field results are2

given by the dashed line. The approximation of this paper is
given by the solid line for z = ~ and the dot-dash line for
z =6.

We note that Eq. (7.3) includes both I/z and (I/z)z
corrections. In the limit that x = —,, the I/z terms

drop out, and we retrieve the results for an AC
binary alloy, with the binary intersection point going
from the MFA value of v&c=0.5 to v&&=0.81. We
have plotted the positive, real solutions of Eq. (7.3)
in Fig. 2 for the cases z =6 and z = ~. We note that
in both cases the uppermost spinodal surface main-
tains its general shape and similarity to the MFA
results. However the lower curve is altered appreci-
ably. This behavior is consistent with a high-
temperature approach only commenting on the
uppermost stability surface.

We also note that the maximum 7 for finite x is
shifted to lower x from the mean-field value of
x =0.2S. The intersection point of the spinodals is
also shifted from the mean-field value for small z,
but as z becomes infinite, i.e., the model becomes
more mean-field-like, the intersection returns to the
MFA results. Again we should caution that generally
the high-temperature expansion for a"~(k) is cyclic
in nature, and P3 corrections to the linear approxima-
tion should also be considered before attempting any
definitive statements.

In conclusion we have hopefully demonstrated the
usefulness of the CPA to multicomponent alloys.
We believe that it can nicely complement calculations
done in the ordered regime. Admittedly, the high-
temperature expansions can be somewhat awkward
and tedious. Ho~ever, the effort can be reduced ap-
preciably by considering special cases, i.e., nearest
neighbors only. Also we have seen how first-order
corrections to the MFA affect the structure of the
spinodal surface for a ternary alloy.
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