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We calculate V,,, the effective screened interaction between two electrons in a simple metal.
The result is derived by a self-consistent perturbation theory based on Hartree-Fock theory.
Exchange and correlation are treated in local approximation. We consider the lattice to be a
smooth but elastically deformable, charged medium in which the electrons move. Our results is
a generalization of the Frohlich interaction to include exchange and correlation. The effective in-
teraction is spin dependent and may be written V,, (g, ) = Vy(q, w) —J (g, ) ;- 7. Explicit
expressions for ¥ and J are given in terms of the lattice stiffness and the same local exchange
and correlation potentials of the electron gas which are needed to calculate the dielectric func-

tion and the spin susceptibility.

1. INTRODUCTION

This paper presents a calculation of the effective
screened interaction between two electrons in a sim-
ple metal. Exchange and correlation are taken into
account in a local approximation, and the lattice is
treated as a smooth but elastically deformable medi-
um in which the electrons move. Our results are
derived by a self-consistent perturbation theory based
on Hartree-Fock theory. This approach yields cou-
pled algebraic equations for the coupled electron-ion
system. The expression for the electron-electron in-
teraction is given in terms of the same local exchange
and correlation potentials which are needed to calcu-
late the dielectric function €, and the spin susceptibil-
ity, X. We also calculate these quantities as well as
the electron—test-charge interaction in order to define
our notation and to show that the standard expres-
sions are obtained.

Our results will be of interest to those concerned
with electron-electron scattering and transport theory,
superconductivity, charge and spin density waves,
and other properties of the coupled electron-lattice
system. Previous work in this area has been limited.
Kukkonen and Wilkins! have shown the importance
of exchange on the electron-electron interaction, but
they approximated the lattice by a rigid uniform back-
ground. They found the electron-electron interaction
to be strongly repulsive and they used their result in
a calculation of transport properties. Frohlich? first
showed how lattice screening leads to an attractive
electron-electron interaction. This work provided in-
sight into the problem of superconductivity, but the

20

Frohlich interaction does not include the effects of ex-
change and correlation. The present theory includes
both exchange and correlation and the effect of lat-
tice screening. .

In Sec. II, we present the results of the Hartree-
Fock theory of the electronic response, assuming a ri-
gid uniform background of positive charge and treat-
ing exchange in a local approximation. We generalize
the theory to include correlation in Sec. III, and we
treat the spin response to an external magnetic field
in Sec. IV. We note that the effect of correlation is
to enhance the dielectric response but reduce the spin
response. The electron-electron interaction depends
on both of these responses. Screening by the lattice
is included in Sec. V, where we obtain our final
results. A brief discussion of the implications of our
results is given in Sec. VI. The Hartree-Fock ap-
proach is outlined in Appendix.

II. EXCHANGE EFFECTS

In this section we use the results of standard
Hartree-Fock and linear response theories® to calcu-
late in a simple way the effective many-body interac-
tion V,(q) between two electrons in a metal. We in-
troduce our notation by rederiving the known effec-
tive interactions between two test charges, V,(q),
and between an electron and a test charge, V,(q).
We then introduce the simple extension required to
obtain V... Since this section is based on Hartree-
Fock theory, our results include only exchange ef-
fects. In Sec. III we generalize the Hartree-Fock ap-
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proach to include Coulomb correlations explicitly.
We first consider the standard problem of an elec-
tron gas perturbed by a weak external potential such
as that due to a test-charge density with Fourier com-
ponents pex(q, »). The Fourier components of the
potential are obtained form Poisson’s equation, as

Vext(qr w) = v(q)pexg(q, o) , (1)

where v(q) =4me?/q% For convenience we will not
remind the reader of the wave vector and frequency
dependence of most quantities at each step, e.g., Eq.
(1) will become Ve =vpex. We take the lattice
charge density as uniform and rigid. Our discussion
of this problem parallels that of Hedin and
Lundgvist.*

The external perturbation induces a density
response An in the electron gas. The total potential
seen by another test charge is simply the electrostatic
potential

Vie=0(pex +An) . 2
The dielectric function e(g, w) is defined by
V.
V= —= . (3)
€

The problem is to calculate the density response An.
This is done self-consistently in Hartree-Fock theory.
An electron in the Fermi sea feels a self-consistent
potential V,,, which is the sum of the local electro-
static potential (V¢ plus Hartree term) and a nonlo-
cal exchange potential ¥V, (Fock term) caused by An.
Since the nonlocal problem is difficult, we make the
usual approximation that Vy is a local potential,

Ve=—vGxAn .- 4)

This expression may be viewed as the definition of
‘G, which we will discuss later. With this approxima-
tion we obtain the fundamental equation

Ve =Vu+ Vi =vlpex(q) + (1 = G An] . (%)

First-order perturbation.theory shows that the in-
duced density is linearly related to V,, by

An =—11°V,, . 6)

I1° is the free-electron response function,

: 1+
m° qfr |1 + kr 1 q 2 i 2kp ||
=—-——2 o— — — n——————-— ,
47e 2 2(] 2kp 1— q
2kr

where ¢ is the Thomas-Fermi screening wave
vector and kf is the Fermi wave vector

(g4 =4me’ky/mk?). The self-consistent electron—
test-charge potential is found by eliminating An from

Egs. (5) and (6) to be

Va Vext

Va=1-G6.0 " 1T+0-G)0

™

The test-charge—test-charge 'interaction is given by Eq.
(3) and thus the dielectric function is, from Eq. (7),

e=1+0/(1-G:Q), (8)

where Q =vII°. These results have forms identical
to previous work,® but our G, includes only the effect
of exchange. Correlation will be included in Sec.
IT'A.

A. Electron-electron interaction

Our goal is to use the same Hartree-Fock theory to
calculate the effective interaction between two elec- .
trons. The first problem in the formal theory is to
determine what the perturbation is. For an external
test charge the answer is clear, but when the perturb-
ing particle is an electron, identical to those in the
Fermi sea, the problem is more difficult. We pos-
pone the discussion of the rigorous Hartree-Fock
solution to Appendix A, and instead we present a
physical argument that reproduces the Hartree-Fock
result (using a local approximation for the exchange
potential).

The electron-electron interaction is obtained as fol-
lows. Consider two "particular" electrons in the Fer-
mi sea with momenta and spin, k,o, and k,0,, and
with densities Pa, and Poy We consider one to be

the perturbing particle, say p; and the other to feel
the perturbation. Although we focus on two "particu-
lar" electrons, we must remember that these two
electrons are indistinguishable from others in the
Fermi sea and are indistinguishable from each other
if they have parallel spins. This indistinguishability is
the crucial difference between a perturbation due to
an external test charge pey and that due to an elec-
tron, p;. The main contribution of this paper is the
simple recognition that when considering the
electron-electron interaction one must take into ac-
count that the perturbing electron has an exchange
interaction with all other electrons of parallel spin.
This interaction is absent for a test-charge perturba-
tion.

The perturbation due to p; induces a density
reésponse in the electron gas that includes contribu-
tions from electrons with both spins, Any and Any.
The second particular electron then interacts with p;
and with Any and Any. The first step then is to cal-
culate the density response.

If the perturbing electron has spin up, a down spin
electron in the Fermi sea will feel the net electrostatic
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potentiai.
V etectrostatic = v(PI +Any+An 1) , 9

and it will also feel an exchange potential due to the
induced density of the same spin An,. In the local
approximation the exchange potential is given by

Vil =—2vG,An| . (10)

The inclusion of the factor of 2 retains the usual de-
finition of G, V,=—vGyAn [Eq. (4)] for an unpolar-
ized system where An =Any+An;=2An,.

A spin-up electron in the Fermi sea will also feel
the electrostatic potential and it will feel an exchange
potential due to Any. The difference between an elec-
tron with spin up and one with spin down is that the
spin-up electron will have an additional exchange in-
teraction directly with the perturbing electron py. In the
local approximation, the direct exchange potential is

7?}'°‘=—2vap1 . an

This simple observation is the new ingredient re-
quired to form the electron-electron interaction.

We can now write the coupled equations that deter-
mine the density response of the electron gas per-
turbed by an electron with spin up as

and

The equation for parallel spins has the form

which includes a term Vyy, like Eq. (12), and a term
due to the direct exchange of the two electrons under
consideration. If the direct exchange term were ab-
sent, these equations would reduce to those for a

test-charge perturbation. The density responses are
related to the effective potentials by

An,=—ﬂ° l./n/z R
and
Anl=—H° V“/Z o (15)

Substituting these into Eqs. (12) and (13) one ob-
tains '

2
- 1 rer 16
Vi I—GXQ} e (16)
and
- 2G,vp
M=V 1T6.0 an

which yield the density responses via Eq. (15). We
check the consistency of our results by using Any and

An | to calculate the electrostatic potential due to a
perturbing electron. A test charge would feel only
this potential. We find that this potential V,, is exact-
ly the same as the self-consistent potential V,, an
electron feels due to a perturbing test charge.

The last point to consider is the relation of these
potentials, ¥y and 17”, to those one should use to
calculate scattering amplitudes. Consider simple
two-electron scattering via a potential U (r) which is
spin independent. The scattering event is k;oy;
k,oy— k, +4q, o, k,—q, o,. For electrons with an-
tiparallel spins, the scattering amplitude in the Born
approximation is

M“G: U(q) . (18)

If the electrons have parallel spins however, the
scattering amplitude must be anitsymmetric under in-
terchange of the two particles and is given by

where the first term is the direct term and the second
is the exchange term. Because Vy; is not antisym-
metric under interchange of the two electrons, it is
not a proper scattering amplitude. The reason is that
Vi1, Eq. (17), is based on the approximate expression
Eq. (11), for direct exchange. We remedy the situa-
tion by subtracting the direct exchange term from
V11, Eq. (14), to obtain ¥;;. The result is,

2G2Qvp,

1-6.0 0)

Vu=Vu-
We then stipulate that the scattering amplitude M 1
for a parallel-spin event is

My« V() = Viy(ka— ki —q) , 1)

which incorporates the direct exchange in a manifest-
ly antisymmetric way. Of course, the antiparallel-spin
scattering amplitude is simply

MV (22)

These results can be justified by formal many-body
theory.®

The result for V), was previously obtained by Kuk-
konen and Wilkins' based on a Feynman diagram
analysis of the Bethe-Salpeter equations. Their di-
agrammatic analysis for Vy; included all the diagrams
that sum to our present expression Eq. (20). Howev-
er, they did not realize that those diagrams that yield
the second term in Eq. (20) could be summed expli-
citly and they neglected this term.

The fact that ¥y, &= V|; shows that the potentials
themselves are spin dependent. We exhibit the spin
dependence explicitly by writing

V?l»‘_"z =Vy—-JG 57, 23)
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where @ is the Pauli spin operator and

GZQuvp

1 x 1

V0=7(Vn+ V“) = V“'—m , (24)
1 G2Quvp

J =-—7(V” -V =—1—:—G~:‘Q—L . 25)

These results are the complete solution within the
Hartree-Fock theory of the electron-electron interac-
tion when a local approximation to the exchange in-
‘teraction is used. The only unknown is the same ex-
change interaction Gy, needed to form V, and V,,.
We now turn our attention to a generalization of the
Hartree-Fock theory to include Coulomb correlations
among electrons.

III. EXCHANGE AND CORRELATION EFFECTS

A local correlation potential is included by the fol-
lowing analogy with the local approximation of the
exchange potential in Hartree-Fock theory. The
self-consistent Hartree-Fock charge density around
an electron with wave vector k and a given spin con-
sists of a uniform density of antiparallel spin elec-
trons, but electrons with parallel spins are kept away
by the Pauli principle. This exchange charge density
is nonlocal and leads to a nonlocal exchange poten-
tial. The local approximation to exchange is obtained
by averaging the nonlocal exchange potential. The
resulting exchange charge density represents a local,
spherically symmetric exchange hole or absence of
parallel-spin electrons around the electron under con-
sideration. The exchange hole is a kinematic effect
of the Pauli principle that results from the anitsym-
metry of the wave functions.

Correlation effects are defined as those effects due
to the mutual Coulomb repulsion of electrons that
are not included in Hartree-Fock theory. The most
important effect of correlation on the charge density
surrounding an electron with a given spin is the
Coulomb repulsion of electrons with opposite spins.
This causes a correlation hole in the density of these
electrons. Coulomb correlations also modify the ex-
change hole, but this effect is presumed to be smaller
because parallel spins are already kept away from
each other by the Pauli principle. These effects of
correlation are included by replacing the local ex-

change potential in Hartree-Fock theory by a local ex-

change and correlation potential.

To illustrate this we calculate the response of elec-
trons in the Fermi sea to a perturbation by a test
charge, pex. An electron with spin up feels the po-
tential

Verr=vlpews + (1 —2G)Any + (1 —2Gc)An) ,  (26)

where the local exchange and correlation potential

between electrons with parallel spins is
VXIL" =—2vaAnt N (27)

and Gy =G, +8G; G, is the exchange contribution
defined in Eq. (4) and 8G is the correlation correc-
tion for parallel spins. The local correlation potential
between electrons with antiparallel spins is

Vél =—2chAn1 . (28)

Equation (26) is the generalization of the Hartree-
Fock result [Eq. (5)] to include correlation explicitly.
The density responses are related to the effective po-
tentials by the usual relation, Eq. (15). Because the
perturbation is a test charge, V.y,=V,),. Using this,
the solution is immediately obtained as

Vext

V"=1+[1—(GX+GC)]Q'

9

which has precisely the form obtained in Hartree-
Fock theory Eq. (7), but G, has been replaced by

Gy + Gc. The test charge-test charge interaction V,
is also obtained by the same substitution. As we will
see this is no longer true however for the electron-
electron interactions or for the spin susceptibility,
where the effects of correlation enter in a different
way. The effect of correlation on V, and ¥, has
been obtained previously.*

The calculation of electron-electron interactions is
similar to the Hartree-Fock theory. The potentials
felt by electrons in the Fermi sea due to the perturb-
ing electron py are

7y =vl(1 =2GY)py+ (1 —2G) Any + (1 —2Gc) An))

30)
and

P =vl(1-2G)pi+ (1 =2G) Any+ (1 =2Gx) Any] .

31
These equations differ in form from the Hartree- .
Fock equations, Eqs. (12) and (13), by the inclusion
of antiparallel spin correlations G¢, with the induced
density and directly with the perturbing electron.
The inclusion of the latter is the reason for the tilde
over V|;. Using Eq. (15) to relate the density
responses to the potentials and after some algebra,
one finds

2
. 1 vpy G_vp, G.vp,
V= [———| 22 + - . (32
i ‘1—G+Q] e 1-G.Q0 1-G.0 32
and
_ _ 2G_vp
Vn= V"—l—_a:‘-é— , (33)

where G, =Gy + G¢ and G_= Gy — Gc, and « is
given by Eq. (8) with G, replaced by G,. Again we
check our results by using the derived Any and An;
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to calculate the electrostatic potential due to a per-
turbing electron, and we find the same result

Vetectrostatic = Ve = Ver

given in Eq. (29). .

The effective potentials ¥} and V) needed to cal-
culate scattering amplitudes are obtained from the
average potentials by subtracting the term —2vGyp;
from V}; and —2vGcpy from V};. This removes the
local approximation to direct exchange and correla-
tion between the two electrons with parallel spins.
Direct exchange may be then taken into account by
using the antisymmetric form, Eq. (21). The above
prescription also removes the local approximation to
direct correlation between electrons with antiparallel
spins. Direct correlation may be then-included by
calculating the scattering amplitude beyond the first
Born approximation. This yields the modification of
the wave functions due to the scattering. Because
there is no particular simplification, we do not give
these interactions, but rather their sum and differ-
ence which yield the explicit spin dependent form
shown in Eq. (23). The spin-independent term is

[1+(1-Gy)G,Qlvp

Vo=a (Vi + V) =
0 2( nt “) 1+(1-G.)0 (34)
and the spin-dependent term is given by
G2Qup
1 1
J=—7(V” - V“) =—1T_Q . 39

We note that ¥ depends only on G, while J depends
only on G_, which shows that correlation affects a
charge response differently from a magnetic or spin
response. The magnetic response is discussed in Sec.
Iv.

IV. SPIN SUSCEPTIBILITY

We calculate the spin susceptibility X, in order to
assure the reader that our approach yields the stan-
dard result and to show clearly that the effect of
correlations among electrons with parallel spins (pri-
marily due to exchange) is to enhance X, while an-
tiparallel spin correlations (due to the Coulomb in-
teraction) reduce the susceptibility. We consider a
magnetic perturbation, H™ = yzH o, cosq ‘T, where
up is the Bohr magneton, H is the field amplitude,
and o, is the spin operator. An electron with its spin
parallel (antiparallel) to the z axis has its energy
raised (lowered) by the field. Consequently electrons
will tend to flip their spins to align themselves oppo-
site to the field and lower their energy. This tenden-
cy is opposed by the increase in kinetic energy caused
by increasing n| at the expense of n;. The suscepti-
bility calculated in Hartree-Fock theory is larger than
that calculated in Hartree theory because this increase

in kinetic energy is partially offset by an increase in
the size of the exchange energy which has the oppo-
site sign.

The qualitative effects of exchange and correlation
may be understood from the following simple argu-
ment. The external field tends to flip spins and po-
larize the electrons. Therefore the effect of exchange
and correlation on the susceptibility is determined by
the effect of this polarization on the exchange and
correlation energies. Both these energies are neg-
ative. Roughly speaking the exchange energy is pro-
portional to the number of possible pairs of parallel
spin electrons,

(36)

ol | MV=D | M -D
‘X 2 .

2

The correlation energy, however, derives mostly
from antiparallel spins and therefore is roughly pro-
portional to the number of possible pairs of antiparal-
lel spins,

E.x—NN, . (37

Writing Ny and N in terms of the total number of
electrons N = Ny + N, the polarization
p=(N;—N})/N, and ignoring unity compared to Ny
and N, one obtains

2

E, oc—"izv— (1 +p?)

and
2
E. oc—‘[%] aA-p?) . (38)

This shows the total exchange energy is reduced by
polarizing the electrons, which yields an enhance-
ment of X. However the correlation energy is in-
creased by polarization and this reduces X.

A quantitative result for X is obtained by extending
Hartree-Fock theory to include a local correlation po-
tential. The effective potential felt by an electron
due to an external magnetic field, H cosq T, is given
by

U1H=MBH+U[(1—'2G,Y)AH'+(1—2cc)A’l1] (39)

/
and

Uy =—usH +v[(1-2Gc)Any + (1 —2Gy)An)] .
(40)
The density responses are given by usual relations,
Eq. (15). Solving for the susceptibility, one finds
_ ;LB(Anl—An]) _ Xo _ Xo
H 1-(Gx-G)Q 1-G_Q°
41)

X

where Xo=ugIl° is the ¢g-dependent Pauli susceptibili-
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ty obtained from Hartree theory. We note that X
depends only on G_.= Gy — G¢c. On the other hand
the charge-response function II, e=1 +vII [see Eq.
(8) and the comment following Eq. (33)] depends
only on G,= Gy + Gc,

HO

n-1=¢5"

(42)

Equivalent expressions for X and II have been ob-
tained previously,*’~® but is is worthwhile to em-
phasize that this comparison shows that correlation
(more precisely antiparallel spin correlation)
enhances the charge response, but reduces the spin
response.

V. SCREENING BY THE LATTICE

In a real metal, the compensating background of
positive charge is not uniform and rigid, but is
discrete and deformable. Specifically, the lattice ions
are charged and can move in response to a charge
perturbation. This problem of a coupled electron-
lattice system has been considered by many previous
investigators,® notably by Frohlich? and by Bardeen!!
who found that lattice screening can lead to the at-
tractive effective interaction between electrons which
is required for superconductivity. We extend the pre-
vious theory to include the effects of exchange and
correlation. We do this by a self-consistent field
treatment of the coupled electron-ion system.

We consider a simple model for the lattice which
neglects all effects associated with the periodicity of
the ions. The lattice is regarded as a plasma of posi-
tive ions of mass M and charge e. The bare ion-ion
and electron-ion interactions are denoted by Ve
and V2™ The bare test-charge-ion interaction is
taken as equal to V2. In the jellium approximation
both of these are equal to the bare Coulomb interac-
tion. To define our notation we first consider the
system to be perturbed by a weak external potential
Vext = Vpext, Which induces a density response Az in
the electron gas and An;y, in the ions.

The effective potentials felt by an electron and an
ion are

Voo =vlpexe + (1 = G) An] = V¥ Anioq (43)
and
Vion=— Ve‘}"e(Pext +A4n) + VPeAn, . (44)

As usual, An =—II°V,,. The relation between Anjo,
and Vo is obtained by considering the equation of
motion for the ion displacement, u(r,f) « ¢/ @T00

Mii=—%Vin (45)
or .

—M“’ZI" ==iqVion » ' (46)

where o is the frequency of the perturbing charge
density pexr- The ionic density response is given by
the divergence of the displacement.

Anjgn=—N divu=—igNpu ,

Where N is the average-ion density. This yields the
required relation

Anjon = Vion - (CY))

Nia
M| o

With this result, Eqs. (43) and (44) are completely
specified.

The usual phonon frequencies are obtained by set-
ting pex €qual to zero. A finite response is allowed
even in the absence of an external perturbation if the
frequency and wave vector obey

V/bare __ ( Ve?m)z N (v, e!,?ﬂre)z
M i N " - ‘ >

+ qu( Vellqare) 2 ‘

Mve (48)

=wl

This is the same result obtained in Egs. (5)—(30) of
Ref. 10, The first term wé = (soq)?, represents the
deviations from pure Coulomb interactions. sg is the
sound velocity of the ion background in the absence
of Coulomb forces. The linear dependence of wy on
g (at small ) arises because the divergences in Ve
and V2*¢ («<q~?) just cancel. For pure Coulomb in-
teractions wo=0. The second term simply represents
the ionic plasma screened by the electron-gas dielec-
tric function. It is the extension of the Bohm-Staver
result to include exchange and correlation. The po-
tential felt by an electron is

2__,.2
V, = U Pext ["-’ w(; ] (49)

. (1—'G+Q)€ 2

W — (l)q
and the potential felt by an ion is
Ve’lmepcxt [ ? ]

€ w? — w}

Viou (50)

The potential felt by an ion is the sum of an electro-
static potential and an additional potential due to the
non-Coulombic ion-ion interactions. Another test
charge would only feel the electrostatic potential.
The ion potential is zero at w =0, because the ions
have no kinetic energy and move to minimize the po-
tential.

If one assumes pure Coulomb interactions (wy=0)
and neglects exchange and correlation (G, =0), V,
and V;,, become identical and also equal to the
electron-electron interaction. This limit reproduces
the well-known Frohlich interaction.?!!
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A. Electron-electron interaction
with lattice screening

We now treat the electron-electron interaction ex-
plicitly including exchange and correlation. We con-
sider the system to be perturbed by an electron with
spin up. The coupled equations that determine the
response of the electrons (An; and An)) and the ions
(Anjon) are

+(1-2Gc)An |l — VI Anie, , (51
V” = v[(l —ch)pl + (1 —2Gc)L\n]
+ (1 -2G)Anjl = V¥ Anyy , (52)

Vien=— Ve‘l?are(pt + A”I + Anl) + ViPamAnion . (53)

These equations are most si~mply sol~ved by forming
the sum and difference of Vy;and V). This yields

l‘}"+ V“ — vpy 0)2_0)02 _ UPIG+
2 (1-G:0)% |wi-w2] 1-G.0°
(54)

with the help of Egs. (15) and (47). w is the

(0 — )/ (w? - w} G310

frequenc;i' of py; 1_q a scattering event
#w=|E(k) —E(K+q)|. We also find,

STl (55)
__ Vi o’
Vion" (1_G+Q)€ [wz_qu] (56)

We note that %( Vi1 + V1) depends on the response
of the ions, while 3 (¥;;— 7)) does not. This is be-

cause the ions respond only to electrostatic potentials
and not to the induced magnetization which is pro-
portional to Any— An;. Again we check the consisten-
cy of our results by using Any and An| to calculate
V., the electrostatic potential a test charge feels due
to a perturbing electron, and this again yields
Vie=Ver. )

In order to form the scattering amplitudes, we need
potentials that do not include a local approximation
to the direct exchange (and correlation) of the two
electrons under consideration. These local approxi-
mations are removed from Egs. (54) and (55) by ad-
ding 2vGypy to ¥y and 2vGepy to ¥}y When this is
done and reexpressed in invariant notation, the
electron-electron interaction is,

G20 _ _ |axe?

14 =
€T, ,e7,

Recall that both w, and wy are linear in ¢q and

wg < w,. The first term represents the charge distur-
bance which is also screened by the lattice. The
second term derives from the exchange interaction
with the total induced electron density (An;+An)).
The lattice does not have this exchange interaction.
The third term is due to the interaction with the mag-
netization or spin polarization [ec(An;—An))] in-
duced by the perturbing electron. The magnetic in-
teraction is not screened by the lattice. Equation
(57) is the final result of this paper. The numerator
of the first term goes to 1 in the absence of ion
screening.

VI. SUMMARY

We have derived the electric- and spin-response
functions of the coupled electron-lattice system using
a simple model for the lattice and treating exchange
and correlation in a local approximation. We have
done this using a straightforward and physically intui-
tive extension of Hartree-Fock theory. Although this
theory is based on a simple model of a metal, it is ap-
pealing because it yields explicit results and one can
see how exchange, correlation and the properties of
the lattice each affect the response functions. In par-

1-6,00+(01-G)Q] 1-G,0 1-G_Q

o1t 0|— 5 . (57)
q

r

ticular, it becomes obvious that correlation enhances
the electric response, but reduces the spin response.
The electron-electron interaction, depends on both
the electric and spin responses and is spin dependent.
The spin-dependent term in Ve?l'ﬁ,2 arises naturally
and has been previously discussed as arising from
spin fluctuations or paramagnons. Its effect on su-
perconductivity is apparent because this term is repul-
sive for a singlet state and attractive for a triplet.

The frequency dependence of V“-,.l'ﬁ,.2 that leads to

superconductivity also affects electron-electron
scattering in the normal state. Because of the Pauli
principle, the only electrons that can participate in
scattering must lie within kg T of the Fermi energy
and the energy transfer between them is also of the
order of kp7T. At low temperatures, the energy
transfer will be small compared to phonon frequen-
cies and the lattice will be able to participate in
screening. However at high temperatures, the lattice
will not be able to follow the perturbation and lattice
screening will no longer be effective in reducing the
Coulomb repulsion. This leads to an additional tem-
perature dependence for electron-electron scattering.

In addition to these features, one can also use our
results to calculate the induced electronic charge den-
sity due to an external potential and the induced



20 ELECTRON-ELECTRON INTERACTION IN SIMPLE METALS 557

magnetization due to an external field. Divergences
in these responses signal charge and spin-density
waves and ferromagnetism.

In order to use the theory in an explicit calculation,
one needs to know the exchange and correlation
functions Gy and Gc. We emphasize that these are
the same functions needed to calculate the dielectric
function and the spin susceptibility.'> These functions
are central to electron-gas theory and approximate
calculations of them exist. We also note that this-
theory can be directly extended to multicarrier and
spin-polarized systems.
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APPENDIX: SELF-CONSISTENT PERTURBATION
THEORY

Our approach follows Ref. 3 where Hartree-Fock
self-consistent perturbation theory was used to calcu-
late the spin susceptibility. The first problem in cal-
culating the electron-electron interaction is to deter-
mine what the perturbation is. The perturbation that
yields the results in Sec. I is obtained by replacing

. ) . T,
one single-particle wave function, ¢, =€ ,in the

Slater determinant by “"‘1’ an admixture of k) and
¢kl+qi
K, ik, )T
Ui, =€ | +gpe 1T (58)
where ¢kl+,, is a previously unoccupied state. We as-

sume that both states lie essentially on the Fermi sur-
face e(k;) = e(k; +¢). Such an admixture arises

from the scattering event (ky,k;) — (k; +q,k; —q).
This new wave function has a periodically modulated
charge density,

lgkl*=1+pcosq T, (59)

which introduces a perturbation into the theory from
the Hartree term. Electrons with parallel spins will
feel-an additional perturbation arising from the ex-
change (Fock) term. If we take the perturbing
charge density to have spin up (p,), the bare interac-
tion felt by another electron k, with spin down is

4me?
V*zl'*11=7p‘ : 60)

If the second electron has spin up, it will also feel an
exchange interaction,

v _|4me? _ 4me?
kapkiy 3

. (61)
q lky—ki—q? P1

The problem then is to calculate the response of the
electrons in the Fermi sea to this perturbation.

Proceeding in Hartree-Fock theory, one obtains an
integral equation for the effective potential that
determines the density response. This integral equa-
tion is nontrivial because it includes the full nonlocal-
ity of the exchange operator. An analogous nonlocal
equation for X(g) was solved numerically in Ref. 3.
We do not present or attempt to solve the nonlocal
problem, rather we choose to treat exchange in a lo-
cal approximation. This is done by using the Dirac-
Slater n'/?, approximation for the exchange potential
in the Hartree-Fock equations. In the local approxi-
mation the exchange contribution to the perturbation
is given in Eq. (11). This approximation simplifies
the theory which straightforwardly leads to the cou-
pled algebraic equations that determine the density
response, Egs. (12) and (13).
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