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A consistent and comprehensive calculation has been performed to describe the dynamics and

statics of sodium-halide crystals using a well-known three-body-force shell model (TSM). The
computed results on the phonon dispersion, two-phonon Raman and infrared spectra, Debye-
temperature variations, dielectric and photoelastic behaviors, harmonic and anharmonic elastic

constants, cohesive energy, relative stability, and phase-transition, have shown a reasonably

good agreement with their accurately measured data. All these predictions have made use of
the same set of TSM parameters throughout. The possible sources of improvements have also

been indicated. In view of its overall success, TSM has been regarded as an adequate and ap-

propriate model for the description of lattice-mechanical properties of ionic crystals.

I. INTRODUCTION

The lattice dynamics of ionic crystals has been
most extensively studied with several phonon
models' and microscopic theories. ' A survey of
these literatures reveals that the phonon models have
developed from the rigid-ion model through rigid-
shell model2 (RSM) to three-body-force shell model7

(TSM) in an attempt to describe the dielectric and
dynamical behaviors of lattices obtained experimen-
tally by inelastic neutron scattering. The efforts de-
voted to explain the elastic and static properties have
also led to the development of some models. ""
Ho~ever, none of these models is adequate to ac-
count simultaneously for all the properties cited
above. It is only recently that the RSM framework
has been extended to include the effect of short- and
long-range three-body forces owing their origin to the
deformation of t:lectron shells. This has resulted in
several useful variants of the RSM, namely, the
breathing, 4 deformable, 5 and three-body-force7 shell
models. The first two of them are almost identical'
and introduce short-range three-body-force effects in
the RSM. The third model (TSM) has been
developed by incorporating the effect of long-range
three-body forces in the RSM framework. All these
models have been applied to several ionic crystals
with considerable success in dynamical descriptions.

Recently, Basu and co-workers, ' have tried to
explain both the lattice statics and dynamics of some
ionic crystals by the deformable shell model5 (DSM).
The motivation for such work was derived from the
remark of Cochram that a truly satisfactory model
must explain the dynamics as well as the statics of a
crystal. The descriptions obtained by them are
although more or less satisfactory but their model is
subject to some limitations. The three-body forces
employed in the DSM are short range in nature and
their representation is based on the approximate for-

mulation of Sarkar and Sengupta. " Also, these
forces are inadequate to account for the Cauchy vio-
lations and the optical vibrations along the [1111
direction as recently pointed out by Laplaze. " Fur-
ther, these forces have no effect on the zone-center
vibration frequencies and hence the DSM framework
does not go beyond the RSM in respect to accounting
for the dielectric properties. In contrast, the three-
body forces employed in the TSM are of long-range
character and their formulation is based on the
quantum-mechanical analysis of Lowdin' and
Lundqvist. ' Moreover, these forces take proper ac-
count of the Cauchy violations"' and dielectric
properties"'" and have considerable influence on the
optical vibrations along the [111]direction.

The effect of long-range three-body forces on both
the dynamics and statics of ionic crystals has not
been analyzed so far. The chief concern of the
present paper is thus to perform a comprehensive
and consistent calculation of the lattice static and
dynamic properties of sodium halides which are the
simplest ionic crystals. These calculations will include
cohesive energy, relative stability, phase-transition
pressure and volume, phonon-dispersion relations,
Debye-temperature variations, two-phonon Raman
and infrared (ir) spectra, third-order elastic (TOE)
constants, pressure derivatives of effective second-
order elastic (SOE) constants, and dielectric and pho-
toelastic behaviors. The choice of the solids under
consideration is motivated by the fact that a wealth of
accurately measured data on these properties is avail-
able only for the sodium-halide family. It is interest-
ing to note that the agreement between theoretical
and experimental results is generally good in almost
all the cases.

A brief description of TSM theory approached in
the present calculations is given in Sec. II. The
results of its application to dynamic and static prop-
erties are collected in Sec. III. A summary of the
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results together with the conclusions drawn from
them is presented in Sec. IV.

II. TSM FORMALISM

The present TSM formalism has been derived by

regarding the crystal energy as consisting of long-
range Coulomb and three-body interactions (TBI)
and short-range overlap repulsion of Born-Mayer
type. Its relevant expression per unit cell is written

Ze nZe+(r) = aM+ uMf(r) +nbe "~
r r

QCt2 =0.226Z' —Bt+ (A2 —582)/4+9. 3204Zrpfp

QC44 =2.556Z'2+ Bt + (A 2+382)/4,

Q =4r(4) /e

p wL2 = R p [1 + ( 3
rr +3 X) (a + ni) / "]

x [1+(', m +3—k) a/ lv
'

p, wr2 ——Rp [1—
3

rr(n'+ ar')/v] [(I ——~a'/v)]-~

(7)

(9)

where Ze is the ionic ". barge, aM (=—1.7476) is the
Madelung constant, n represents the number of
nearest neighbors, f(r) is a function that depends on
the overlap integrals (Lowdin' ) and measures the
size difference of ions, and b and p are the usual
strength and hardness parameters. The incorporation
of this interaction potential in the RSM-framework
(Woods et ai. ') leads to the following secular equa-
tion:

[D(q) —mIw2( =0

for the vibration frequencies (w). The corresponding
dynamical matrix is given by (Singh and Chandra25)

v =2fp

where the abbreviations stand for

(Ye), Rpe Y;

; i k;+Rp
' ' k;+Rp

(Z'+dI —d2) e
Cli =
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Y,
'=

Y, [Z(Z+12f )]'i'

Rp=e (A +t28~)/u, A. =16rrZrpfp/3Z'
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dr d

Rp =Rp —e +
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(10)

(12)

(13)

(14)

D(q) = (R +Z'C'Z') —(R +Z'C'Y')

x (R +K + Y'C'Y') '(Rr+ Y'C'Z') (3)

Z =Z 1+ 211 =X'+ Y' =xZ'+yZ', (4)

where R is the short-range interaction matrix due to
the overlap repulsion between the shells of nearest
neighbors (nn) ai well as of the next-nearest-
neighbors (nnn). K is a diagonal matrix representing
the force constant between the core and shell of the
ions. The original core and shell charges (X, Y) of
the RSM have been modified to (X', Y') given by

' ]/2

1

4m+), a' 1+ Xe
3 U U

(15)

The symbols (Bt,82) and (At, A2) are the usual first
and second derivatives of the short-range overlap
repulsive energy due to interaction between nn and
nnn ions.

A comparison of the Lyddane, Sachs, and Teller' s
(LST) relation with that obtained from the frequen-
cies given by Eqs. (9) and (10) leads to the following
modified Lorentz-Lorenz (LL) and Clausius-Mossotti
(CM) relations:

and x and y as the reduced core and shell charge
parameters such that x +y =+1.

Also, the modified long-range Coulomb interaction
matrix is given by

ep —1

6p+2

' -1
4gp a'+ nr X(u'+ ni)+x — 1+

(16)

C' = C + (Zr pfp /Z') V (5)

with C and V as the Coulomb and three-body interac-
tion matrices determined by Kallermann' and Verma
and Singh, respectively. Subjecting the dynamical
matrix given by Eq. (3) to the long-wavelength limit,
we have obtained the following expressions for the
SOB constants and zone-center vibration frequencies:

QCi i
=—S.1 12 Z ' + A

& + (A 2 +82) /2 +9.3204 Zrp fp

(6)

where ~ and ep are the high-frequency and static
dielectric constants, respectively. The most striking
feature noteworthy from the above relations is that
an exactly similar modification in the CM and LL re-
lations has been achieved by Kawaguchi' in his mi-
croscopic theory of lattice dynamics. These relations
clearly demonstrate the effect of TBI on the dielectric
properties and the electronic polarizabilities. Substi-
tuting X =0 reduces the above relations to those ob-
tained within the RSM.

The other important consequence of Eq. (15) is
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that it can be directly used to obtain the expression
for the strain derivatives of ~ given in the following
form:

I

= 0 '[11.389Z'2 —A +38

f d~
df r-r

p

(p —1)(a+2)
p(1+ XA /v)

x &
r d

3a' dr

~ (C2+2A2 —1082) —44.652Zr pfp]

(18)
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Here, the abbreviations stand for

(19)

Here, da'/dr is the strain derivative of a', already
evaluated by Jaishanker et al. ' for many ionic solids.
The second derivative of the three-body force param-
eter (fp') appearing in Eq. (17) is involved in the
third space derivative of the crystal energy given by
Eq. (I). It is interesting to note that the substitution
of only h. and both A. and da'/dr in the above equa-
tion yields expressions equivalent to those derived by
Yamashita and Kurosawa and Burstein and Smith,
respectively.

Recently, Verma and co-workers'p have derived the
expressions for the third- and fourth-order elastic
constants using the homogeneous-deformation
method (Wallace3'). The use of their third-order
elastic (TOE) constants and the SOE constants given
by Eqs. (6)—(8) leads to the following pressure
derivatives of the effective SOE constants (defined
by Birch32):

S'=
2 (Cii —Ci2), K'= —, (Cii +2Ciq),

(22)

(23)

and related to the other short-range parameters as in-
dicated above. This relationship makes them as
redundant parameters. The strategy for the determi-
nation of model parameters and the results obtained
from them are presented in Sec. III.

0=—2.33Z'+A'+A2+27. 961Zrpfp . (21)
Also, C~ and C2 are the repulsive parameters due to
the interaction between nn and nnn ions, respective-
ly. They are defined as

rd3@R r

df r rp

g
rd q&2(r)

dr r-V 2r p

TABLE I. Input data for sodium halides. SOE constants, lattice parameter, and electronic polarizabilities are for O'K tem-
perature, pressure derivatives are given at 295 ' K and zone-center vibration frequencies for NaF and NaBr are at room tempera-
ture and those for NaC1 and NaI are, respectively, at 80 and 100'K.

Constants
NaF

values Ref.
NaC1

values Ref.
NaBr
values Ref.

NaI
values Ref.

C)) (10"dyncm )
C~2 (10"dyncm )
C44 (10"dyncm 2)

rp (A)
a) (A3)

a2 (A3)
dK'

dp
vL (10'2 sec ~)

v& (10~2 sec ')

11~ 894
2.290
2.899
2.3040
0.290
0.858

5.1&0

12.650
7.510

a

65
65
65

.65
65

64

, 33
33

5.733
1.123
1.331
2.7978
0.290
2.946

5.270

7.830
5.172

65
65
65
65
65
65

64

34
34

4.800
0.986
1.070
2.9601
0.290
4.090

5.290

6.220
4.040

65
65
65
65
65
65

64

35
35

3.761
0.798
0.781
3.2044
0.290
6.114

5.400

5 ~ 170
3.600

65
65
65
65
65
65

64

36
36

'Calculated from compressibility value (Ref. 47) (p=1.821 x10 ' cm /dyne at O'K) using the relation p=3(C]]+2C~2)
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TABLE II. Model parameters for sodium halides.

Parameters NaCl NaBr NaI

Bt
A2

B2
d)
d2

Y)

Y2

fo
rofo

Is
rOfo

10.541 63
—1.02946

0.533 49
—0.036 84

0.031 90
0,13439

—3.152 19
—2.21402
—0.007 06
—0.031 93

0.134 86

11.00026
—1.081 23

0.351 57
—0.02443

0,005 52

0.232 19
—10.605 76
—2.55997
—0.004 24
—0.023 71
—0.005 77

11.065 54
—1.057 92

0.464 16
—0.031 38

0.037 68
0.278 42

—1.328 02
—2.534 40
—0.005 42
—0.011 99
—0.022 89

11.45911
—1.069 24

0.437 95
—0.028 90

0.033 71
0.351 28

—1.218 32
—2.465 16
—0.004 78

0.003 33
—0.14639

III. COMPUTATIONS AND RESULTS

Bi +B2 =—1.165Z'2 (24)

together with Eqs. (6)—(14) and (20) enables one to
obtain all 11 parameters. The input data used for
their calculation are listed in Table I together with
their relevant references and temperatures. The
values of the model parameters are given in Table II
and used to obtain the phonon spectra by solving the

The model described in Sec. II contains 11
parameters (At, Bt, A2, Bq, dI, d2, Y~, Y2, fo, rof~',

and ra2fo ). The essential starting step for their deter-
mination is the method of successive approximation
to choose a suitable value of p on the basis of argu-
ments provided earlier by Puri and Verma. ' The use
of the equilibrium condition

secular equation (2) corresponding to 48 non-
equivalent points in the first Brillouin zone.
The physical properties derived from these spectra
have been described below.

1. Lattice-dynamic properties

The phonon spectra obtairied above have been
used to predict the phonon dispersion relations wt(q)
which are measured from inelastic neutron scattering
and provide the most dependable test of any model.

(i) Phonon dispersion relations The phono. n disper-
sion relations along principal symmetry directions
have been displayed in Figs. 1—4 and compared with
their neutron data. ' ' The results obtained from the
deformation shell model have also been displayed in
these for visual comparison. The agreement shown
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FIG. 1. Phonon dispersion curves of NaF. Theoretical
curves: solid line, TSM; dashed line, DSM (Ref. 37). Ex-
perimental points at room temperature (Ref. 33): 0 longi-
tudinal; ~, transverse.

FIG. 2, Phonon dispersion curves of NaCl. Theoretical
curves: solid line, TSM, dashed line, DSM (Ref. 37). Ex-
perirnental points at 80'K (Ref. 34}: 0, longitudinal; ~,
transverse.
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FIG. 3. Phonon dispersion curves of NaBr, Theoretical
curves: solid line, TSM; dashed line, DSM (Ref. 37). Ex-
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by the TSM is distinctly better than that obtained by
the deformation shell model except for the LO
branch along the [ill] direction, particularly for
NaBr and NaI. This feature of the TSM is not
surprising because the elements of the three-body
dynamical matrix reported by Verma and Singh tend
to increase the vibration frequencies along the [111]
direction in going from the I to the L point, especial-
ly in the case of solids whose ions differ strongly in
size. A similar feature has been exhibited by the mi-
croscopic TSM developed by Zeyher. ' The cause for
such large deviations has been ascribed to the pres-
ence of some additional polarization mechanism
which lowers the longitudinal-optical frequencies
along the (111)direction in such solids. He has thus
concluded that an additive inclusion of three-body

2500
j ir Featurea
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Ql

Z'.
D

K

KI- I 500-
Cl
K

+~ I 000—

terms in the RSM cannot bring improvement over it,
particularly for this branch. However, these devia-
tions can be reduced drastically by more extensive in-

clusion of nnn interactions, as pointed out by Singh
and derma and done' by Singh and Chandra. " The
minor deviations are expected to disappear if the
predicted phonon frequencies are measured by neu-
tron spectroscopy at lower temperatures for which the
equilibrium condition of the model holds.

The dispersion curves of NaF (Ref. 33) have been
analyzed with other pre'- and post"""~ -experi-
mental models. The agreements achieved are
moderately good in most cases. The dispersion of
phonons in NaC1 has been studied by various other
theoretical models ' "~' developed before and after
the experimental measurements. ' 6 ' The success-
ful ones among them are, generally, the polarizable
models ' and their variants. " " Some of these
models have also been applied by various work-
ers ' " to predict the phonon dispersion in NaBr."
Attempts' " have also been made to explain the
dispersion relations in NaI, but most of the models
failed to reproduce the longitudinal-optical branch
along the [111]direction.

(ii) Two phonon R-arnan and ir spectra. The comput-
ed phonon spectra have'been used to explain'the
two-phonon Raman and ir spectra following the com-
bined density of states (CDS) approach (Smart

Z
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FIG. 4. Phonon dispersion curves of NaI. Theoretical
curves: solid line, TSM; dashed line, DSM (Ref. 37). Ex-
perimental points at 100'K (Ref. 36): 0 longitudinal; ~,
transverse.
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FIG. 5. Combined density of states curve for NaF. Ob-
served ir peaks at 100'K (Ref. 48) are shown by solid ar-
rows.
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TABLE III. Assignments of two-phonon Raman and ir spectra for NaF and NaCI in units of
cm-'

NaF (ir)
Observed

peaks (Ref. 48)' values
Theoretical peaks

assignments

NaC1 (Raman)
Observed

values peaks (Ref. 50)

370
452
566

378
466
555

To(L) +TA(L.)
LA(L) +TA(L)

2LO(X)

I.O(I.) -TO(L)
Lo(L) —TA (L)

2TA(X)

93
120
167

85
135,140

162
184,202

80
236
254
292

NaC1 (ir)b
88 Lo(I ) —To(I )

234 2TA(L)
260 TO(L) +TA(L)
287 2TO(L)

La(X) +TA (X)
2TA(L)

TO(L) +TA(I. )
Lo(X) +TA(X)
LA(L) +TA(L)

~ ~ ~

TO(L) +LA(L)
To(X) +LA (X)

2To(r)
LO(I. ) +TA(L, )

224
234
260
277
286
~ ~ ~

313
323
345
353

220
235
258

270,.276
286
300

314,320
326
343
350

'Experimental measurements are at 100' K.
Experimental measurements are at 300'K.

(iv) Dielectric and photoelastic properties In this pa.-

per the dielectric constants have been calculated from
the model parameters and listed in Table V. The
values calculated from the TSM are in excellent
agreement with their measured data55 as is evident
from the table. The results obtained for the strain

derivatives of ~ have also been listed. in the same
table. They have been compared with other theoreti-
cal 5 and experimental data. The experimen-
tal results are available only for NaC1. ' The agree-
ment achieved by us is adequately satisfactory as it is
much better than those revealed by several other

TABLE IV, Assignments of two-phonon Raman spectra for NaBr and NaI in units of cm
/

Observed
peaks' (Ref. 50)

NaBr

values
Theoretical peaks

assignments

NaI
Observed

values peaks' (Ref. 51)

31
64

116
152
181
254

30
67

114
149
177
254

LA (L) —TA(L)
Lo(X) —LA (X)
Lo(L) —LA(L)

2TA(L)
LA(L) +TA(L)

2TO(L)

LA (X) —TA (X)
To(L) —LA (L)
To(L) —TA(L)
To(x) -TA(x)

2TA(I. )
2LA (X)

LO(L) —TA(L)
Lo(X) + LA(X)

2TO(L)
2To(r)

LO(L) +TA(L)
2TO(X)
2I.o(r)
2LO(L, )

19
44
65
89

104
117
136
196
234
240
241
255
345
378

19
42
58
88

103
120
132
200

200—250
~ ~

310-370

'Experimental measurements are at 300'K.
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Nag
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cy expressed in percent is smaller for the TOE con-
stants than for the SOE constants. A possible expla-
nation for this fact seems to be that many-body
and/or, thermal effects are more pronounced for
SOE than for TOE constants.

The pressure derivatives of the effective SOE con-
stants calculated by us have been given in Table VI
and found to be generally in good agreement with
their observed data. However, the agreement with
the TSM is poor for dC44/dP. The agreement might
improve if the lower-temperature data are used for
comparison. Unfortunately, values at lower tempera-
tures are not available.

2. Lattice static properties

90
0

l

50
I I l

loo I 50 200
TEMPERATURE T( K )

I

250 300

The model parameters employed in the above
descriptions have been used to study the static prop-
erties of sodium-halide crystals. This has been done
by expressing the cohesive energy per unit cell for
the TSM as

FIG. 9. Debye-temperature variations as functions of
temperature for sodium halides. Theoretical curves, TSM.
Experimental points; NaCL {, Ref. 53); NaI (, Ref. 54).

Z2e2 Z2 2

r r
(25)

models listed in Table V.
(v) Elastic properties The TO. E constants have

been calculated and listed in Table VI together with
theoretical' ~' and experimental' ' results. The
present TSM results have shown fairly good agree-
ment with measured data. It is interesting to note
that our results are generally better than those of
others as is evident from the table. However, the
results of Garg et aI. ' are closer to the experimental
values, ' but their parameters are limited by ex-
plaining only the elastic properties. It can also be
seen from Tables I and VI that the Cauchy discrepan-

and the same expression for the hypothetical (CsCl
structure) lattice as

&csclZ e2 2

@Cscl
CsClZ2e2+8 f(r) +8be 'tt'

(26)

The cohesive energy can be calculated for the NaCl
phase from Eq. (25) with the knowledge of the
parameters b, p, and f(r). Now, considering these
parameters to be structure independent and imposing

TABLE V. Static and high-frequency dielectric constants (ep, ~) and strain derivative of e. The experimental values

correspond to 2' K measurements.

Crystal

Present

6p

Expt. (55) Present Expt. (55) Theoretical

r
dr r rp

Present Expt. (57)

NaF

NaC1

NaBr

NaI

4.639

5.079

6.060

6.384

4.73

5.45

5.78

6.62

1.642

2,215

2.561

3.093

1 ~ 75

2.35

2.64

3.08

—0.64,' —1.59, ~1
~ 27,' —1,16

—0.80,' —2.47 b —1.85,' —1.53d

—1.31,' —2.83 —2.04,' —1.64

—1.76,' —3 35 —2.33,' —1.76

—0.410
—0.869

-1.334

-2.168

—095

'Reference 27. Reference 29. 'Reference 56. Reference 57.
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TABLE VI. TOE constants (10' dyncm ) and pressure derivatives of SOE constants (dimen-
sionless). Experimental values are at 295'K.

Crystal Source 112 123 . C144 166 C456
dC44

dp

dS'

dP

NaF Expt. (58)
Present
Theo. (59)
Theo. (60)
Theo. (61)
Theo. (62)

-14.80
-21.01
—7.14
—8.56

—16.45
—19.83

-2.70 2.80
—0.90 0.40
—1.44 0.56
—1.39 0.56
—1.36 0.39
—0.65 0.23

0.46
0.47
0.76
0.56
0.44
0,56

—1.14 0.00
—1.16 0.51
—1.28 0.76
—1.43 0.54
—1.16 0.47
—1.36 0.59

0.205a
—0.025

0.110
0.470
0.147

4 79a

5.18
1.58

NaCl Expt. (63)
Present
Theo. (59)
Theo. (60)
Theo. (61)
Theo. (62)

—8.80
—10.23
—5.45
—8.61
—8.38
—8.70

—0.57 0.28
—0.47 0.21
—0.69 0.27
—0.52 0, 16
—0.67 0.17
—0.68 0.09

0,26
0.23
0.36
0.26
0.17
0.27

—0.61
—0.52
—0.63
—0.57
—0.61
—0.85

0.27
0.25
0.35
0.25
0.17
0.27

0 370a
-0.159

0.220
0.080
0.306

4 79a

5.25
2.78

NaBr Expt. (64)
Present
Theo. (60)
Theo. (61)

—8.64
—6.62
—6.92

—0.41
—0.41
—0.58

0.17
0.13
0.14

0, 19 —0.42
0.20 —0.45
0.13 —0.53

0.19
0.19
0.12

0.46
-0.182
—0.013

0.436

4,83
5.22

NaI Expt. (64)
Present
Theo. (60)
Theo. (61)

—6.89
—4.51
—5.28

—0.34 0.14
—0.30 0.09
-0.47 0.09

0.14
0.15
0.08

—0.31
—0.34
—0.48

0.14
0.14
0,07

0.610
—0.276

0.060
0.798

4.80
5.29

'Re ference 64.

on Eq. (26) the equilibrium condition

d +CsC1

df I'~&p
t

(27)

we get the new value of rp whose substitution in Eq.
(28) gives the cohesive energy for the hypothetical
lattice. The values of the cohesive energies listed in
Table VII have predicted all the structures correctly.
This shows that the TSM is capable of explaining the
relative stability of the system of solids under con-
sideration. Also, the cohesive energy obtained from
the TSM is much closer to the experimental values
than those obtained by others.

Since the atomization energy (E,) gives a better
idea of the stability of a crystal than the cohesive en-
ergy we have therefore calculated it by using the ex-
pression E, =4+E —1with E and I as the electron
affinity of the anion and the ionization energy of the
cation, respectively. The atomization energy has
been calculated and listed in Table VII (using F. and I
as reported by Kothari and Rao7'), together with oth-

U1+pv1 —TS1 = U2+pv2 —TS2 (28)

At low temperature, we may consider T =0 and the
internal energy U to be cohesive energy 4p. The
phase-transition pressure from Eq. (28) is given by

p = (q 2
—C't)/(» —~2), (29)

with v1 —v2 as the corresponding phase-transition
volume per unit cell, and can be obtained from the
values of rp in phases 1 and 2. The phase-transition
pressure and volume have been calculated by using
Eq. (29) from the knowledge of 4t and 42 given in
Table VII. The results have been listed in Table VII

er experimental' and other theoretical" values. The
TSM results are generally better than those given by
others. "

The phase-transition pressure between the two
phases 1 and 2 for any solid at a temperature T is ob-
tained from the condition that the Gibbs free energy
is the same at the transition pressure. Thus, follow-

ing Gibbs notation, we can write
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TABLE VII. Cohesive and atomization energy and phase-transition pressure and volume.

Crystal Structure

Cohesive energy Atomization energy
(kcal/mole) (kcal/mole)

Theoretical Experimental Theoretical
Ref, 68 Present Ref. 69" Ref. 70' Present Ref. 71

Phase-transition
pressure (kbar)

Theoretical
Ref. 68 Present Expt.'

Phase-
transition
volume

(cm3/mole)
Present

NaF NaC1
CaCI

211.9
203.1

219,3
210.4

217.9 193.7 181.3 176.3 326,15.6& 106.8 &200 3.495

NaC1 NaC1
CsCl

179,9
173.9

183,1

177~ 1

185.3 153.1 14&.8 152.7 107 44.6 300e 5.629

NaBr NaC1
CsC1

173.8
168.8

172.6
166.9

174.3 139.5 132.6 127.9 39.2 &100f 6.055

NaI NaC1
CsCl

164.9
162.5

160.4
155.5

162.3 120.8 113.5 119,4 23 32.0 &100' 6.317

'Experimental measurements are at O'K.
Extrapolated to O'K by L. Brewer, quoted by Kittle, (see Ref. 69).

'These values are at room temperatures.
4Reference 72.

'Reference 73.
Reference 74.

SReference 19.

and compared with the experimental and other
theoretical' values. The agreements achieved with

the TSM are not better than those of Cohen and Gor-
don but they are definitely better than those report-
ed by Ghosh et al. ' However, the calculated and
measured values differ appreciably in their magni-
tudes in all the cases. This situation might improve

by incorporating the corrections due to the tempera-
ture which is responsible for the phase transition.

IV. - SUMMARY AND CONCLUSIONS

The primary purpose of this paper is to carry out a
consistent and comprehensive calculation of the lat-
tice statics and dynamics of ionic crystals. The aim
has been achieved by applying the TSM to study the
phonon-dispersion, harmonic elastic, dielectric, pho-
toelastic anharmonic elastic and static (cohesion, rela-
tive stability, and phase transition) properties of sodi-
um halides. A reasonably good agreement revealed
by the TSM for all these properties may be con-
sidered, remarkable in view of the fact that the same

set of model parameters has been used throughout
the calculations.

On the basis of an overall analysis, the TSM may
be regarded as an adequate and appropriate model to
describe the lattice statics and dynamics of ionic
crystals. The discrepancies between theory and ex-
periment may be eliminated by including (a) the ef-
fect of the short-range three-body potential, (b) the
zero-point motion of cores, and (c) the Van der
Waals interactions, and the anharmonic corrections.
The success of the TSM predictions of a large body
of crystal properties may be considered adequate to
give us confidence in the TSM even though it in-
volves many parameters.
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