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Moderately-large-embedded-cluster approach to the study of local defects in solids. Vacancy
and substitutional impurities in graphite
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A method for studying local defects in solids is presented which is the development of an embedding
approach first applied to the study of localized chemisorption. Its relationship with other embedding
schemes is discussed, and it is shown that for its applicability larger cluster sizes are needed than customary
in similar computations. This drawback is compensated by the characteristics of the embedding equations,
which allow the method to be easily implemented-starting from standard quantum-chemistry programs, and
the self-consistent solution to be reached following well-tested procedures. A study of the isolated vacancy
and of substitutional boron arid nitrogen impurities in a monolayer of graphite is used to illustrate the
method.

I. INTRODUCTION

The electronic structure of systems exhibiting
translational symmetry except for a local defect
is currently investigated using a number of dif-
ferent techniques (see, for example, Refs. 1-9
and references therein). This variety of ap-
proaches largely reflects the different kinds of
physical properties that are under study. If
short-range phenomena induced by the presence of
the defect are considered, attention canbe focussed
on the defect itself and its close surroundings, pro-
vided, however, that proper boundary conditions
are satisfied. So it is not surprising that calcu-
lations performed on isolated clusters" "are
critically dependent on the symmetry of the clus-
ter and exhibit slow convergency with respect to
its size. In fact, the number of dangling bonds
increases with cluster size, and the incorrect
behavior of the wave function at the boundary is
likely to deeply affect the electronic properties of

.the solution near the defect itself. On the con-
trary, the embedding approach to the problem'"
making explicit reference to the wave function for
the unperturbed host solid to define the boundary
conditions, correctly describes the asymptotic
behavior of the solution. This technique has be-
come particularly important in the last years, due
also to the fact that sophisticated calculations of
the electronic structure of periodic systems are
becoming commonplace.

The aims of the present work are: (i) to illus-
trate, in a more general formulation, the embed-
ding scheme recently presented by one of us (Ref.
19, hereafter referred to as I) and to compare
the underlying assumptions with those of other
embedding approaches; (ii} to check the validity
of those assumptions in some typical cases; (iii}

to apply the theory to the study of some bulk de-
fects of graphite. In Secs. II and III the first point
is discussed and the fundamental embedding equa-
tions are derived. It is shown that our method's
results are particularly effective when a basis set
of atomic orbitals is used. In fact, in that case,
the problem can be solved by performing conven-
tional quantum-chemistry linear combination of
atomic orbitals-molecular orbital (LCAO-MO)
calculations within a cluster surrounding the de-
fect. The correct connection of the cluster to the
rest of the solid is obtained when redefining the
density matrix at each cycle during the self-con-
sistency process: to this purpose, use is made
of energy-dependent coupling matrices which can
be calculated once for all since they only depend
on the solution for the unperturbed crystal. The
conditions that must be satisfied for the validity of
our simple scheme are more exacting than those
underlying most other embedding techniques, which
only require the perturbation to be practically
zero outside the embedded cluster. In our case,
the cluster must also comprise a connection zone
surrounding the perturbed area. Therefore, the
ease of solution and the computational speed that
are warranted by the use of well-assessed pro-
grams and procedures are paid for by the neces-
sity of using larger cluster sizes than is custom-
ary in similar computations; in this sense, our
method characterizes itself as a "moderately-
large-embedded-cluster" (MLEC) approach. On
the other hand, due to the size of the cluster where
the self-consistent computation is performed and
to the structure of the computation itself, it is
possible to calculate quantities that are critically
dependent on the structure of the density matrix,
in particular, the energy associated with the for-
mation of the defect, a quantity which is beyond
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Dc @D)

=- Q(g) = (e + i0)S —H.

Here H is the Hamiltonian matrix for the per-
turbed system and 8 the overlap matrix. From
Q(e)G(e) =I one obtains, for each energy z:

@cGc+QccG c=fc

Q~cGc+ QnGcc =0,

whence, by solving for 6 in the second row and
substituting in the first one:

(Gc) —@c —@cn(Qn) Qcc

In the same way the matrix Q~(e) = (e+ i0)S —H~

can be defined for the free or unperturbed sys-
tem. The local character of the set C corre-
sponding to the short spatial range of the pertur-
bation" ' can now be formally int'roduced by the
assumption that the perturbation potential V has
nonzero matrix elements in the C set only:

(3)

the reach of ordinary schemes.
In Sec. IV some computational aspects of the

MLEC method are examined and the fundamental
problem of how large the local cluster must be
for meaningful results to be obtained is discussed.

Concerning the applications of the theory, in

paper I a preliminary study of hydrogen chemi-
sorption on a monolayer of graphite had been pre-
sented. Here the same solid is used to test the
efficiency of the method in treating more perturb-
ing defects, namely, an isolated vacancy (Sec. V)
and substitutional impurities of boron and nitrogen
(Sec. VI). All calculations here reported have
been performed in a CNIm approximation. " The
reason for this choice is discussed in I; in parti-
cular, the extension of the method from CNIm to
ab initio Hartree-Fock (HF)-LCAO formulations
is straightforward and work in this direction is
in progress. '

II. THE GENERAL EMBEDDING EQUATIONS

A common feature of all existing embedding
schemes is to project out of the vector space of
the electron states of the system a local or
"cluster" subspace of finite dimensions; we shall
denote by C the set (yg of basis functions spanning
this subspace and by D=-(5„}a complementary set
of functions, which, broadly speaking, define the
defective or indented solid. The meaning of the
above partition will be clarified by the assump-
tions (a) and (b) to follow.

For ease of notation we shall use, throughout
this work, the symbol Q to denote G '(e), G being
the representation of the Green's operator in the
basis set CUD, that is:

(Vc 0cc)
!v=ff -a~=q~ —q=i (4)

This equation is at the basis of all existing em-
bedding calculations and will be referred to as
assumption (a). From Eqs. (3) and (4) it follows:

which are the embedding equations as used, for
example, by van Santen and Toneman. " Equa-
tion (5) may be put into a different form by sub-
tracting the corresponding equations for the un-
perturbed system; we then have equivalently:

=((Gc) '- I'c] ',
Gc =(Ic-GcVc) 'Gc

(6)

6p

Pc = --Im Gc(e) 4,
lT

(7)

where e„ is the Fermi energy for the unperturbed
system. Starting from a trial Pc matrix, Qc and

Vc are defined and Gc(e) is evaluated at all ener-
gies by effecting matrix inversions according to
Eqs. (5) and (6) (simpler procedures are possible
in band gape" "). The density matrix is recalcu-
lated according to Eq. (7), and so on up to con-
vergency. In all this procedure, the main diffi-
culty probably lies in the necessity of inverting,
at each step of the self-consistent-field (SCF)
stage, relatively large matrices that are often
nearly singular in nature in correspondence to a
high number of energy points; furthermore, the
integration involved in Eq. (7) must be performed
each time. The MLEC procedure, described in I,
overcomes these difficulties, though at the cost
of a further assumption; it is here presented in a
more general formulation with respect to the pre-
vious derivation.

If we define, for each energy, a matrix J~ in
the set C:

Jc(E)= Qc(E)Gc(F), (8)

One or another of the equivalent formulas (6) have
been used by most authors. ~ ~ A more gen-
eral formula has been proposed by Gunnarsson
and Hjelmberg'0 starting from the only assump-
tion that V~=0; however their applications are
based on Eqs. (6). Equations (5) or (6) effective-
ly confine the problem within the cluster C, once
the solution for the free solid is known. In prin-
ciple, they must be solved self-consistently be-
cause the Hamiltonian matrix Hc, hence also Qc,
generally depends on the density matrix P~, which
in turn is related to G~ by the relationship:
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our additional hypothesis, leading to the equations
utilized in I, may be expressed as follows Ias-
sumption (b}]:

Zc(e)Vc = Vc.

Before deriving the consequences of this assump-
tion, whose range of validity will be discussed in

. Sec. IV, let us discuss its meaning. To this pur-
pose, using. the well-known relationship between
the Green's matrix and the density of states p (a)

In summary, it is seen that assumption (b} at
the basis of the MLEC scheme corresponds to
the requirement that the cluster C comprises a
border region where the perturbation potential is
already very small and where the connection of the
cluster with the defective solid is established. In
Sec. IV it will be discussed how large the local
cluster must be for Eq. (9) to be an acceptable
approximation. By assuming its validity we have,
also using Eqs. (4), (8), and (6):

G~„(~)= P —iggtgg (e),
g —t (10)

@c=@'c-Vc=@c-~cVc=c(~c'@c-Vc)

=~c((Gc}'- Vc}=~c( c) 's (15)

we can express more explicitly the elements of
~c:

~ () P"' P '"dt(~S &'),.-1 (t)
W Ocg

6-t

w(e (.-s)sp' (e()„.
Note that the sum over r extends only to functions
belonging to the cluster C. Using the definitions:

(C)

og„(~)= Q (~8 -&')g, tg' (~)

(12)

ch„= Q f dss„p (s),
'

Eq. (11)becomes

whence:

Gc (6) .—(Qc (E)) clc(E) = Gc (E')Jc(6) . (16)

Equation (16) is the fundamental equation for the
MLEC approach. Its essential advantage with
respect to Eqs. (5) or (6) is that the problem is
here effectively factorized into a standard diagon-
alization within the cluster and into matrix multi-
plications. In fact, if X=(a„g] and E = fe;5gg} are
the solutions of the eigenvalue problem:

HcA =ScAE

ScA=Ic ~

it immediately results, assuming the basis set
to be real:

J,„(e)= P dt '" + d,„—iggc(g„(e) .ng„(t)
~Ccg g —t (13)

G g(~)=I.Qc(~)] 'g

1a,a„P —Ar6 g- e, (18)
Suppose now we can define, within C, a subset of
central functions as distinguished from the com-
plementary subset of border functions. The dis-
tinction is based on the fact that in Eqs. (12), if
either l or n corresponds to the central region,
the sums over r can be formally extended to the
complete set C U D without appreciable conse-
quences. In this case, as is easily seen, "it
would result ~r„=0 and dr„=Or„. Hence, the
structure of Jc would be as follows:

I 0
(14)

0 X

Here, P stands for "principal part of." By com-
bining Eqs. (16), (18), (13), and integrating up
to the Fermi level according to Eq. (7), we ob-
tain:

&y (c)
P„„=-- dE Q Iim(G, ) Re(Zg„)

7T ~co r

+ Re(G„,) Im(J, „)]

a gagg Ji dgP dt '" 5(e —e )
f' 'g '"

gg. g„(t}

t w ggcg g —t
Sy

+ dg d~g(5E —eg)
%4O

The nonzero diagonal block denoted by X refers
here to indices l and n both corresponding to the
border region. Since by definition Jc becomes
the unit matrix in the limit when C coincides with
the whole basis set, the border region may be
looked at as a connection zone between the central
region and the defective solid. If Jc has the
structure described by Eq. (14), for Eq. (9) to
be true it is now sufficient to hypothesize that V
is different from zero in the central region only.

+p d &rn&

with

a, arsMrn e
r, j

I
d,„— dt '" (e(e~)egg. (t)

M, „(e)=(,'

(19)

(20)
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It is seen that the matrices M(e), play the role of
coupling matrices between the cluster and the in-
dented solid. As shown in I, the dependence on

energy of these matrices is very smooth except
for a discontinuity at the Fermi level. When they
have been calculated once for all according to
Eqs. (20) and (12) from the solution of the free
solid, the defect problem becomes relatively
simple. In fact, knowledge of the pseudoeigen-
vectors A, which are obtained by conventional
diagonalization procedures, allows the recon-
struction of the density matrix by matrix multi-
plications [Eq. (19)j and, in turn, the redefinition
of the Hamiltonian matrix H~. This procedure
can be carried on to self-consistency and all quan-
tities of interest can be calculated, in particular,
the differential energy associated with the defect,
as shown in I. Also note that the same M matri-
ces can be used to study a variety of defects of a
given solid, provided the size of the cluster is
adequate for the basic assumptions to be accept-
able.

III. REFORMULATION OF THE EMBEDDING
SCHEMES IN AN ATOMIC-ORBITAL BASIS

Actual embedding calculation are largely char-
acterized by the basis set that is used to repre-
sent operators and wave functions. With few ex-
ceptions, notably the computations by Gunnarssen
and Hjelmberg concerning the chemisorption of
hydrogen on free or nearly free electron systems, "
a basis set of atomic orbitals (AO) is usually
chosen. Not only has the use of such sets met
with unrivalled successes in the study of molecu-
lar systems, but it is spreading as a suitable and

economical choice in the solution of a variety of
solid-state problems. ~ In order to exploit
such a basis at its best, center, type, and scale
factors of each orbital must be chosen in a very
specific way for each particular problem. So,
different sets should be employed for the unper-
turbed and the perturbed solid (see Fig. 1). In

IL

D D

FIG. 1. Scheme for the partition of the basis set.
To the left: the unperturbed solid; to the right: the
embedded defect.

both cases a set D = (5,) of atomic orbitals is
used to represent the defective solid, while two
different sets A. ' UB and A UB are used to repre-
sent the local region where the perturbative Ham-
iltonian is different from zero. The meaning of
the sets A=(o,.) and A'={o.,'j is better clarified
in Table I with reference to four typical embed-
ding problems. The set B=Q,.) comprises in
both cases AQ's of atoms surrounding the defect
region; its extension is adjusted so as to justify
the assumptions introduced in Sec. 0 as will
soon become clear.

When trying to extend the use of the embedding
equations that have just been derived to the case
where an AO basis is adopted, care is required
because it was assumed in Sec. II that the same
basis set could be used for both the free and the
perturbed solid, which is no more the case. A

way out of this difficulty lies in the extensive
application of an artifice introduced by Bernholc
et al." in the study of vacancies in silicon, al-
lowing the definition of a common set C=A. ' UA
U B. Essentially, the artifice consists in adding
some functions to a given basis set for represent-
ing a Hamiltonian operator, but in preventing
them from contributing to the ground state by
assigning them high and positive energy values.
So, for instance, if we define H~ =E»q~, n
being a general function belonging to A, the solu-
tion for the unperturbed system in the set A'
U B UD is the same as it is in the set A' UA U B
UB. A symmetric procedure is adopted for the
perturbed system. The advantage that is so
gained is that it is now possible to define a dif-
ference V matrix as before. If it is assumed V

TABLE I. Exaxnyles of A' and A sets for several embedding problems.

Problem Set A' Set A

Vacancy
Substitutional impurity
Chemisorption of a molecule

with no relaxation
Formation of a surface
molecule A-S, with
displacement of the atom S,
belonging to the adsorbing solid, -

from its free solid position

AO's of missing atoms
AO's of substituted atom

AO's of undisplaced S
atom

AO's of impurity atom
AO's of atoms in the molecule

AO's of A and AO's of S at
its new position
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to be zero in the subsets BD, AD and D [assump-
tion (a')], it can be shown that all formal devel-
opments may be repeated as in Sec. II (see Ap-
pendix A) and Eqs. (6) become:

GAB ( QA QAB

BA GB j (QBA ( C)B ~B )

(QA QAB

BA 8 B~ g ~B

(21)

To define (G~~)~' in the above equation, first con-
struct the Green matrix t"~ for the unperturbed
system, then invert the submatrix corresponding
to the subset A' U B and take its B portion. Of
course, such a procedure must be repeated for
each energy.

Equations (21) encompass a number of different
approaches; three of them are briefly recalled
here by way of example.

In Grimley's pioneering work on chemisorption
of hydrogen on an ideal cubic solid, '" the set A
is reduced to a single atomic orbital, correspond-
ing to the adsorbed hydrogen atom; the set B also
comprises a single AO, that of the underlying
metal atom, and A' is empty. In this case, the
inversion of the two-by-two matrix may be alge-
braically worked out for each energy value. The
resulting equations are solved to self-consistency
by recalculating at each cycle the P matrix in
cluster C through numerical integration of the im-
aginary part of Gc up to the Fermi level [see
Eq. (7}]. The only formal difference is that here
the perturbing potential V~ also includes the
change in Coulomb repulsion energy of electrons
on atom B, whereas in Ref. 17 this term was
added separately, since it had not been included
in V~.

Van Santen and Toneman" use the second of
Eqs. (21) in the study of chemisorption at the end
of a linear chain at atoms. Again, the set A' is
empty, but B now includes a number of AO's near
the end of the chain. The self-consistent solution
of their final equations indeed appear very diffi-
cult except for such simple problems as the one
they use for illustration of the method. In par-
ticular, their one-electron effective Hamiltonian
includes a term, denoted by A, which is energy
dependent, so it is not true that finding the coeffi-
cients for surface resonances is reduced to solv-
ing an eigenvalue problem.

In the work on vacancies by Bernholc et al."
the set A' coincides with the missing atom, and
the setA. is empty. So, Eq. (21}is reduced to
GB'=(G~c)B' —VB, which must be solved to self-

consistency in a cluster which extends over the
region where V~ 00. Of course, this involves
again performing the matrix inversion at a num-
ber of energy point and integrating up to the
Fermi level. Incidentally, note that for applica-
bility of the embedding equations to this problem,
it is not required that the interaction between the
missing atom and the defective solid is negligible
in the unperturbed solid, since this hypothesis is
not comprised in assumption (a).

Following the same procedure that was adopted
to derive Eq. (21) it is possible to generalize Eq.
(16) for application to cases where A, or A' or
both are nonempty. To this purpose, in addition
to previous assumptions, one must further hy-
pothesize that the border region of cluster C, as
defined in Sec. II, is entirely confined within B
[assumption (b')], so that Eq. (9) is still satisfied.
In this case we obtain:

( GA

G» GB ) (GB„GBJB

where we have defined [see Eq. (8)]: JB = Q~~A, GA~,B
+ Q~»G~». The MLEC Eqs. (12), (19), and (20)
are still valid. Just note that in those expres-
sions the index x runs over the setA'UB, the
index m runs over AUB and the indices n and l
over B. When n belongs to setA, we can no
longer define P„„according to Eq. (19), but we
have simply, from Eq. (22):

+ma = ~~~~~], ~

c(e;&ey)

The P matrix defined in this way is symmetric,
as it should be, only if assumption (b') is strictly
satisfied; in practice this is not exactly the case.
In order to solve this difficulty, in paper I we
calculated only the lower half of the P matrix and
defined P =P„ for n & m. An alternative
scheme consists in using for the density matrix
the symmetrized expression —,'(P+P). We have
used the two procedures in a number of applica-
tions, the results are quire comparable, except
for the fact that convergency was reached more
easily following the second procedure, which is
currently adopted.

IV. CHOICE OF THE CLUSTER SIZE AND
COMPUTATIONAL PROBLEMS

The general computational scheme has been
described in I in some detail; we shall, there-
fore, concentrate our attention on the most crit-
ical aspects of the method and its implementation.
The monolayer of graphite is taken as a reference
system for the present discussion; in Fig. 2
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FIG. 2. Identification of C clusters of different sizes
in the graphite lattice and numeration of atoms accord-
ing to their distance from the central atom in the clus-
ter.

clusters of different sizes are represented and
atomic positions are identified for subsequent
reference.

The-first problem is to evaluate what size the
C cluster must have for assumption (a), (a') and

(b), (b') to be acceptable. In order to ascertain
the spatial range of the perturbation, we have
considered a self-consistent MLEC calculation
concerning a vacancy at the center of a C» clus-
ter. In Table II standard deviations between H~

and H are reported for different atomic blocks.
For comparison, the root-mean-square values
of H~ on diagonal atomic blocks and on blocks
relating an atom to its first, second, and third
neighbors are 195, 260, 55, 27, respectively, in
the same units as used in Table II. It is seen
that the perturbative Hamiltonian V gradually
decreases towards the border of the cluster. No
net distinction, as is known to occur in free and

nearly free electron systems, exists between a
highly perturbed zone and an outer region where
electrostatic forces are screened with high effec-
tiveness. A comparable extent of the perturba-
tion induced by a vacancy in graphite is reported

Atom IV V

I
II

III
IV
V

60 12
24

11

26

7
4
2

TABLE H. Root-mean-square values for some atomic
blocks of the perturbation matrix for a vacancy in gra-
phite. Energies are in units of 0.001 a.u. The atoms
here considered are those labeled with the same sym-
bols in Fig. 2. '

by Zunger and Englman. ' Also note that diagonal
elements of the V matrix are appreciably higher
than out-of-diagonal ones; this feature ean be
explained in terms of the assumed orthogonality
of AQ's in CNDQ schemes, preventing external
Coulomb fields from affecting nondiagonal terms.
If one takes, rather arbitrarily, 0.01 a.u. as the
value below which the perturbation is considered
negligible, from Table II and from data referring
to other defects, it results that for a C» cluster
assumption (a') is roughly satisfied.

It is even more difficult to unambiguously
establish the size of the central region, as de-
fined in the discussion leading to Eq. (15). In
fact, the extent of this region not only is related
to the size of the C cluster, but is also critically
dependent on energy. In the case of a C» clus-
ter, the structure of Jc(e), as represented in Eq.
(14) is satisfactorily reproduced in the average
by defining the central region as comprising two
shells of neighbors of the central site. However,
at certain energy points, some elements which
should be zero, especially those far from the
diagonal, are found to assume values up to 0.1.
A safe choice would then be to take the central
region as extending only to one shell of neighbors
of the central atom for MLEC calculations per-
formed with C» embedded clusters.

Qn combining this result with the previous one
concerning the size of the region where V differs
from zero, we could conclude that assumption
(a') and (b') are satisfied only in a rather crude
way when a C» embedded cluster is used to study
bulk defects in graphite. Qn the other hand, when
considering integrated quantities such as the den-
sity matrix, the effects related to failures of Eq.
(9) at specific energy points are smoothed out.
For example, the coupling M matrices which re-
sult from an integration similar to the one involved
in the definition of J, but with the exclusion of
singularities, possess the structure exhibited in
Eq. (14), with the border region effectively con-
fined to the shells of atoms with dangling bonds
towards the indented solid, that is, atoms labelled
IV and V in Fig. 2 for a C» cluster (see also
paper I for a C» cluster).

To test the validity of assumption (b') and the
soundness of the computational scheme, we have
considered a quite simple case for which the
correct solution is known a priori, that is, the
substitution of an atom of the solid with itself.
If all assumptions are correct, the unperturbed
solid solution should be found again. This is not
the same calculation as performed in I: there, it
has been simply cheeked that in the absence of any
perturbation (A and A' both empty), the embedded
cluster calculation furnished the same results as
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the unperturbed solid. Here A and A' both contain
the self-substituted atom. Hence the correction
described by Eq. (19) is not applied to AO's be-
longing to that atom; this should not matter only
if that atom is within the central region, where
border effects are not felt.

The results are shown in Table III. It is seen
that the electronic structure of the MLEC solu-
tion is very near to the unperturbed situation
already for the C» cluster. On the contrary, the
isolated C» cluster solution exhibits high dis-
crepancies with respect to infinite graphite even
at the center of the cluster, of the same order as
those encountered in the C4 embedded cluster.
This is confirmed from the energy data that are
given in the last two rows. For embedded-clus-
ter calculations, ~b was calculated according to
the expression

ling = ——'Tr (P(F+H) —P~(F~+H~)),

which corresponds to assuming ~ to be zero
outside the cluster. Eb was then obtained by sub-
tracting 4E~ from E~~. Concerning the isolated
cluster, E, represents the mean binding energy
per atom in the cluster.

In conclusion, these calculations support the
hypothesis that, in a C» embedded cluster, the
site at the center and probably its nearest neigh-
bors are well beyond the influence of border
effects.

Once the cluster size has been chosen the M(e)
matrices can be calculated owing Eq. (20), from
the solution for the unperturbed solid. In princi-

pie, in order to calculate I' „according to Eq.
(19), one should calculate those matrices in cor-
respondence to all eigenvalues e, as they come
out during the self-consistent step. In practice,
the M matrices are sampled once and for all at a
limited number of regularly spaced energy points,
and an interpolation procedure is used to recon-
struct them at any desires e, value. Since the
dependence of M on energy is luckily very smooth,
as shown in I, a simple interpolation procedure
according to expression:

M (e)

was found to reproduce the correct M values to
about six significant figures. Different param-
eters a&,„, b~&, and g~& must of course be used
according to whether q is below or above g~. The
nonlinear parameters &~& are obtained by trial and

error, but their choice is not very critical pro-
vided e&)e~ if e&g~ and vice versa.

After the g& values have been determined, the
a and b parameters are calculated by a linear
least-squares procedure. In this way, the whole
information concerning the M matrices is eco-
nomically summarized into twelve matrices A~&,

8&, and six nonlinear parameters &&.

A critical point will be finally examined in the
present section, i.e., what computational devices
must be employed in order to increase the speed
of convergency and to reduce the risk of diver-

TABLZ III. Self-substitution of a carbon atom in graphite. bP is the root-mean-square
deviation of the density matrix on central atom from unperturbed graphite values. For each
shell of neighbors of central site, according to the numeration of Fig. 2, the electron distri-
bution is described by providing the hybridization ratio h ", that is the ratio between p„+p~
and s-orbital population, plus the population Pg" on the vr orbital p, . E&, binding energy of
substituted atom and &E&, its difference from the binding energy of carbon in graphite, are
calculated as described in the text.

Cluster C22

Isolated
C22

h', P,'
hr P
hII P II

hIII P III
8

gIV +V
hv pv

E, (eV)

b,Eg (e&)

0.024

2.07, 0.92

.1.85, 1.06 .

21.6

-5.3

0.013

1.98, 1.01

2.06, 1.00

2.05, 1.00

2.06, 1.00

27.7

0.8

0.004

2.06, 1.00

2.05, 1.00

2.06, 1.00

2.06, 1.00

2.06, 1.00

2.06, 1.00

26.8

-0.1

0.0

2.06, 1.00

2.06, 1.00

2.06, 1.00

2.06, 1.00

2.06, 1.00

2.06, 1.00

26.9

0.024

1.99, 1.08

1.90, 1.02

1.98, 0.99

1.31, 0.78

1.40, 1.09

1.73, 0.97

22.4

-4.5
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gencies during the self-consistent procedure.
This is an important problem in many quantum-
chemistry calculations, especially when infinite
systems are considered; the simple trick of add-
ing at each iterative step a fixed fraction o, of
the old density matrix to the new one multiplied
by (1 —n) is often a way out of difficulties. ""
In the present case, however, the risk'of diver-
gencies is enhanced by the fact that the electronic
charge in the cluster is not fixed but is determined
by the position of the Fermi level through Eq.
(20). Therefore, when the self-consistent pro-
cedure is still far from convergency, charge
instabilities may occur.

In order to quench them, we have chosen at
each iteration the n mixing coefficient within a
certain interval (0.3 to 0.8) so that the resulting
P matrix corresponded as closely as possible to
charge neutrality. This was, however, not suf-
ficient, and an independent charge renormalization
had to be effected. It was accomplished by mul-
tiplying the density matrix by a factor (1+f(5, i)],
where f(5, i) = 5 —a, tan(5/a, ) is both a function of
the fractional excess positive charge in the clus-
ter 5 = (Q' —Q )/Q' and of the iterative cycle i,
through a coefficient a;. Initially, a, is low
(-0.001) with respect to usual 5 values. Then

f= 5 and the correction is complete; gradually a,
is increased up to 0.1 which is much greater than
6, and f; becomes practically zero; so, no correc-
tion is operated in the final stages of the compu-
tation. Using these precautions, convergency is
usually reached within about fifteen iterations.

TABLE IV. MLEC and isolated cluster results for the
vacancy in graphite. && is the energy for extraction of
a carbon atom from the lattice, q " is the net charge on
the nth neighbor of central site (see Fig. 2), and ~p~")
are the corresponding rms deviations of the density ma-
trix from unperturbed graphite values.

~E (eV)

Embedded cluster Isolated cluster
i3~ f~ 22~ 2~ Ci3~ i~ C22|~2~
46.0 49.1 40.8 50.9

qI
qII

III
qIV

qV

ap'
gpII
gp III
gpIV
SPV

-0.174
0.107

-0.062

0.099
0.046
0.072

-0.151
0.052

-0.029
0.024
0.013

0.108
0.022
0.065
0.028
0.005

-0.147
0.120

-0.093

0.219
0.194
0.196

-0.044
0.077

-0.237
0.120

-0.113

0.158
0.039
0.183
0.144
0.080

13 eV, as obtained by summing the sublimation
and vacancy formation energies (see Ref. 8 for
a detailed discussion). Gross overestimations
of binding energies, up to factors of 5, are
known to occur in CNDO computations, "" even
if the relative order of energies is usually mean-
ingful.

An apparent convergency of the energies calcu-
lated according to the two procedures to a common
value of about 50 eV is observed. This finding
must probably be taken as fortuitous, not only

V. THE VACANCY IN A GRAPHITE MONOLAYER

The case of an unrelaxed vacancy was con-
sidered in four different approximations: MLEC
calculations for C» and C» embedded clusters
(in the following referred to as e, and e„re-
spectively), and the corresponding calculations
for isolated clusters (i, and i,). In all cases,
the vacant site was at the center of the cluster.
The results are shown in Tables IV and V.

The energy of extraction of a carbon atom from
graphite is given first; it was obtained with
reference to another calculation for a cluster of
the same size but comprising the central carbon
atom. In cases e, and e, the reference system
was of course an embedded cluster; when calcu-
lating the extraction energy, it was assumed that
changes in the density matrix in the defective
solid as induced by the vacancy provided a
negligible contribution to differential energy (see
paper I for details). The values here reported
are nearly four time& as. high as the experimental
extraction energy which is estimated to be about

Embedded cluster
Sp2 h pg

Isolated cluster
sp2 h Pg

1.199
0.924
0.924

0.992
1.025
0.958

1.486 1.104 1.052 1.294 1.212
0.890
0.890

1.984 0.973 1.064 1.910 1.020
0.963
0.876

0.987
0.987
0.890

0.992
0.993
0.962

1.004
1.004
0.974

2.009

1.915

2.047

1.164 0.865 1.587 0.703
0.865
1.804

1.029 0.992 1.360 0.846
0.933
1.109

1.005 0.928 1.663 1,019
0.926
1.238

TABLE V. Populations of planar hybrid and 7t orbitals
for C22 MLEC and isolated cluster calculations of the
vacancy in graphite. h is defined as in Table III. Atoms
are numbered as in Fig. 2.
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because the two isolated cluster calculations still
exhibit large energy difference from each other,
but also because analysis of the electronic struc-
ture seems to indicate that in isolated clusters
of the size considered by us, border effects are
still very important at the center of the cluster.
Consider in fact, in the same Table IV, the net
charges q&"& on different neighbors of the central
site. At first sight, the general picture is the
same in all cases: an appreciable charge builds
up on the three atoms nearest to the vacancy
(type I atoms) and charge oscillations propagate
in subsequent shells of neighbors. However,
while such oscillations are quenched in a rela-
tively effective way in the case of the embedded
clusters, in cases i„ i, the perturbation induced
by the abrupt truncation at the external border
clearly propagates throughout the cluster; this
is even more evident if one considers ~&"i
values, which are the standard deviations of the
first-order density matrix on each atom with
respect to unperturbed solid values.

The anisotropy induced by the vacancy is best
described in terms of hybrid AO's (see Appendix
B). If pure sP' hybridizatio'n occurs, each hybrid
orbital (HO} should contain one electron, and the
hybridization ratio (h}, defined as (I'„„+I'»)/P„
should be 2: in unperturbed graphite, according
to our calculations, it is 2.058.

In Table V the results of such a population analy-
sis are reported for the calculations 8, and i, .
For each atom the three HO's are numbered
starting from the one, or the ones, pointing near-
est to the vacant site. Note again that the dis-
crepancies from the unperturbed solid situation
decay rapidly towards the border of the cluster-
in case e,. The most interesting feature of this
table concerns, however, the strong anisotropy
of the electron distribution on type I atoms: the
HO pointing toward the center has a population
which is 1.3 times the population on the other
HO's. This suggests that the bonds of the three
atoms with, their first neighbors are loosened in
favor of a delocalized bond through the vacancy.
This finding is in disagreement with Zunger and
Englman's results. '

Those authors have performed an important
series of computations, in an extended Huckel
approximation, concerning graphite-type periodic
structures containing regularly spaced vacant
sites. .They considered cells each containing 7,
17, 31, 49 carbon atoms surrounding a vacancy
and studied the convergence of the electronic
properties of the superlattice with respect to the
size of the basic cell. Their more characteris-
tic result was the appearance of a doubly degen-
erate singly occupied level of E' symmetry,

located in the pure m region, quite near to the
Fermi level, and corresponding to crystalline
orbitals spatially localized on the atoms surround-
ing the vacant site. As a consequence, on those
atoms cr and w charges of 3.76 and 0.42 electrons
were observed, which is a completely different
picture from the one reported in Table V. Ac-
cording to the authors, their data indicate a
migration of the m charge towards the nearest
neighbors and stabilization of the corresponding
C-C bond. This became more evident when
allowing type I atoms to relax: the equilibrium
structure corresponded to an appreciable dis-
placement away from the vacant site, with a
further enhancement of the bond population with
neighboring atoms.

In order to further explore the different behav-
ior of the two kinds of computations, we performed
a study of symmetric relaxation about the vacancy.
In a strict sence, according to the discussion of
Sec. III, when considering this problem one
should include the AO's of the three displaced
atoms in the A set, while the same AO's, but
centered at their unperturbed solid positions,
should enter A. ', together with the AO's of the
central missing atom. A much larger cluster
should, however, be needed in this case for as-
sumptions (a'} and (b') to hold true. Therefore,
an intermediate scheme has here been adopted:
the I' matrix is modified according to Eq. (19)
as though A' were confined to the missing atom,
but the Hamiltonian is calculated by taking into
account the new positions of the nuclei.

The results of these calculations are shown in
Fig. 3 for the C» embedded cluster. The equi-
librium structure is seen to correspond to a
slight displacement of the three atoms towards
the center, by 0.04 A, with a gain in energy of
about 0.7 eV. . Zunger and Englman, as shown in
the same figure, have found a displacement of

0
0.05 A in the opposite direction with a comparable

p.p5 p.p5 Q.1 Y~»

FIG. 3. Energy changes on symmetric relaxation of
the three type I atoms about the vacancy. Curve a:
best-fit parabola through the four points {full circles)
calculated in the present work; curve b: results of Ref.
8.
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gain in energy. A difference in calculated equi-
librium bond lengths of 0.1 A is not in itself sur-
prising if one considers that the semiempirical
scheme is not the same in the two cases.

On the other hand, on closer examination, the
two calculations reveal more essential differences.
We did not find any one-electron states that could
unambigously be related to Zunger's localized
ring-shaped orbitals of symmetry E'. Rather,
a well localized v orbital of local A1' symmetry
is observed by us, corresponding to a through-
vacancy bond. Its characteristics are shown in
Fig. 4. Since it lies well below the Fermi energy,
and also due to its localized character, the con-
tribution of this molecular orbital to the density
matrix according to Eq. (19) is practically un-
affected by the coupling M matrices and may
therefore be analyzed according to the usual
schemes. It is seen that about half of the elec-
tronic population on this level is associated with
the three type I atoms, the rest being essentially
concentrated on the ring of their six nearest
neighbors. The character of through vacancy
bond orbital is apparent not only from the analy-
sis of the coefficients a„„but also from the fact
that the level deepens and becomes more local-
ized as the three atoms approach. It is this
molecular orbital that characterizes the overall
electronic structure of the system and makes it
so different from Zunger's results.

This fundamental discrepancy cannot be traced
back, in our opinion, to the different semiempiri-
cal approaches and to the calculation schemes
that were adopted. A significant detail is possibly
at the basis of this contradiction. In our calcu-
lation we did not force either the cluster to be
neutral (see Sec. III), although it practically re-

p96

suited to be so, nor imposed the population on the
m system to be exactly one-third of the population
of the o system. In fact, we find the m' electron
charge in the cluster to be 0.8 electrons higher
than that obtained by formally assigning one elec-
tron per p, orbital. A corresponding defect of 0.8
electrons occurs in the o system.

On the contrary, in Zunger and Englman's cal-
culation the number of m and o electrons was
rigidly imposed, which led to two different Fermi
levels for the two systems. According to our
results, if a self-consistent estimation of the
Fermi level had been effected by those authors,
their defect level would have been practically un-
occupied, with a significant alteration of their
final results.

VI. SUBSTITUTIONAL IMPURITIES IN A GRAPHITE
MONOLAYER

MLEC calculations of boron and nitrogen sub-
stitutional impurities in a graphite monolayer
have been performed with C» embedded clusters.
In Tables VI and VII we report for these cases
the same quantitites as given in Tables IV and V
for the vacancy. q designates the net charge on
the impurity atom. When comparing these data
with the corresponding ones for the vacancy, one
can first of all classify them in the order boron
& nitrogen& vacancy, according to the amount
and to the spatial extent of the alteration induced
by the defect in the electronic structure of the
host material. This sequence is also observed
in the energies necessary for the reaction: (S)
+ G- G'+ C, S and C designating the impurity
and carbon atom at infinity in their ground state
(S is absent in the case of vacancy formation),
G and G' graphite in its-unperturbed and perturbed
state. Again, not too much meaning should be
attributed to absolute 4E values as reported in

-0.35"

-0.40--

--60

--50

TABLE VI. C22 MLEC results for substitutional bn-
purities in graphite. All symbols as in Table IV.

Substitutional nitrogen Substitutional nitrogen

I

-0.05 00

--40

0.05 0.1
Y

FIG. 4. Characterization of the localized molecular
orbital corresponding to a through-vacancy bond.
= e; —e z is the difference between the energy level asso-
ciated to this orbital and the Fermi energy and is mea-
sured in a.u. p is the percentage of the electron popu-
lation on this orbital (containing two electrons) that is
localized on the three type I atoms. 4e and p are re-
ported as functions of the relaxation parameter y defined
in Fig. 3.

AE (eV)
q0

QI
/II
QV

~pXZ
&put
gp IV

gpv

8.4
0.012
0.078

-0.008
0.004

-0.019
0.002
0.056
0.014
0.016
0.016
0.007

1.8
-0.138
-0.035

0.009
-0.001

0.005
-0.002

0.053
0.011
0.011
0.008
0.007
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TABLE VII. Populations of planar hybrid and ~ orbi-
tals for C22 MLEC ealeulations of substitutional impuri-
ties in graphite. All symbols as in Table V.

Atom
Substitutional nitrogen

SP2 ~ Iz

Substitutional boron
sP k I'~

0.816 1.867 0.999 1.188 2.136 0.964~ ~ ~ ~

1.053 0.941
1.053 0.941

Table VI: it is however gratifying that they are
both positive and that boron impurities are much
more stable than nitrogen ones, in agreement with
the experimental findings of chemical impurities
in natural graphite. "

Atomic charges and population of hybrid orbi-
tals exhibit a very symmetric behavior for boron
and nitrogen impurities. This general structure
can be interpreted in terms of the classical bond
picture of the formation of impurity levels in
semiconductors. Boron and nitrogen atoms fit
into a pattern of 0 trigonal bonds and delocalized
m bonds by accepting and donating an electron,
respectively. As a consequence, a center of
negative and positive charge is created in the two
cases, and a hole or an electron is loosely bound
to the impurity. Of course, this interpretation
should not be taken too literally due to the fact
that graphite is a zero-gap semiconductor. Qn
examination of the hybrid population reported
in Table VII it appears that the charge rearrange-
ment involves a and m electrons to about the same
degree: furthermore, in neither case is a single
molecular orbital clearly recognizable as a donor
or acceptor state, as are encountered, for exam-
ple, in the study of impurities in diamond. " It
should also be remembered that all our calcula-
tions have concerned closed-shell configurations
even for odd number of electrons in the neutral
isolated cluster; an interesting development will
be the extension of such calculations to open-shell

cases.
In conclusion, the realistic treatment of local

perturbations in infinite periodic systems accord-
ing to embedding procedures now appears to be a
feasible though cumbersome undertaking. The
problem has inherent difficulties which make
impossible drastic shortcuts. Essentially, the
spatial range of the perturbative Hamiltonian is
not always very limited, and in all cases the
region where the density matrix exhibits appre-
ciable variations with respect to free-solid values
involves some shells of neighbors round the
defect. If one is not interested solely in proper-
ties strictly associated with the defect region,
such as for instance the local density of states,
but wants a description of the solution to a degree
of precision as available from standard quantum-
chemistry calculations, relatively large embedded
clusters must be considered. In these cases the
scheme here proposed appears accurate and sim-
ple enough; convergency problems in the self-
consistent procedure have been overcome in all
cases was considered. Specific storage require-
ments relative to memorization of the cluster-
solid coupling matrices are not severe; the dif-
ference in the computing time, with respect to
cluster calculations, is related to the reconstruc-
tion of the P matrix according to Eq. (19); this
time is about the same as needed for diagonaliza-
tion. %'ith respect to a method of comparable ac-
curacy, such as the treatment of periodic super-
lattices of large basic cells containing the defect,
our method is undoubtedly faster because it
embodies from the start all knowledge eoneerning
the asymptotic solution.

More extended studies are required to assess
the advantages that are gained in this way with

respect to simple isolated cluster calculations;
our tests seem to indicate that perhaps a factor
of 2 in the number of atoms is needed in the latter
case to reach, at the cluster center, an accuracy
comparable to that provided by an embedded-
cluste r calculation.

1.011
1.003
0.985

0.988
0.988
1.053

2.047 1.008

2.041 0.966

0.984 2.031 0.999~ ~

1.008
1.000

1.010 2.068 1.023
1.010
0.959
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0.959
1.000
1.022

1.009
1.009
1.001

2.016 1.038 1.020 2.030 0.999
0.997
0.979

0.977 0.994 2.035 1.018
0.994
0.997

APPENDIX A

Consider for simplicity, an orthogonal basis.
As explained in Sec. III we shall represent the
operator Q~ = G~ ' in the common basis A' U A U 8
UD in the form:
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F 0 E E

0 g —E 0 0

F O F F
E 0 E E AgA

(Al)

Q =G ' in the common basis:

g —E 0 F E

0 P P 0

F PPF (A2)

where e —E stands shortly for (e+io —E)I„, E is
an energy much above the Fermi energy &~, and
the submatrices F (free) are the same as the
corresponding submatrices representing Q in
the natural basis A'UB UD. The Green ma-
trices (Q~(e)) ' have of course no additional poles
below q~, and the corresponding ground state
solution is the same as obtained in the natural
basis.

Consider now the following representation of

A'AB D

Here Q(e} coincides with the usual representa-
tion of Q(e) in the subset A u 8 U D, P standing
for perturbed and having assumed that 0»—0,
Hs~=H~», Hn=H~~ [assumption (a')]. The Q
matrix does not factorize into two diagonal blocks
since the submatrices Q„.~ are nonzero; its re-
sulting structure is exactly the same as that of the
matrix introduced by Bernholc et al." After
writing:

(e-E)' ' 0 0 0 I 0 o, o, (e-E)' ' 0 0 0

0 I 0 0 0 P P 0

0 0 I 0 (y P P E

0 0 0 IJ g(y 0 F F~ i 0

I 0 0

0 I 0

0 OI.
(As)

we recognize that the n =(e —E) '~'F matrices
are negligible to order E ' ' below q~. Thus,
the two sets of functions do not mix up and the
solution for the ground state in the common basis
is the same as in the natural basis.

The difference matrix V=Q~ —Q has the struc-
ture:

APPENDIX B

Consider a transformation between a set of
orthogonalized atomic orbitals X, as used in
CNDO, and a set of hybrid atomic orbitals:

t, = g v„y„.

0 0

0 g-E —P —P 0

—P E —P 0 .(A4)

A', A, B,

G. =[(G'.) '- v. ] '

E' —F —E+g 0

Since Eg. (4} of Sec. II is satisfied, we can pro-
ceed formally as in that section and obtain, after
defining (F')„,s = [(G )„,s] ':

(2/s)~ &2 P P

I/~s Ig/rr 1/~2 o

I/v S -1/v 6 -1/v 2 0 (S2)

0 1

Due to the orthogonality of the set Qj, we have:

(t,
i
t.& =s,.=(vv),.

In the new basis the density matrix becomes:

The V matrix is a block diagonal matrix, each
submatrix V„along the diagonal having the size
of the basis on atom A. In our case:

(A5) PP V-1PV 1 (H4)
E'+ P F &A~,A, B

Again, due to the presence of the E term in the
diagonal A' block, this equation factorizes into
an inessential equation for the subcluster A' and

Eq. (21) for the clusters U, I3.

and according to a Mulliken population analysis,
the electron population that can be attributed to
the hybrid orbital t, on atom A is:

n, .= g I';.S.,=(V'PV}„=(V„-'P„V„)„.
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