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We investigate the time development of the donor fluorescence in the presence of a high concentration of
acceptor ions which act as traps for the' excitation. It is assumed that the transfer rates between donors are

symmetric and independent of the energy mismatch and that there is no back transfer from the traps, The
donor and acceptor ions are randomly distributed on a lattice with site occupation probabilities ca and c„,
respectively. We specialize to the case of dipole-dipole transfer between donors and from donors to
acceptors. For a dilute system, cD, c„+1, we use a coherent-potential approximation to calculate the

Laplace transform of the donor fluorescence-decay curve for all values of the ratio c„/cD. It is argued that
the theory should apply when the microscopic transfer rate between donor ions is at least as large as the

corresponding transfer rate from donors to acceptors.

I. INTRODUCTION

In a recent paper, ' hereafter referred to as I,
we presented a general theory for the time de-
velopment of the donor fluorescence in the pres--
ence of a random distribution of acceptor ions
which act as traps for the excitation. The theory
was based on a set of coupled rate equations for
the donor array. It was assumed that the donor-
donor transfer rates were symmetric and inde-
pendent of the energy mismatch between ions and
that there was no back transfer from the traps.
Exact results were obtained in the static and rap-
id-transfer limits. A theory based on the average
t matrix approximation was developed for the re-
gime intermediate between the two limits, which is
applicable whenever the concentration of acceptors
is much less than the donor concentration.

In this paper we extend the analysis of I to sys-
tems having a relatively high concentration of ac-
ceptor ions. The theory applies to cases where
both the donor and acceptor arrays are dilute.
There is a lattice of sites that is occupied at ran-
dom by donors or acceptors, with probabilities
cD and c~, respectively, where both c„,cD «1.
However, unlike I, we do not necessarily assume
c„«cD. We consider in detail only the case where
both the donor-donor and donor-acceptor transfer
are governed by a dipolar mechanism and hence
fall off as the inverse sixth power of the separ-
ation between the ions. Writing the donor-acceptor
transfer rate as n/x' and the donor-donor rate as
P/r6 we further restrict the analysis to systems
in which n &P, i.e., where the donor-donor trans-
fer is at least as rapid as the donor-acceptor
transfer.

We follow the notation of I and write the nor-
malized intensity of the donor fluorescence E(t)
-as

f (s) —I dts "f(C), (1.2)

could be written in the average t matrix approxi-
mation in the form

-1

j(s)=(ssc„p S (s}„.
l ~l'

(1.3)

where the t matrix is obtained as the solution to
the equation

trr X l lr Xor grr„s, tl l s (1.4)

in which X« is the transfer rate from a donor at
site l to an acceptor at site o. The symbol
(g„,(t)), denotes the configurational average of a
Green's function characterizing the transfer of
excitation in the absence of traps.

It was argued in I that when the donor-donor
transfer is rapid in comparison with the donor-ac-
ceptor transfer it is a reasonable approximation
to neglect the off-diagonal elements of the t ma-
trix. When this is done the solution to Eq. (1.4)
takes the form

t „=X„i[1+X„A,(s)],
where R,(s) = (g»(s)), . In this case f (s) becomes

(1.5)

-1

f (s) = (s+ c„gX„/((+X„}},(s)]
l

(1.6)

in which the sum on l is over sites in the neigh-
borhood of site o.

Passing to the continuum limit we can approxi-

E(t) =e "s'f(t),

where y ~ is the radiative lifetime. The function
f(t) characterizes the loss due to one-way transfer
to traps. In I it was shown that when c„«ca the
Laplace transform of f(t), defined by
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R,(t) = exp[-(n»/2'~')t ' ~'],

in which

—(4 3&a)~ pi/2

(1.10)

nD being the number of donors per unit volume.
The accuracy of Eq. (1.10), which is essentially
equivalent to the "pair approximation" of Lyo'
and the "three-body" approximation of Gochanour
et al. ,' has been verified out to times such that
R,(t) =0.05 for cn =0'.01.'

Using Eq. (1.10) we obtain the result

R,(s) =s '(I —~w[dDQ(2"'s'")]
x exp[62»/(8s)] erfc[n, »/(2'~'s'~')]],

(1.12)

where erfc[x] denotes the complementary error
function. ' Note that Eq. (1.12) has the limiting
behavior

Ro(s) =4/b, »,
for LnD/s»1, and

Ro(s) =1/s,

(1.13)

(1.14)

for ~nD/s «l.
As long as n ~ p and cD «1, Eqs. (1.8) and (1.12)

mate the sum in Eq. (1.6) by an integral, viz. ,X„drx(r)
1+X„R,(s) ~ J 1+x(r)A, (s)

1

where n~ is the number of acceptors per unit vol.—

ume. For the case of dipole-dipole transfer x(r)
= n/r', the integral is written

x'd~
4m' r'+nA, (s) '

where x, is the minimum donor-acceptor separ-
ation. Provided (n/r', )R,(s)»1, which will be the
case for cD sufficiently small, we can take the low-
er limit to be zero thus obtaining the result
(-', v')[n/Ro(s)]' ' so that we have'

f (s) =(s+ (—',w')n„[n/R, (s)]"'P . (1.8)

In I, Ro(s) was identified as the Laplace trans-
form of the configurational average of the con-
ditional probability that a donor ion excited at
( =0 is still excited at a later time t. Writing
this average as R,(t) we obtain

R,(s) = f e "R (t)dt
0

where. the O signifies the value in the absence of
donor-acceptor transfer. It was also pointed out
for the' case of dipole-dipole transfer between
donors that when cD «1, a reasonable approxi-
mation is to take

characterize the transform of f(t) in the limit
e~/c~ « l. In Sec. II we outline a generalization
of these equations which is appropriate for all
values of c„/c,.

II. COHERENT-POTENTIAL APPROXIMATION

f (s) = [s+Xc~„(s)]', (2.1)

where the s-dependent decay rate Xcp„(s) satis-
fies the equation

r dX(P(X)[X Xc~~(s)]
1+ [X Xcp„(s)]R(s)

(2.2)

Here 0'(X) is the normalized probability distribu-
tion of the variable X„. The function R(s) is the
Laplace transform of the conditional probability
R(t) that a donor excited at t =0 is still excited at
a later time t calculated in the presence of the
traps, viz. ,

R(s) = dt e "R(t) .
0

(2.3)

Since the donor array is itself dilute and ran-
dom, we depart from the standard form for R(t),'
which is appropriate when the donors form a peri-
odic array, and write it as a product

'The theory outlined in Sec. I is applicable only
when c„/eD«l. We can extend our results to
arbitrary values of this ratio by using a variation
of the coherent-potential approximation (CPA)
which has been shown to be remarkably accurate
in analogous calculations for disordered alloys
and magnets. ' As can be seen from the micro-
scopic rate equations given in I the rate at which
the nth donor transfers to neighboring traps X„ is
a random variable when the traps are distributed
at random even when the donor array has trans-
lational symmetry. Since we neglect transfer from
the acceptors to the donors, the randomness as-
sociated with the donor-acceptor transfer is con-
fined to the diagonal elements of the rate equations
(site-diagonal disorder). Neglecting the off-di-
agonal elements of the t-matrix equation, which
we have argued is a reasonable approximation
when n & p, is equivalent to assuming that there
are no correlations between neighboring donors
in the donor-acceptor transfer process. In the
CPA, when this happens, we need consider only
the dynamics of a single acceptor embedded in a
background incorporating the effect of donor-donor
and donor-acceptor transfer involving neighboring
ions.

As long as there is only site-diagonal disorder
. (no back transfer from traps) the CPA appropriate

to this situation leads to an expression for f (s) of
the form'
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R(t}-f,(t)R,(t), (2.4)

where R,(t) is R(t) in the absence of donor-ac-
ceptor transfer [Eq. (1.10) in the case of dipole-
dipole transfer]. The function f,(t) is f(t) in the
absence of donor-donor transfer and is given by
an equation derived by Inokuti and Hirayama. ' It
is related to iP(X) through the integral

~" dx[x-x„„(s)jtP(«)
1+ [X-Xc»(s)]f,(s)

where f,(s) is the transform of fo(t). Equation
(2.9) has the solution

Xcp„(s)=f0(s) ' - s .

(2.9)

(2.10)

To verify this we insert Eq. (2.'10) into the denom-
inator of Eq. (2.9}, obtaining as a result

f,(t) = dXe «'&(X)
Jp

(2.5)

Equation (2.4) for R(t) is obtained as the low-
concentration limit, ca, c~«1, of the more gen-
eral expression

t "dx6(x)(x-x„.)
1+(X-j', '+ s)j',

y g )
(P(x) dX

0 0 CPA X+s0
(2.11)

R(t) =, [1-c„-cD+ c„e «&"

+cs e ~r o' co sh (W„t }], (2.6)

Solving for XcpA we have

OO -1

X„„(s}= dX6 (X)(X+s) ' —s,
p

(2.12)

" dXX„„(s)a(X) t'" dXX&(x)
I+XI,(s) J, 1+XR,(s)

' (2.'t)

Since in the limit c„-0,(P(X) has most of its
weight near X =0 [cf. Eq. (3.1)], we can neglect
XR,(s) in the denominator of the left-hand side of
Eq. (2.7). As a result we have

(2.8)

which leads to an equation equivalent to (1.6) to
first order in c„.

In the opposite limit, c~-0 and c„ is fixed, or
when there is negligible donor-donor transfer,
we have R,(t) =1. In this case Eq. (2.2) takes the
form

where X„is the transfer rate from a donor at site
o to an acceptor at site l, and W„ is the transfer
rate from a donor at site o to a donor at site l.
Equation (2.6) is the generalization of model 2 of
Huber et al.' to include one-way transfer to traps
as well as multiple exchanges of excitation between
nearby donors and one-way transfer to distant don-
ors. It reduces to Eq. (2.4) when the product is
written as the exponential of a sum of logarithms,
the latter are expanded to first order in c„and
cD, and the corresponding sums are replaced by
integrals.

Equations (2.1) and (2.5) constitute the coherent-
potential approximation to the transform of the
normalized decay curve. We will discuss numer-
ical solutions appropriate to dipole-dipole transfer
in Sec. III. First, however, we show that Eq.
(2.1) reproduces known results in appropriate lim-
its. When c„-0, and cn is fixed, we have R(s)
=Ro(s). In addition we can neglect Xc» in the
denominator of Eq. (2.2), thus obtaining the equa-
tion

which reduces to Eq, (2.10) in light of Eq. (2.5).
Inserting Eq. (2.10) into Eq. (2.1), we find

f (s) =f o(s}, (2.13)

as expected.
The final example corresponds to the case of

(infinitely) 'rapid donor-donor transfer. In this
case we can neglect the term (X-Xc»)R(s) in
the denominator of.Eq. (2.2) obtaining as a result

OO

X„„= dXXs (X),
4p

independent of s. Using Eq. (2.14) we find

(2.14)

f(t) = exp[-t dXX6 (X)]
ap

(2.15)

in agreement with the results of I.

III. DIPOLE-DIPOLE TRANSFER

Here we apply the general theory developed in
Sec. II to the special case where both the donor-
donor transfer and the donor-acceptor transfer
are governed by dipolar processes. With the
donor-acceptor rate varying as n/r' and the
donor-donor rate as P/2, we have for the proba-
bility distribution (P(X) introduced in the Sec. II,"

6'(X) = (SD„'/4wx')' ' exp[-(ADA'/(4X)], (3.1)

where

(~ 3/2)~ ~i/2 (3.2)

n„being the concentration of acceptors. It should
be noted that Eq. (3.1) is the normalized distribu-
tion for the interval 0 ~X & ~. Strictly speaking,
one should use a distribution which is restricted
to a finite interval with an upper limit correspond-
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(3.3)

which when combined with Eqs. (1.10), (2.3), and
(2.4) leads to the result

R(s) =s '(I —~m[aT/(2s'~')]

x exp[sr'/(4s)] erfc[b, T/(2s'~ ')]],
(3.4)

where

ing to the transfer rate at minimum donor-accep-
tor separation y, . However as long as (0/T, ')R(s)
»1 our results are essentially the same as ob-
tained with x, =0.

Using Eqs. (3.1) and (3.2) in Eq. (2.5) we find

f,(t) = exp(-b, D„t' '),

2.0

IN

0
c3

1.0
0

0.5

~T ~DD/~ DA t (3.5)

LDD being given by Eq. (1.11) and erfc(x) denoting
the complementary error function. '

With the distribution in Eq. (3.1) the self-con-
sistent equation for Xop„(s), Eq. (2.2), takes the
form

Xop„(s)= [n' '/R(s)]z exp(z') erfc(z),

in which

(3.6)

z = b.D R(s)' '/2[1-R(s)xop„(s)]"'. (3.7)

Equation (3.6) has two solutions, Xo»(s) =-R(s) ',
and a second, physically meaningful one, which
lies below A(s) '. We can obtain approximations
for the physical solution in the limits sD„R(s)' '
«1 and nD„R(s}' '»1. When bD„R(s)'~' «1, we
find

Xopa(s) 7l' ADa/2R(s)

When AD„/6» «1 we have R(s) =R,(s), in which
case Eq. (3.8) leads to a result equivalent to Eq.
(1.8). In the opposite limit, b»R(s)'~'»1, we
can use the asymptotic expansion of erfc(x)' to
obtain

(3.8)

Xop~(s) R(s) (3.9)

For values of n»R(s)' ' intermediate between
these limits, Eq. (3.6) has to be solved numer-
ically. In Fig. 1 we display our results for
Xop„(0), which is the negative of the slope of
lnf(t) for tnT' »1, as a function of the ratio
0,»/aDD= (n„n' '/ns p' '). From the figure it
is evident that the linear approximation

X"' =s"'n. „ /2R( )0'"=& "v'(~ p'}" nn

(3.10)

is appropriate only when AD„/ADD & 0.5. On the
other hand the approach to the other limiting form,
Xo»(0) =R(0) ', is slow. For a»/aDD= 5, we
Calculate Xo»(0) =14.8iPDD While R(0) ' =16.6bsDD.

For aD„/nDD=S, the corresponding numbers are

00 0.5 1.0 1.5

~OA ~&DD

FIG. 1. XcPA~O~/ +DD vs +DA/ +DD XcPAto) is obtained
from Eqs. (3.6) and (3.7). The broken line is the linear
approximation, Eq. {3.10). The inset shows Xopa{0$4DD
for larger values of ADA/4DD.

Xop„(0)=35.8LPDD and R(0) ' = 37.9LPDD. Note that,
since we have assumed n s P, the limit a»/LDD
»1 corresponds to n~»n~.

For b.D„/nDD & 0.1 the results shown in Fig. 1
are similar to the decay rates obtained from the
stochastic model of Burshtein. " In the notation
of this section, the Burshtein approximation takes
the form

f (s) = [s+x (s)] ' .
The function Xs(s) is given by

(3.11)

( t -1
Xs(s) =

~~ dte "exp~ - f,(t) —s —R,(0) ',
(3.12)

where we have identified the Burshtein parameter
7', with Ro(0).' Equation (3.12) leads to the same
results as the coherent-potential approximation in
the limits 0,»/EDD«l and b,»/n, DD»1. However
it represents a comparatively crude approximation
to the dynamics, and hence is probably less re-
liable than the CPA for intermediate values of

DA/ DD'
At present there are relatively few systematic

studies of fluorescence at high trap concentration.
One of the most detailed is the investigation of the
fluorescence from the 'F3~, level in Nd„La, „F3
carried out by Voronko et al." In this system the
transfer takes place via the electric dipole inter-
actions. The neodymium ions also acts as traps
through the mechanism of cross relaxation. By
examining various features of the decay curves,
they were able to infer that a =0.01P. Since each
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ion can serve as either an acceptor or a donor,
n„ is equal to n~. As a result the ratio b,D„/b»
has the value 0.1. From Fig. 1 we conclude that
for this value of the ratio the linear approximation
gives satisfactory results. According to Kq.
(3.10), the limiting decay rate is equal to
+ v' '(nP)' 'nNd, n„~ being the concentration of
Nd ions. P,s discussed in Ref. 12, the experimen-
tal decay rates were found to be proportional to
the square of the neodymium concentration, in
agreement with our analysis. Xeff(s) Xor(s+ Y~)

+y, +X.,
(4.7}

sumption that back transfer from the acceptors
to the donors can be neglected. In the Appendix,
it is shown that, in an approximation where the
off-diagonal elements of the t matrix are neglec-
ted, which is equivalent to assuming that each ac-
ceptor interacts with a single donor, the effect
of back transfer can -be taken into account by the
replacement X„-X',f'(s), where the effective
transfer rate is given by

f(t) = exp(-At); (4.1)

for f, (f (f„f(t) varies according to

f(f}= exp(-Bt' '}(dipole-dipole transfer); (4.2)

and for t )f„f(f) evolves into the asymptotic form
discussed in this paper

IV. DISCUSSION

The results presented in this paper provide a
basis for the interpretation of fluorescent-decay
curves in dilute systems with dipole-dipole trans-
fer from donors to acceptors and between donors.
Using standard numerical techniques, it is a rela-
tively straightforward matter to obtain solutions
to Eq. (3.6) and hence determine f (s). The behav-
ior of f(f) in the time domain can be inferred by
inverting the corresponding Laplace transform.
Although it is beyond the scope of this paper to
discuss f(t) in detail for all values of time, fol-
lowing Ref. 12, we can identify three limiting re-
gimes. For 0 &t (t, the decay is exponential in
time

=e+ ~BX
ol 0$ t (4.8)

where ~ is the energy difference between donor
and acceptor levels.

As noted, the theory applied only to systems
with comparatively slow donor-acceptor transfer
(n (p). The development of an analogous theory
for systems where n» P remains an unsolved
problem. Finally, we mention that a central
theme of this paper, as in I, is the close formal
connection between fluorescent decay in the pres-
ence of a random distribution of traps and the
electronic states of disordered alloys. In a cer-
tain sense fluorescent decay is an example of the
behavior of a disordered system in the time do-
main, whereas the density of states in the alloy
problem mirrors disorder in the frequency do-
main.

where y„ is the radiative lifetime in the trap, and

X„is the back transfer rate from the acceptor
to the donor. The latter is related to X„ through
the detailed balance condition

f(f) exp[ Xcpg(0)f] (4.3)

Equations (4.1) and (4.2) have a simple physical
interpretation. They are the short- and long-time
limits of the Inokuti-Hirayama equation for f(t),
which is valid in the absence of donor-donor trans-
fez'
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(4.4)

At, =1,
whereas t, is given by equating the right-hand
sides of Eqs. (4.2) and (4.3)

(4.5)

From Eq. (4.4) we identify A with c„+,X„and B
with (+v' ')n' 'n .

We can obtain a rough estimate of t, from the
equation

APPENDIX

In this appendix we discuss the behavior of f(t)
when allowance is made for back transfer from
the traps. We consider the situation c„«1where
the average t matrix approximation is applicable.
In this case we can treat the interaction of an ar-
ray of donors located at sites / with a single ac-
ceptor at site 0. The relevant, rate equations are

t2= [B/Xcp„(0)] =9/v Pn~, (4.6)

using the linear approximation for Xc~„(0).
Implicit in the analysis of Secs. I-III is the as-

+ w„,s, , t +x.,a„s (A1)
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jfP„(f) = —yz+ Xol Px t + XorP& t

(A2)

From Eq. (A3) we infer that the f matrix for the
problem obeys the equation

f j j (S) Vj j (S) p Vj j& Qj ~ jtll ($)f j„,jg (S)

(A4)
Here P„(t) denotes the probability that the trap is
filled at time t, y„ is the "radiative lifetime" of
the trap, and X„ is the rate of transfer from the
trap to the donor at site l. The latter is related
to the donor-acceptor transfer rate X„by the de-
tailed balance equation (4.8).

Combining'the Laplace transforms of Eqs. (Al)
and (A2) we obtain the result

sP, (s)-P, (0)=- g W„,+X, P, (s)+g W„,P,, (s)

+X„Xor' s+ y~+XT

where the nonlocal interaction V«, is given by

(A5)

Xef j(&)6
1+X"'(s)g,(s) ' (A6)

where the effective donor-acceptor transfer rate
is given by

If the acceptor interacts with a single donor lo-
cated at / we have

(A3)

where X =pj X„is the total back transfer rate.

X;jjj(s) =X„(s+ y„)/(s+ y„+X„),

which is the same as Eq. (4.7).
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