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Treating collisions as Markov processes, a theory is developed for the calculation of electron
multiplication in solids. The electron mean free paths for acoustic-phonon scattering, optical-phonon
emission, and pair production processes are assumed to be independent of the energy of the electron. The
number of ionization events per mean free path is a universal function of dimensionless energy ratios.
Several types of phonon scatterings are studied. In the case of isotropic scattering, comparison of the
present work with the results obtained by numerically solving the Boltzmann equation indicates that good
agreement is found only in fast-multiplication cases. The discrepancy noted in slow-multiplication cases is
believed to be due to either the less stringent requirements or the mild singularity of the transition
probabilities in the numerical approach to solving the Boltzmann equation.

I. INTRODUCTION

Under the stress of a very strong electric field,
semiconductors and dielectrics tend to exhibit ava-
lanche breakdown. A quantitative measurement of
the charge multiplication in p-n junctions of Si and
Ge was carried out and its implication on the ion-
ization rate per unit length, as a function of the
applied electric field, was analyzed two decades
ago. ' The fundamental processes for charge mul-
tiplication in solids were assumed to be analogous
to that (Townsend's P mechanism') of gas dis-
charge. The ionization rate is an important para-
meter which brings out the details of the micro-
scopic solid-state properties from the macro-
scopic eharacterestics of breakdown measure-
ments. Methods have been developed to calculate
this parameter, most of them involving the solu-
tion of the Boltzmann equation in a high electric
field. Thus, neglecting the then-unknown band
structure of silicon. , Wolff' expanded the electron
distribution function in terms of Legendre polyno-
mials, kept the first two terms, and solved the
Boltzmann equation in a steady state. Baraff' em-
ployed the concept of collision density and derived
an integral equation by Laplace-transforming the
Boltzmann equation which he then solved numer-
ically. To solve the Boltzmann equation at high
fieMs is generally difficult, as pointed out by Wan-
nier. ' On the other hand, Shockley' considered
the collision processes as probabilistic processes
with exponential probability distribution and,
treating only the electrons which survive any col-
lision, directly obtained the ionization rates in
the low-field and high-field limits. Although the
validity of some assumptions. made by Shockley
was questioned at that time, the concept of expo-
nential probability is particularly attractive in its
simplicity. It appears that for the calculation of

ionization rates, one may avoid solving the Boltz-
mann equation by treating all processes as Markov
processes and following the motion of the electron
in a completely stochastic way.

In this paper, we will address the calculation of
ionization rates in semiconductors or dielectrics
where band-structure details can be neglected. A
strong electric field 8 is applied to a thick slab of
material. The electron whose track we will fol-
low starts with zero energy in the conduction band.
We assume that there are three energy ranges in
each of which only one single-electron process is
possible. Thus from zero to he (the energy of the
only optical phonon), only acoustic-phonon scat-
tering is possible; between h~ and E, (the ioniza-
tion threshold to produce an electron-hole pair),
the electron can only emit the optical phonon, as-
suming no optical phonons to be present so that
the absorption of optical phonons is negligible;
above E„electron excitation from the valence
band is the only interaction the electron has with
its environment. We also assume that the mean
free paths of these three fundamental processes
are independent of the electron energy. Further-
more, these three mean free paths are assumed
for simplicity to have the same value X. These
assumptions are in. line with previous works. ' "
Most of them can be relaxed if one so wishes: the
involved modifications of the equations, to be
derived below, either are trivial or can be car-
ried out with minor effort.

The main quantity we are interested in is the
mean ionization distance for an electron starting
with zero kinetic energy at z= 0 (z is the depth co-
ordinate). An electron, emitting n optical phonons,
will reach E, at location z = (E, + nh'~)/eS. Since z
and n are two random variables, the mean dis-
tance z per mean free path is related to the mean
number of optical-phonon emissions, n, , by
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II. THEORY

Let X be the mean free path of a'collision (a Mar-
kov process). The no-collision probability for an
electron in traveling a distance z is e and the
probability of one collision in de is de/X. The
mean collision distance is given by

ze dz
(e) =

0

(4)

the mean free path of this process.
At some reference level, an electron is released

with both kinetic and potential energies zero. Un-

der the in.fluence of a constant electric field 8,
this electron behaves like a particle of some in-
ertial mass in a gravitational field. Now, if this
electron experiences an acoustic (elastic) collision,
it simply adjusts the direction of its velocity with
magnitude unchanged. If an optical- phonon emis-
sion occurs, the electron not only changes the
velocity direction but also loses some quantum
kinetic energy (the quantum energy A~ of the op-
tical phonon). Since in a conservative field, there
is a one-to-one correspondence between kinetic
energy and potential energy, once the reference
level of zero potential is chosen, the fact that the
electron loses @& kinetic energy will be equiva-
lent to pushing this electron a distance 8~/eS clo-
ser to the reference level, as shown in Fig. 1.
The probability of having a collision is controlled

e/Z= E,/eSX+ n(ff~/eSX).

Setting X=E,—/eSX and R —= 8+/E&, the mean num-
ber of electron-hole pairs produced by a single
electron in traveling a mean free path X is given
by

Nya, = (X+rVRX+1)

The 1 on the right-hand side takes care of the
extra mean distance X, the electron has to travel,
after reaching E„ in order to produce a.pair. The
exact value of this extra mean distance is not im-
portant, ' ' however. Here we assume X, = X.

Equation (2) indicates tha't N„,„ is a univer sal
function of X and R since n, as will be shown la-
ter, depends only on X and R.

The concept described here could be applied to
the calculation of the average energy of hot elec-
trons emerging from a slab of given thickness zp.
The proper equati. on reads

Z=eSzp —ng~

and n could be obtained exactly in the same way,
as described in Sec. II; The only change is to re-
place y —~y in the arguments by y. Though Monte
Carlo results' do exist, the suggested approach
here gives an exact answer.

REFERENCE LEVEL

ELECTRIC FORCE

FIG. 1. Electron at A. emits on optical phonon and its
location is consequently put at B, M = Scu/e&X.

by the exponential function of the length of the tra
jectory this electron travels after the latest col-
lision.

For a Markov process, the history of the elec-
tron before a collision is completely wiped out
when a collision occurs. In other words, the angu-
lar distribution of the cross section of a collision
is independent of the direction of this incident elec-
tron. A few examples are in order:

(a) Forward scattering. The electron can only
travel in the direction of the electric force. There
is no elastic collision in this case because the di-
rection is fixed.

(b) Two-direction scattering. The electron can
move either along or against the electric field.
Movement in either direction can cause collision
with the consequence of, say, half chance of the
electron going along and half chance of going
against the electric field.

(c) Isotropic scattering. The cross section is
isotropic and thus of Markov type.

In general, we can assume the angular distribu-
tion of the probability to be P(8) no matter what
direction the electron is moving in, immediately be-
fore a collision. 8 is the angle the velocity vector
makes with the horizontal line as shown in Fig. 2.
The electron is at a location y, (y =z/X) below the
reference level. Let T(y„y,)dy, be the probabiiity
distribution that the electron, suffering a collision
at y„will not have any collision before reaching
the height y, below the reference level and having
a collision in dy, at y, . The collision here could
be acoustic or optical. This probability is compu-
table from classical mechanics, as can be done

FIG. 2. Electron as a projectile.
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following the results of the Appendix. It is easy to
prove thatfo T(y„y, )dy, = 1 if one realizes that,
for a given projectile angle, the probabi. lity of hav-
ing a collision regardless of how far the electron
travels is unity, i.e. , J,"e ' "ds/X = 1. Once P(8) is
assigned and T(y„y, ) is computed, the ionization
rate can be obtained as follows.

Lei

ings due to acoustic phonpns.
The electron released at zero kinetic energy at

the potential reference level reaches E, either
without any collision or with at least one collision
(acoustic or optical). In other words,

1=N(0)+ 1 x T(y„0)dy, .

5'0

N(y, ) = 1 — T(y „y,)dy, = T(y „y,)dy,
0 ~p

be the probability than an electron suffering a col-
lision at y, will not have any collision before reach-
ing y, (—=X), the ionization threshold for produc-
ing an electron-hole pair. Let &y be the width of
the acoustic-scattering region, i.e. ,

&y =eShe/eSX=t&d/eSX=RX.

We can then compute, by the technique of regroup-
ing, the probability of having n optical-phonon
emissions, regardless of the number of scatter-

After breaking up the integration limits into the
acoustic and optical regions, the 1 on the right-
hand side can be replaced by

&())+f , &().,v, )d),
0

when y, is in the acoustic scattering region, or by

$p

N(y, —~y)+ T(y. , y, —&y)dy.
0

when y, is in the optical emission region:

1=N(O)+
w 0

N(y, )T(y „0)dy, +
p

p Pp f "0
dy) il dy, T(y„y, )T(y„O)+,I dy, N(y, Qy)T(y, 0)

&0 f~p
+ d&, AT

0

If (n„nJ denotes the numbers of acoustic and op-
tical scatterings, then the first term in Eq. (6) is
(0, 0), the second (1, 0), and the fourth (0, 1), For
the third and the last, we need to break up the in-
tegration Jo() and then substitute the appropriate
equation for 1 as before. This procedure could be

repeated indefinitely. Collecting the terms with

(n„0) for n, = 0, 1, 2, 3, ...., ~ gives

bare quantity N(y).
For one optical-phonon emission, all the terms

of the type (n„1), n, =0, 1, 2, .... need to be collec-
ted and regrouped. After two regroupings and one
relabeling, the probability of one optical emission
is given by

fe &0

dy,N(y, —&y) T(y„O),

N(0) + dy, N(y, ) T(y „0)
0

where T(y„y„) also satisfies an integral equation,

+ dy, dy, N(y, )T(y„y,) T(y „0)+ ~ ~ ~

o T(y„y,) =T(y„y,)+ )I dy, T(y„y,)T(y„y,). (10)

=&(0)+f &v,)((v, )T'() „0)=&(O), ())

where N(y, ) satisfies the following inhomogeneous
integral equation of the second kind:

N(y, ) =N(y, )+ dy+(y, )T(y„y,).
0

We can interprete N(y) as the renormalized (by
interaction with acoustic phonons) version of the

Again, due to the presence of the acoustic-scat
tering region, the bare transition probability den-
sity T(y„y, ) is renormalized to T(y„y,).

A similar procedure, leads to the following proba-
bility for two optical-phonon emi. ssions,

p&0 yp

dy,
I

dy, N(y. —~y) T(y„y, —~y) T(y„O). (11)
. dpy

The rule for writing the probability of any num-
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ber of optical-phonon emissions can be obtained
by examining Eq. (11). T(y„0) indicates that the
electron is released at y =0, making all possible
interactions with the acoustic phonons, and reach-
es y, in the optical emission region. Emitting an
optical phonon at y, and thereby changing its lo-
cation to y, —4y, the electron encounters all pos-
sible, including zero, numbers of acoustic-phonon
scatterings before the next optical-phonon emis-
sion at y2 in the optical emission region, as des-
cribed by T(y„y, —4y). The optical-phonon emis-
sion at y, pushes the location of the electron to
y, —~y. Between this riew position and the pair-

production threshold no optical emission occurs
while any number of acoustic scatterings may take
place. This is represented by N(y, —4y). Reading
equations like Eq. (11) is completely equivalent to
describing the physical processes they represent.

It is gauranteed, from the way the above proba-
bilities are derived, that the sum of all probabili-
ties equals unity.

The average number of optical-phonon emissions
is given by the sum of the products of the number
of optical phonons emitted and the corresponding
probability,

0= 00(1)0+(f dy;yy(y—'

dy)y, (y, , O)+Of dyN(y—, dy),f dyy(y„,y, —dy)1'(y„0)

3'o' Wp f' ~o
+ 3 dy, N(y, —Ay) dy2 T(y„y2 by) I dyo y'(Y2, yo hy)T(y~, 0)+ ~ ~ ~ . (12)

O(y, ) = (y„y)O+ f dy y(y„y, —dy)O(y, ) (»)

for each column. When all the columns are
summed, the final expression for the average
number of optical-phonon emissions is given by

dyN(y —Ay)H(y),

where

&(y,) =G(y, )+ Jt dy. T(y„y.—~y)&(y. ) (15)

~ ONE OPTICAL EMISSION

e ~ TWO OPTICAL EMISSIONS

~ 0 ETC 0

0 ~ ~

~ ~ ~ ~

~ 1 ~ ~ ~

~eeoc ~ ~

FIG. 3. Summing a column gives G. Summing a11 G's
gives H.

Laying down the probabilities with weights (the
number of phonons emitted) as in Fig. 3, and sum-
ming vertically for each column, one obtains a
function G satisfying

Equation (14) indicates n is a function of y„
which is equivalent to the energy ratio X=E,/eSX, —
and Ay, another energy ratio, Std/el' (—=BX).
Given R and X, Ãyg f is uniquely determined by
Eq. (2).

III. RESULTS AND DISCUSSION

As mentioned in Sec. II, there are three interes-
ting cases of scatterings: forward scattering,
two-direction scattering, and isotropic scattering.
The first case provides a check of the formula-
tion described above against an algebraic approach
to be published elsewhere. ' The second case gives
a hint of how the backward scattering (against the
electric force) would change the mean ionization
distance, while the complication of calculating
the trajectory length is kept to a minumum. The
third case is that of the real physical situation
which has been discussed by others in the litera-
ture.

Case (i): forward scattering.

0 for y, yx or yl y2(6
~(y y )= (16)

~

~exp —[y, —max(y „4y)] othe rw ise.

Backward scattering (y, &y, ) is forbidden in this
case. The N(y) corresponding to this transition
probability is given by exp[max(y, ny) y ]. Using
the formulation of Sec.II, one obtains e~x —1, and
e' + (1 —RX)e —2 for the average number of
optical-phonon emissions in the respective cases
of R =-,' and —,'. These results agree with that of
the simple algebraic approach. ' For smaller R's
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of the type 1/(m+ 1) with integer m, numerical
evaluations in a self-consistentwayof the integral
equations in Sec. IIyield the same n as that of the
algebraic solution. ' For the analytic confirmation
of the equivalence of these two different approach-
es, a conjecture, h =[K(m+1) —m]e"~' for It= 1/
(m+ 1), needs to be proven: the h(y) is defined as
H(y)=h(y)/e' ~' and h„ is h(y) for may &y &y, . The
definition of K(m) can be found in Ref. 8. That
this conjecture is true for m= l. and 2 has been
checked.

Case (ii): two-direction scattering with equal
probabili ties.

10-1

10 2

R=.Q 5

T(y„y,)= —,
' exp( —ly, —y, l)+ —,

' exp[-(y, +y, )]. (17)

N(y) = e 'ocosh(y) in this case. Shown in Fig. 4 are
the transition probabilities for various y, . Note that
an electron, after having a collision at a given lo-
cation, may move against the external electric
force (backward scattering) and have another col-
lision somewhere upstream in the electric field,
further delaying the time at which it will reach the
ionization threshold. Consequently, the mean ion-
ization distance for this case is somewhat longer
than for case (i) above. In Fig. 8, the ionization
events per mean free path (N„„) of these two
cases for 8 =0.05 are compared in a semilog
scale. The one-half chance to scatter backward
does change N„„substantially for low electric
fields (large E&/el')

Cl

N

I~

10-4
8 10

F.;io QX.
12 14 16

Case (iii): general scattering.

r/2

T(y„y,)dy, =—,
' QP(8)d(e ~ 2 ~ '~ ~"

FIG. 5. Ionization events per mean free path for vari-
ous types of scattering 5'~/E; = 0.05.

~2~&2 &j.
/ ~ (18)

10

The functions S,(y„y„8)and S,(y„y„8), as can be
found in the Appendix, are the are lengths of the
electron from y, to the points on the trajectory at
which the height is y, . 8 is the projectile angle
and P(8) the corresponding probability [P(8) = const
for isotropic scattering]. .Trivially,

&10 2

2

N(y, ) = ' P(8)(e 1&"o "i '+e 2 "o,'i, '). (1&)

O
I—

M

CLl—
10'

10-4
0 . 2 .4

Y//(,
'

. 6 . 8

FIG. 4. T(y2, y&) for hvo-direction scattering with
equal probabilities. Here X= E;/eC& = 10.

There are three important observations con-
cerning Eq. (18). The first is that the angular in-
tegration appears as a multiplicative factor where-
as in Baraff's formulation' it shows up in the ex-
ponent. The second is about the behavior of
T(y„y, ) at some seemingly singular points. For
example, at cos'8 =y, /y„both terms on the right-
hand side of Eq. (18) are divergent. They sum up
to a finite value because S, =S, when cos'8=y, /y, .
Another example is when eos 8 =0 so that the de-
nominator in the logarithmic function of S,(y„y„8)
in Eq. (A2) becomes zero. The cos'8 factor in
front of this logarithmic function eliminates this
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singular behavior. The good behavior of T(y„y,)
is sort of physically clear from the definition of
T(y„y,) itself: given a scattering at y„ the proba-
bility of the next scattering within a strip dy, at y,
should be finite because the segment of the trajec-
tory arc inside this strip shrinks to zero at least
as fast as dy, does. Baraff's approximate expres-
sion for T does contain a singularity at y, =y, .
The third observation involves the normalization
of T(y„y,). Equation (18) automatically satisfies
the requirement of normalization. because it is
formulated in a purely probabilistic way.

An equivalent way of carrying out the calcula-
tions indicated in Sec. II is to actually compute the
probability of m optical-phonon emissions for
m=0, 1,2, ... . Once N and T are known, these
probabilities are just simple integrals. The im-
portant advantage of this is to'check and see if the
sum of all probabilities equals unity, a very strin-
gent constraint on the accuracy of both the most
fundamental function T(y„y,) itself and all the nu-

merical procedures involved. In other words,
once T(y„y, ) is set, a probability distribution is
obtained which has to be summed up to unity to be
correct. This requirement has been obeyed to
guarantee the correctness of the computed results.

In actual calculations, a steady state will be
reached, as correctly observed by Baraff, ' in
which the ratio of adjacent probabilities of emit-

10 1

ting m and m+ 1 optical phonons approaches a con-
stant. This constant, called y, is strictly con-
trolled by T(y„y, ) itself and may be computed by
using either the eigenvalue method or iterative
procedures. Using this constant, the probability
at the onset of the steady state, and the sum of the
probabilities before reaching the steady state, one
can compute the total probability which should be
unity if everything is right.

In Fig. 6 we show the probability distributions of
case (ii) and case (iii) for R= 0.05 and X= 6. The
steady state is determined when the fractional
change of the probability ratio y is less than 10 '
(in some cases 10 ').

The result of the present work for the i.sotropic-
scattering case is presented in Fig. 5 for 8=0.05.
Also shown in the figure is acurve of Baraff for
identical assumptions. The difference is about a
factor of 2 atX=10 where, on the average, an
ionization event occurs every thousand mean free
paths (slow charge multiplication). The discrep-
ancy gradually disappears as X is decreased.
Comparison of Baraff's work and the present ap-
proach for 8 =0.01 shows excellent agreement for
X from 2 to 14: the mean ionization distance in
this case is generally less than 100 mean free
paths (fast charge multiplication). It is noted that
in the slow-multiplication cases the steady states
always possess probability ratios very close to
1, i.e. , y=1. Since the equation for the mean ioni-

R=, 05

10

RING

10-1
R=0, 00

F10

10-4
0

I I I . I I I

10 20 30 40 50 60 70
I)UMBER OF OPTICAL PHONON LMISSIONS ?

I=;/e E,X
10 12 14

Fia. 6. Probability distributions of two different scat-
tering functions for same R and X. The sum of each
probability distribution equals unity.

H:Q. 7. +umber of pairs produced per mean free path
as a function of E&/e&h for various values of R =Se/E~.
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zation distan. ce involves terms proportional to
1/(1 —y) and 1/(1 —y)', the result is very sensi-
tive to 1 —y when y is near 1. The y by the pres-
ent calculation for 8=0.05 and X=10, for example,
is 0.99951 and the sum of all proba-bilities is a
satisfactory 1.001.2.

The results of the calculations of P„„are shown
in Fig. 7. Table I gives the computed values. The
agreement between these results and Baraff's work
is generally better for large N~„(fast multiplica-
tion) than for small N~„(slow multiplication).
As described above, this may be due to the differ-
ent requirements in getting y's or the mild singu-
larity in Baraff's expression of the approximate
transition probability density T(E„E,). The over-
all agreement is considered good in viewing the
very different approaches used.

Shockley's N„„for the high-field limit concep-
tually corresponds to our n =0. In his simple
model, the high-field limit corresponds to the
case of very hot electrons whose energies are
always greater than E, In our model, those hot
electrons cannot produce any optical phon. on, thus
n= 0. The argument for obtaining low-field li.mit
in his model is not applicable to the special situa-
tion of X, /X= 0. Even if we choose X, /X= 1, the
formula for N„„is this simple model reads
N„„=e «/RX, which does not correspond to any
of our curves.

IV. CONCLUSION
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A theory is developed for the calculation of the
mean ionization distance in solids. The founda-
tion of this formalism is the same as that of the
Boltzmann equation, namely, concepts of proba-
bility. This shortcut approach clearly relates the
physics to the equations and has versatility in ap-
plications. A simple application, to the isotropic-
scatterin. g case produces results that generally
agree with that obtained by numerically solving
the Boltzmann equation.
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APPENDIX

This appendix gives the formula for the length
of the electron trajectory under the action of a
constant external electric force. The ceiling
where the kinetic energy of the electron is zero is
defined as z = 0. The coordinate z is measured

downward (along the direction of the force) and
therefore eSz =-,'22m'. The el.ectron at zy is pro-
jected at angles + 8 (8 positive) with respect to the
horizon, as showp in Fig. 8. By classical mech-
anics, the trajectory lengths from the point zy to
the intersections with a horizontal line at height
z, are given by

1+sing 't z2
' ' z,S,(z„z„g)=z, sing+cos'gin, », , 2», ~

— —' —' —cos'gi
(g~/gi) + (g~/g| co g) j g| zl )

(A1)

j+ sin8 x/2 z 1/2~
(A2)

If these lengths and the z coordinate are scaled
by X and y is defined as z/X, the dimensionless

trajectory lengths S,(y„y„g) and S,(y„y„g) are
obtained. They are used in Eq. (18).
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