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The electronic structures of crystalline and amorphous Si02 are examined via the tight-

binding method. A new tight-binding Hamiltonian, fit to experiment and to the pseudopotential
band structure of n quartz, is used to calculate densities of states for both n quartz and an Si02
Bethe lattice. These are shown to compare favorably with x-ray photoemission spectra of e
quartz and amorphous Si02, The computational results are analyzed qualitatively using the

bond-orbital approach. For both crystalline and amorphous SiO2 it is suggested that oxygen 2s
character in the lower conduction bands may be necessary to account for the large gap. Local
symmetries of the lone-pair-like bands of possible relevance to the optical properties are dis-

cussed.

I. INTRODUCTION

This is the first in a series of papers concerned with
the effects of inhomogeneities (disorder, defects, sur-
faces, and interfaces) on the electronic structure of
Si02. Unlike the crystalline forms of Si02, which
have been studied extensively' "for many years,
this important class of systems is relatively poorly un-
derstood on the microscopic level. There are two
very different problems in these systems which set
them apart from crystals: the absence of periodicity
and the breakdown of the one-electron approxima-
tion. The first of these gives rise to the second, in
the sense that disordered systems can possess both
localized and extended states, and-thus present corre-
lation and mechanical relaxation effects potentially
more difficult to understand than those of structural
indeterminacy or randomness. Nevertheless, the
two-problems are distinct physically and should be
studied separately. In this and the following pages,
the position will be adopted that understanding the
first problem is a prerequisite for approaching the
second.

Of the methods currently available for studying the
effects of structural inhomogeneities on the density
of states, one of the simplest is the cluster-Bethe-
lattice technique. ' ' Functionally the method entails
simulating a random network calculation by embed-
ding a small neighborhood from the network in Bethe
lattices. Conceptually it is superior to the random-
network approach in that it provides physical insight
into the local origins of features in the density of
states. The method has produced good agreement
with experiment in studies of electrons in amorphous
semiconductors' and in a recent theory of phonons
in amorphous Si02.' '

Realistic application of the cluster-Bethe-lattice
method requires the existence of a tight-binding
description of the bonding. Assuming that Si02 is
fundamentally a bonded material and that methods
appropriate for semiconductors are applicable to it,
the first step in understanding disorder is to develop
a tight-binding description of n quartz. The second
step is to build an SiG2 Bethe lattice and compare its
density of states with photoemission for amorphous
SiO2.

In this paper, we deal with these two preliminary
aspects of the inhomogeneity problem. In doing so,
we develop a picture of Si02 which stresses the im-
portance of the local atomic environment, and in
which features of the electronic structure universal
among all allotropes are identified. We go beyond
previous local descriptions in that we explain the
widths and shapes of the major bands as well as their
centers of mass. This enables us to obtain a quanti-
tative understanding of the formation of the funda-
mental gap in Si02, and suggests a new picture of
bonding in Si02 in which oxygen 2s states play an im-
portant role. It also enables us to understand quanti-
tatively the local symmetries of the states at the
valence- and conduction-band edges, and thus shed
light on the nature of the optical-absorption edge.

The plan of the paper is as follows. In Sec. II, we
discuss the use of the Bethe lattice in studies of
amorphous materials and outline its solution. In Sec.
III, we discuss bonding in SiO2, starting with the
bond-orbita12 picture. In Sec. IV, we compare the
densities of states of o. quartz and the Bethe lattice
with experiment. In Sec. V, we discuss: (i) the rela-
tion between the shapes of the major bands, (ii) the
symmetries of the states about the silicon centers,
(iii) the disallowed nature of the first optical transi-
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tions, and (iv) the role of the various tight-binding
parameters in shaping the density of states. In Sec.
VI, we discuss the ionicity of Si02 in the context of
the formation of the fundamental gap, and the signi-
ficance to the formation of the gap of the oxygen-2s
wave-function admixture in the lowest conduction
states. In Sec. VII, we discuss the effects of topologi-
cal and bond-angle disorder in the glass. In Sec.
VIII, we summarize our results.

II. BETHE LATTICE

(2)

(3)

(4)

A Bethe lattice is a bonded network of atoms
which has the topology of a tree. The nearest-
neighbor geometry and local environment of an atom
are the same as those in the actual solid, but the or-
dinary necessity of having rings of bonds in the struc-
ture and fluctuations in the interaction parameters
due to disorder is arbitrarily abolished. Although it is
in many respects unphysical, the trivial topology of
the Bethe lattice has been shown to be an excellent
substitute for the disordered topology of a bonded
glass. "

The Si02 Bethe lattice we deal with in this paper is
depicted schematically in Fig. 1. Each silicon atom is
tetrahedrally coordinated to four oxygen atoms, each
oxygen atom is bonded to two silicon atoms, and the
Si-0-Si angle is 144 . The Bethe lattice is identical to
o, quartz in every way except that it contains no
closed rings of bonds.

We illustrate the solution of the Bethe lattice with
an idealized form of Si02 in which each atom
possesses only one s state. If the silicon and oxygen
wave functions are denoted Ps; and Po, then the
simplified Hamiltonian is summarized as

& 4s IH I ts ) = &s (1)

&polHI lo& = &o

&eolH leo& = v',

We first renormalize away the silicon degree of
freedom, effectively transforming the Hamiltonian
into that of Weaire and Thorpe'

2V
&AolHI&o& =&o=&o+

&y, IHIP','&= v= v'+
& —

&si
(6)

This is depicted schematically in Fig. 2(a). We then
confine the Hamiltonian to an 04 molecule. As this
has tetrahedral symmetry, the Hamiltonian is diago-
nalized trivially with one Ai and three F2 states

l&i& = —,
'

(let& + le» +103& + l04&),

I +g& = —', (I yt& + I q ~&
—

I e3&
—

I y4&),

(7)

the eigenvalues of which are

eg =~p+3V
1

and

eF =co—V
2

(10)

The intramolecular Green's function is thus given by

G= Iw, &&~,l+ Xlsj&&P, I .
1 F2

(12)

The diagonal Green's function matrix element associ-
ated with an oxygen orbital is thus

1 3
4 4G11= +

Z E —E'F Z
1 2

(13)

l&i& &&tl+ gl~~& &~, I . (»)
1

—EF J

Attaching the rest of the Bethe lattice is equivalent to
adding an energy-dependent self-energy Z to each or-
bital. This gives

(a) (b)

.L

L"T
aL .. :2V

FIG. l. Topology of the Bethe lattice. Every pair of
atoms is connected by one and only one path of bonds.

FIG. 2 ~ Interaction diagram for the model Bethe lattice.
(a) with silicon degree of freedom removed and (b) with
each oxygen orbital replaced formally with two orbitals
strongly bonded together.
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6o

In the presence of the rest of the system, one has

The self-energy, Z, is thus determined by the condi-
tion

1

4

3
1 + . (16)

6o 2Z 6 6g 2Z 6 EF2

The Bethe density of states is given by

p(E) =——Im1 1

vT 6 6p 2Z
(17)

The significance of the eigenvalues appearing in
the denominators of Eq. (16) may be easily under-
stood in terms of the unbonded Weaire-Thorpe sys-
tem, shown in Fig. 2(b). This Bethe lattice, which is
a system of interacting 04 molecules, is equivalent to
the one on the left in the limit of large h. Up to a
self-energy shift of —4, the A1 and F2 eigenvalues of
a molecule are

=26' 6p
1 1

E'F = 2EF —EP
2 2

Substituting

(18)

Similar reasoning, however, may be applied to an iso-
lated orbital. In the absence of the rest of the sys-
tem, the Green's function of an orbital is

bonding unit containing an oxygen atom and one sp
hybrid from each adjacent silicon atom. Their picture
is illustrated in the upper half of Fig. 3. The three 2p
orbitals on the oxygen interact with the hybrids to
form five bond orbitals. The oxygen-p state perpen-
dicular to the bonding plane becomes the lone-pair
bond orbital at the 0-2p level. The remaining non-
bonding oxygen p interacts with the symmetric com-
bination of hybrids to form the weak-bonding and
weak-antibonding bond orbitals. As this interaction
reduces to zero when the Si-0-Si angle is increased to
180', the amount of mixing is fairly small. The oxy-
gen p pointing along the bond interacts with the an-
tisymmetric combination of hybrids to form the
strong-bonding and strong-antibonding bond orbitals.
The six electrons available for bonding then fill the
system up to the lone pairs, which thus form the
upper valence bands. The gap lies between the lone-
pair and weak-antibonding energies, which is approxi-
mately the difference between the oxygen-2p and sili-
con hybrid levels.

If the interaction between adjacent hybrids on the
same silicon, as well as those between nearest-
neighbor oxygen atoms, are sufficiently weak, bond
orbitals will interact effectively only with others of
the same species. This is illustrated in the lower half
of Fig. 3. To an excellent approximation, bond orbi-
tals interact only when they are adjacent, and always
with the same interaction V. Thus the Hamiltonian
which describes the broadening of a bond orbital into
a band is always the same, up to the magnitude of V,

which determines the bandwidth. By inspection, as-

Z = —(e —eo) +—8
1 1

2 2 (20)

into Eq. (16) we obtain

1

1=
8

1

3

4

6F 5
2

(21)

Thus, the parameters of the system influence its den-
sity of states only through the eigenvalues of the iso-
lated 04 molecule. These may be shown by explicit
solution of Eq. (21) to delimit the band edges.

When a more realistic Hamiltonian is substituted
for the simplified one, the analysis in the foregoing
section remains basically unchanged but for the sub-
stitution of matrices for scalars. An alternative
method of solution has been discussed recently. '

Silicon
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III. BONDING IN Si02

It has been shown by Pantelides and Harrison' that
the electronic structure of Si02 can be understood
simply in terms of the electronic levels of a small

FIG. 3. Bond-orbital picture of band formation in Si02.
Silicon hybrids and oxygen-2p states interact (top) to form
five bond orbitals, each of which subsequently broadens
(bottom) into a band of characteristic shape. The width of
this band scales with the nearest-neighbor interaction, V.
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suming no odd-fold rings of bonds, the completely
bonding state is lowered by 6 V, while the antibonding
state is raised by —2 V. This delimits the band. As
the center of mass is unshifted, the antibonding
states must be always more dense than the bonding
states.

In Sec. VI, we shall criticize the bond-orbital pic-
ture just described on the grounds that it excludes
oxygen-2s states. %e remark at this point that their
inclusion does not alter the picture qualitatively.
Even if bonding between these states and silicon hy-
brids is important, symmetry allows only the weak-
bonding and weak-antibonding bond orbitals to be af-
fected. Since the weak-bonding state contains almost
no silicon character, however, the primary effect of
including oxygen-2s —silicon hybrid interactions is to
push the oxygen-s and weak-antibonding levels apart
while mixing their characters slightly. This has also
been noted by Yndurain. '
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IV. DENSITIES OF STATES

Experimentally, " 2 the electronic structures of
crystalline and amorphous Si02 are known to be very
similar. In Fig. 4, we compare x-ray photoemission
spectra of the crystal and the glass. In each case,
one sees two distinct bands, one composed of both
weak-bonding and lone-pair states (0—5 eV) and
another which is strong bonding (6—ll eV) in char-
acter. The widths of these bands are the same in
both materials, as are their overall shapes. There is
structure in the strong-bonding band of n quartz near
9 eV which is absent in amorphous silica, but the
peak at 6 eV is present in both spectra. The lone-
pair-like band tends to lose some fine structure and
peak up slightly in the center as the material is made
amorphous.

In Fig. 5, we show theoretical densities of states for
n quartz and the Bethe lattice calculated using the
empirical tight-binding Hamiltonian listed in Table I.
In each case one sees four distinct bands: the
oxygen-s states (—22 to —19 eV), the strong-bonding
states (—11 to —6'eV), the lone-pair-like band (-5 to
0 eV), and the weak-antibonding conduction states
(10 eV and above). There is structure in the center
of the strong-bonding band of n quartz near —9 eV
which is absent in the Bethe lattice, but the spike
near —6 eV is present in both densities of states.
This effect is also seen in the oxygen s and lower
conductio'n bands. There is virtually no change in
the 1ong-pair-like band when the Bethe lattice is sub-
stituted for 0. quartz.

The calculated band structure of o. quartz along the
principal symmetry directions of the Brillouin zone is
shown in Fig. 6. As the pseudopotential calculation
gives the wrong splitting between the oxygen-s and
strong-bonding bands, this distance has been fit to

12 10 8 6 4 2 0

ENERGY BELOW TOP OF VB (eV)

FIG. 4. X-ray photoemission spectra of a quartz (top)
and amorphous silica (bottom) taken from Ref. 18. The
solid curves are smoothed versions of the data, shown in
dots.

oc -Quartz

Bethe Lattice

Vlc0
CI

- 20 -15 -10 -5 0 5

Ener gy (eV)

I

'to 15

FIG. 5. Densities-of-states e quartz and the Bethe lattice
calculated using the Hamiltonian listed in Table I.
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I

15--

10-

TABLE I. Tight-binding parameters for Si02. Oxygen-
oxygen parameters are defined relative to the 0-Si-0 bond-
ing plane. Oxygen-p orbitals in the plane may lie either
along the bond or perpendicular to it. The possible in-plane
interactions allowed by symmetry are parameterized by V~

through V3.

5--
(Si sIHISi s) =4.95 (0 sIHIO s) =—16.4

(Si pIHISi p) =11.2 (0 pIHIO p) = —1.3

(Si s IHIO s) =—3.05 (O'IHIO): VP =0.574

-10-—

-15--

(Si p I HIO s) = —7.0

(Si s IHIO p) = —5.4

(Si pIHIO p) =5.4

(Si pIHIO p)„=—1.4

V2 =—0.548

V30 =—0.75

V4 =0.26

Vo 0 45

~«2O «

K k
0

FIG. 6. Band structure of a quartz calculated using the
Hamiltonian listed in Table I.

x-ray emission23 and x-ray-photoemission (XPS)'0
data. The gap is indirect (A to I') and has a magni-
tude of 9.2 eV. The ordering of the degeneracies at
symmetry points agrees with the pseudopotential ex-
cept in the lone-pair-like bands. The bands are suffi-
ciently dense in this region that simultaneously fitting
the density of states and the ordering of the degen-
eracies is impossible with the parameterization we
have chose. The dispersion of the remaining bands
shows considerable duplication. The oxygen-s,
strong-bonding, and lower conduction regions all con-
tain six bands, only 3 of which disperse significantly.
These 3 clearly scale between the oxygen-s and lower
conduction bands but have their degeneracies re-
versed in the strong-bonding bands. This reversal is
due to the negative phase between the silicon hybrids
in the bond orbital. In each of these three regions,
the remaining nondispersive bands induce a large
density of states at the upper edge of the band.

The parameters used in the tight-binding Hamil-
tonian are summarized in Table I. The basis set con-
sists of Si-3s, Si-3p, 0-2s, and 0-2p states oddly. All
possible nearest-neighbor, Si-0 interactions are in-
cluded, as are small nearest-neighbor O-O interac-
tions. The criteria for determining the parameters in
Tab'le I are discussed in Sec. V.

V4
0 0

V~

V. BAND SHAPES

~p+6V

eF =op —2V,

(22)

(23)

into Eq. (21) to obtain the density of states. The
symmetry of the states about the silicon centers is re-
flected in the local densities of states, the density of
states weighted by the square of the amplitude of

The oxygen-s, strong-bonding, and lower conduc-
tion bands have in common a characteristic shape in
the Bethe lattice which carries over to n quartz, up to
additional superimposed structure. These bands all
derive from a single bond orbital and are thus
described by the bonding part of the Weaire-Thorpe
Hamiltonian. ' The solution of the Bethe lattice us-
ing this Hamiltonian has been outlined in Eqs.
(5)—(21). If eo is the energy of the bond orbital and
V is the interaction between two bond orbitals in the
same tetrahedron, then one may substitute
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each state on an A ~ or F2 combination of bond orbi-
tals. These are given by

pg (e) =—Im
2
m

(24)

pF (e) =——Im2
2 7r

We have

F2

p(~) = —,pg, (~) + —,pF, (~) .1 3 (26)

In Fig. 7, we show the solutions to these equations
for 6o =0 and V= —1. The characteristic asymmetry
seen in these three bands is accurately reproduced.
The states at the bonding edge may be seen to have
pure A ~ character, while the antibonding states are
pure F2. X-ray emission spectroscopy, ' which
probes the local densities of states, verifies this
A ~

—F2 asymmetry for both the oxygen-s and
strong-bonding bands: The lower edges of both are
enhanced in the Si L2 3 spectrum, while the upper
edges are enhanced in the Si EP.

It is clear from Fig. 5 that the three-peak structure
of the lone-pair-like band also results from local sym-
metries which are preserved in the Bethe lattice. Its

+ (~ ~F——&—) '+ —(e aF —5) '—
8 2 1

(27)

shape can be understood in the following manner.
As the width of the lone-pair-like band, which is due
almost entirely to the oxygen-oxygen interactions, is
much greater. than the splitting between the lone-pair
and weak-bonding bond orbitals, it is appropriate to
treat this splitting as a perturbation to the system in
which the Si-0-Si angle is 180'. This approximate
system may be further idealized by formally remov-
ing all unnecessary orbitals: all those except the oxy-
gen p states perpendicular to the bond. The model
thus formed may be solved exactly by analogy with
Eqs. (5)-(21). Each oxygen orbital is split in half,
and. each half assigned to each adjacent 04 molecule.
The transformed Hamiltonian, confined to a
molecule, then splits the molecule into energy eigen-
states, the eigenvalues of which appear in the denom-
inators of Eq. (21). In this case, however, there are
eight degrees of freedom in the molecule and three
energy eigenvalues: a doubly-degenerate E state, a
triply-degenerate F2 state, and a triply-degenerate F~
state. The analog of Eq. (21) for the lone-pair-like
band is thus

-(25) '=-, (e-eE 5)-'

Total Tota I

0

A

O

0

-7 -6 -5 -4 -3 -2 -& 0 ~ 2 3

Energy (arbitrary units)
-1 0 1

Energy (eV)
2 3

FIG. '7. Solutions of Eqs. (24) —(26}, representing the
density of states and orbital symmetries of an idealized
bond-orbital-derived band.

FIG. 8. Solution of Eq. (27), representing the density of
states and orbital symmetries of an idealized lone-pair-like
band.
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In Fig. 8, we show the solution to Eq. (27) together
with the E, F~, and F2 local densities of states. The
eigenvalues are those resulting from the oxygen-
oxygen interactions listed in Table I, with the 02~ en-
ergy set to zero. The shape is very similar to that
seen in Fig. 5. There are two disparities, excessive
strength near 2 eV and the lack of a discernable peak
at —2 eV, both of which result from the absence of
the Si-0-Si bend.

The oxygen-oxygen interactions have been fit to
order the eigenvalues in the manner

E 4 F2 F1 (28)

as this is the ordering found in two less empirical cal-
culations performed for the Si04 molecule. We
emphasize, however, that this ordering is also con-
sistent with the pseudopotential results. ' The pseudo-
potential density of states in this region is asym-
metric, the low-energy side being smaller. This
would indicate that the eigenvalue with the smallest
degeneracy is the most deeply bound. In addition,
the first direct optical transitions in the pseudopoten-
tial calculation appear to be dipole forbidden, even
though no crystal structure selection rule is responsi-
ble. As the lowest conduction states have s-like,
symmetry about the silicon centers, the location of
the F~ states, which is d-like, at the valence-band
maximum would account very nicely for this selec-
tion rule. Based on this interpretation, we would
predict that the first direct transitions are forbidden in
any allotrope of Si02 in which the Si04 tetrahedra
remain intact.

The model calculations discussed in this section
demonstrate that parameterizing the density of states
of Si02 effectively reduces to parameterizing a set of
11 eigenvalues, which lie at the major band edges
and at peaks in the density of states. These include
the A ~ and F~ eigenvalues of the oxygen-s, strong-
bonding, weak-antibonding, and strong-antibonding
bands as well as the E, F~, and F2 eigenvalues of the
lone-pair-like band. They may be obtained as eigen-
values of five small matrices having tight-binding
parameters as elements. These are listed in Table II.
Although the table is strictly valid only when the
Si-0-Si angle is 180', it is generally helpful in show-
ing the approximate functions of the various parame-
ters. For example, the m interaction, which is not in-
cluded in the bond-orbital picture at all, may be seen
from Table II to couple silicon p states to the F2 com-
bination of lone-pair-like orbitals. It primarily causes
the latter to interact virtually with itself and with the
p-like spike of the strong-bonding band. This results
in an apparent shift of its energy and a shifting and
severe broadening of the spike. Table II also shows
that the oxygen-oxygen parameters V2 has a similar
effect. The fact that this spike is fairly sharp in the
pseudopotential results indicates that either these
parameters are small or their effects cancel.

All of the necessary eigenvalues but two may be
obtained from the pseudopotential density of states
or from experiment. The remaining two fall some-
where in the upper conduction bands beyond 15 eV,
where both the pseudopotential and tight-binding cal-
culations are unreliable. For want of a better value,

TABLE II. Six small matrices, the eigenvalues of which determine peaks and band edges in the Bethe-lattice density of states.

2A i.'

2A i.'

(0 s I Hl 0 s) +6 Vs J8 (0 s I H I Si s)

J8 (Si s IHIO s) (Si s IHISi s)

(0 plHIO p) +6VP J8(0 plHISi s)

J8(Si sIHIO p) (Si s IHISi s)

(0 s I H I 0 s) —2 Vso J3(0 s I Hl Si p)
2F2. s

T(Si plHIO s) (Si pIHISi p}

3F2.'

(o pIHlo p) —2v,' 4V,o

4V,' (0 p I H I 0 p) + V30 +3 V40

3 Si p H 0 p 3
Si p H 0 p

J 'I

—(0 plHISi p)

Op HSip ~

(Si p IHISi p)

1ji'. (0 p I H I 0 p) —3 vs —v4

1E: (0 p IHIO p) +3 V30 —3 V40
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we have set them both to roughly 17 eV. As the
pseudopotential results show that the peak at 15 eV is
not weak antibonding in character, we have made it
strong antibonding. This is not completely correct ei-
ther, however, and thus the character of our conduc-
-tion bands is probably incorrect above 14 eV. -With

the eigenvalues established in this manner, we have
11 constraints on the Hamiltonian and 14 parameters.
To constrain the parameterization completely, we set
the orbital self-energies to their atomic values, but al-
low the silicon levels to shift together relative to the
oxygen levels. We find that in order to fit the densi-
ty of states, particularly to open up the gap, the sili-
con levels must be shifted upward between 4.5 and
7 eV, depending on what one takes for the atomic
levels.

VI. BONDING NATURE OF THE GAP

One of the most distinguishing characteristics of
Si02 is its dual ionic and covalent character. The
charge on an oxygen atom is usually estimated to be
—1, which easily classifies Si02 as an ionic material in
the sense of charge transfer. On the other hand, this
and other calculations show that Si02 possesses direc-
tional bonds and has electronic properties when
disordered expected of a covalent materia1. In the
sense of tight binding, the covalency or ionicity of a
material is also reflected in the origin of its gap. In a
classic ionic material, such as NaC1, the electronic
levels of the neutral anion and cation are very dif-
ferent, so that as the atoms are brought together to
form the solid, relatively little bonding occurs, and
the size of the gap reflects primarily the disparity in
the atomic levels. In a classical covalent material,
such as silicon, the anion and cation levels are so
similar (equal) that the size of the gap reflects pri-

marily the strength of the bonding interaction. In
constructing a theory of Si02 capable of predicting
the results of large distortions, it is clearly necessary
to know which picture is more correct. If one breaks
a bond in a covalent material, for example, the gap
region will be severely perturbed, and the result will

be a dangling-bond state. In an ionic material, on the
other hand, the perturbation is small and there will

be no state in the gap.
The charge densities produced by the pseudopoten-

tial calculation show that the lowest conduction states
of n quartz have considerable oxygen-s character.
This has been interpreted previously " as oxygen 3s,
the implicit understanding being that there is an ac-
cidental degeneracy of these states with the excited
oxygen-3s resonance, which thus mixes in without
significantly altering the energies. There are two
strong arguments in favor of this picture: (a) As-
suming that the 0 2p level lies at the center of the
lone-pair-like band, the 0 3s states lies at roughly
this energy. (b) The 0 2s states and lower conduc-

P, ~ exp(-0. 180r2)

$0 ~ exp( —0.514r')

(29)

(30)

With the Si-O-Si angle set to 180', one obtains the
two-level problem for the energies and wave func-
tions of the lowest conduction and lowest oxygen s
state indicated in the first matrix in Table II. In
Table III, we list an alterqate set of parameters in
which the Si-3s and 0-2p levels are reordered, but
which gives the same energies as the parameters in
Table I. This is made possible by the inclusion of a
small nearest-neighbor overlap. Using the amplitudes
produced by these parameters, we make bonding and
antibonding combinations of the wave functions (29)
and (30), square to produce charge densities, and
compare these with the pseudopotential results in

Fig. 9. The spacing between contours is uniform
within a frame, but cannot be compared between
frames. Figure 9 shows that the charge densities of
both the oxygen-s and lower conduction bands are
consistent with the idea that the gap in Si02 is com-

TABLE III. Partial listing of a Hamiltonian including
nearest-neighbor overlaps which produces the same density
of states as the one listed in Table I.

(O p IHIO p) = —1.3 &Si s IHISi s) =—4.28

(0 s IHIO s) = —16.88

(Si s IH IO s) = —5.31 (Si s )0 s) =0.14

V50 = —0.45

tion bands are separated by 30 eV, an excessively
large range over which to find significant oxygen-2s
character. Despite these arguments, however, we be-
lieve that at least some oxygen-2s character is present
in the lower conduction bands, and that its presence
is important for the formation of the gap in SiO2.
The reasons are the foiiowing: (a) The atomic silicon-
3s and oxygen-2p levels are approximately equal.
Unless bonding of silicon s states with oxygen 2s is
introduced, the gap can be opened only by raising the
silicon levels between 4.5 and 7 eV. This is very un-

physical, in light of the enormous charge transfer in
Si02. We have, in fact, been able to take matrix ele-
ments of atomic wave functions across the pseudopo-
tential24 and find that the silicon-3s level lies slightly
below the oxygen 2p. (b) The pseudowave function of
the lowest conduction state is antibonding. ' The
negative phase between silicon and oxygen ampli-
tudes appears to be necessary in order to have ortho-
gonality to the oxygen-s bands. (c) A "reasonable"
tight-binding Herman-Skillman wave functions, fit-
ting them to 2 6 outside the core (distances in a.u.)
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FIG. 9. Comparison between pseudopotential charge den-
sities and those calculated using the Hamiltonian listed in
Table III and the model wave functions (29) and {30).

pletely covalent. Despite the fact that the oxygen s
states contain 12% silicon character, they look free of
silicon because the silicon orbitals are so much more
diffuse than the oxygen orbitals. The antibonding
state is also in excellent agreement with pseudopoten-
tial. It contains less oxygen character than it should,
however, which seems to indicate that oxygen 3s is
participating in the state as well.

We have been able to construct an entire Hamil-
tonian based on atomic levels which produces densi-
ties of states virtually identical to those in Fig. 5. We
have not listed its parameters, however, because in-

cluding the nonorthogonality causes the Hamiltonian
to be severely overparameterized. It is likely, howev-
er, that such nonorthogonal Hamiltonians are closer
to the truth as regards the silicon dangling bond
states than is the one listed in Table I.

VII. DISORDER

The major differences between the densities of
states of crystalline and amorphous silicon have been
attributed to differences in topology. As was dis-
cussed in Sec. II, the topological randomness of the
disordered system tends to be modeled well by the
topological neutrality of the Bethe lattice, so that one
can assess the effects of disorder by comparing the
crystal and Bethe-lattice densities of states. Amor-
phous silicon is described approximately by the Ham-
iltonian' in Sec. III. Thus, the differences seen in
Fig. 5 between the crystal and Bethe-lattice strong-
bonding bands are analogous to the differences
between crystalline and amorphous silicon. The
three-peak structure seen in this band in o. quartz has
been shown by Thorpe to be due to the presence of
six- and eightfold rings of bonds. In silicon, only six-
fold rings, are present, thus reducing the number of
peaks to two. Nevertheless, the disappearance of
this structure when the material is made amorphous,
which is evident in Fig. 4, is the same phenomenon
in both materials, and provides additional evidence

that the bonding picture of Si02 is the correct one.
While this structure has not yet been resolved in ei-
ther the oxygen-s or lower conduction bands, it is
present in the crystal and should also be found to
disappear when the solid is made amorphous.

While bond lengths remain fairly constant in the
amorphous material, bond-angle fluctuations, particu-
larly of the Si-0-Si angle, are known" to be pre-
valent. An obvious question to ask is whether these
fluctuations are the cause of the disparity in the
lone-pair-like bands between the upper and lower
halves of Fig. 4. To the extent a nearest-neighbor
description is accurate, this is not the case. The ef-
fect-of opening and closing the Si-0-Si angle, for ex-
ample, may be assessed by comparing the lone-pair-
like region in Fig. 5 with the top of Fig. 8. Changing
this angle appears to rob states from one edge of this
band and transport them to the other, without chang-
ing the bandwidth or putting states in the center.
This is caused by a change in the splitting between
the weak-bonding and lone-pair bond orbitals. In ad-
dition, distorting the Si04 tetrahedron tends to in-
crease the mean-square splitting of the lone-pair orbi-
tals, and thus the width of the band. As the tight-
binding density of states looks more like the amor-
phous XPS than that of the crystal, a likely explana-
tion is that these effects are caused by distant-
neighbor interactions which are disrupted in the glass.

The region of the density of states which should be
severely affected by bond-angle disorder is the
conduction-band edge. When the Si-0-Si angle is
180', the weak-antibonding bond orbital, which
forms the bottom of the conduction band, contains
no oxygen-p character. As this angle is bent, pro-
gressively more oxygen p is incorporated into the
state, resulting in upward motion of this state by 2 eV
upon reaching the nominal o.-quartz angle of 144'.
The magnitude of this effect is determined by the
strength of the bonding. interaction, which can be
determined fairly unambiguously from the splitting
between the strong-bonding and lone-pair-like bands.
Pantelides and Harrison have shown that the interac-
tion of this state with the oxygen p states should
scale as cos

2
8). Thus the fluctuations of about +10'

seen in this angle in amorphous Si02 (Ref. 28)
should result in roughly 0.5-eV band tailing at the
conduction-band edge. We cannot describe the mo-
bility edge of this system at present. It would be
pointed out, however, that this is inherently a simple
problem with diagonal disorder and constant nearest-
neighbor transfer integrals which might be investigat-
ed numerically.

VIII. SUMMARY

In this paper, we have developed a picture of the
electronic states of Si02 in which periodicity plays no
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role. Using the Bethe lattice as a structural model for
the material, we have been able to attribute quantita-
tively a number of its properties to the integrity of
the local atomic environment, particularly the Si04
tetrahedron, in its structure. The most significant of
these are the overall shapes of the bands and the di-

pole selection rule forbidding the first optical transi-
tions. We have also shown that Si02 may have a co-
valent gap, the great size of which is directly attribut-
able to the presence of oxygen-2s character in the
lower conduction bands. As regards disorder, we
have made two major points: (a) the major differ-
ences between the densities of states of crystalline
and amorphous Si02 have analogs in silicon, and

(b) there should be considerable band tailing from
the conduction bands in the glass.
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