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Variational calculations of bound states of H™ ions in magnetic fields have been undertaken in an attempt
to understand the role of magnetic field, exchange, and correlation in the binding, particularly for those
states which are unbound in the absence of a field. Field-induced binding at weak fields is pictured as a
trapping of the outer electron in two dimensions by the magnetic field and in the third dimension by the
induced polarization of the inner H atom. Singlet and triplet states of various angular momenta are studied.
Results are presented also for a number of He-atom levels. It is shown that positrons bind to H atoms in a

magnetic field.

I. INTRODUCTION

The H™ ion, a proton with two electrons attach-
ed, has been studied theoretically for 50 years,
and its electronic structure is by now very ac-
curately understood.! At zero magnetic field H™
is known to have exactly one bound state,? a 'S
level, with total energy close to —1.0555 &y,
where & is the H-atom Rydberg.®

In contrast, the behavior of H™ ions in intense
magnetic fields, fields strong enough to affect the
H™ orbital wave function significantly, has been
much less well explored. This problem has at-
tracted attention in astrophysics with the discov-
ery of very large magnetic fields in neutron stars
and in some white dwarfs.*”® However, it would
seem that the main experimental interest in H™
arises in the study of H™ analogs in semiconduc-
tors at low temperatures.

Since 1970, strong experimental evidence has
accumulated for the existence of long-lived D~
ions, singly charged donor ions with two electrons
attached, in the multivalley semiconductors Si
and Ge.””™ Under properly applied stress, D~
levels in these materials are expected to be basi-
cally similar in structure to those of the H™ ion.'°
Recently, evidence has been put forward for the
existence of D™ centers in CdS, a single-valley
semiconductor; in this material the D™ ion should
be very closely analogous to H™.'? Since, in the
conduction band of semiconductors, the effective
strength of an applied magnetic field on a D™ ion
may be magnified by a factor of 10* or more rel-
ative to the same field applied to an H™ ion in
vacuum, the study of H™ -ion analogs at high ef-
fective fields is possible in the laboratory. Thus,
there is motivation from semiconductor physics
to re-examine the problem of the H™ ion in mag-
netic fields strong enough to sensibly alter the
two-electron wave function.®

In this paper we will be concerned with calcu-
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lating binding energies.of various states of the
H™ ion. These states can have orbital wave func-
tions which are either symmetric upon inter-
change of electron coordinates (singlet states) or
antisymmetric (triplet states). The magnetic
field, B will be taken along the z direction, and
the H™ states will be labeled by M, the compo-
nent of total orbital angular momentum along z.
M, can take on any integer value. Just like the
Hamiltonian for the H atom in a magnetic field,
the H™ Hamiltonian is invariant under reflection
through a plane perpendicular to B and passing
through the proton. This means that we should
attach a z-parity quantum number +1 to the wave
functions according to whether they are even or odd
upon the above-mentioned reflection. Since no
bound states of odd z -parity have been found, we
suppress this quantum number and, unless other-
wise specified, assume it to be +1 for all states
considered. :

By the “binding energy” of a state of the H™ ion,
we mean the least amount of energy required to
remove one of the electrons from the H™ ion to
infinity without changing the spin configuration.
The remaining hydrogen atom is left in its ground
state in the magnetic field, and the distant elec-
tron in its lowest Landau level. (Thus a singlet
H™ state can lie above the lowest triplet continuum
edge when the Zeeman spin energy is included and
still have a positive binding energy by our defini-
tion.)

For the hydrogen atom in a magnetic field, we
use the Hamiltonian

H(1)=-VZ =2/7, +3v%?, 1)
and for the H™ ion, the Hamiltonian
H=H(1)+H(2)+ 2/|F, = F,| +yM,, , 2)

where T; is the displacement of electron ¢ from

the proton, 7?7 =p? +z7, and
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y=hw, /2R, w,=eB/m*c, ®R=m*e'/2e2 .
3

We have assumed an infinitely massive proton,
ignored the Zeeman spin energy (which does not
affect our binding energies), and have taken all
lengths in units of the hydrogenic Bohr radius a,
(a,=n%€e,/m*e?). Hamiltonians (1) and (2) have
been divided through by the hydrogenic Rydberg
® and are universal in the sense that they are
valid for the simplest kind of donors and D™ cen-
ters in semiconductors, as well as for H atoms
and H ions. For the latter, we take m*=m where
m is the mass of the electron in vacuum and set
the static dielectric constant, €,, equal to 1.

The magnetic field appears in (1) and (2) only
through the dimensionless parameter y, which
therefore plays the role of an effective field
strength. For H atoms or H~ ions, v=1 requires
B=2.35X10°T. For the semiconductor GaAs (m*
=0.0663m, €,=12.6), y=1 for B=6.5T.

If we denote the ground-state eigenvalue of (1)
by Ey, (y) then, since y is the lowest energy pos-
sible for the free electron in the dimensionless
magnetic field y, the binding energy E,(S, 7) of the
state S of the H™ ion is given by

EB(S’7)=EHy('Y)+Y'-EH-(S,’}’), (4)

where E4-(S, ) is the eigenvalue of (2) corre-
sponding to state S. State S is bound if E,(S, 7) is
positive. We shall use (4) to calculate binding en-
ergies for various states S, but since neither Ey,
‘nor Ey- is known exactly, we shall insert approx-
imate values for these quantities. For Ey, we use
the most accurate values known to us (see Table
1), for Ey-, our calculated variational values.
Since Ey, will be known in general to much
higher accuracy than E,;-, and since the varia-
tional estimates of Ey- are always higher than the
true value, our calculated binding energies using
(4) will be lower bounds to the true binding energy.
[Thus, in comparing two binding energies obtained
via (4) from two variational calculations of E ;- (S,
), the better calculation will be the one giving the
higher binding energy.] Negative binding energies
correspond to unbound states.

Previous quantitative calculations have focused
upon two states, the My =0 singlet level which
evolves from the 'S zero-field H™ state when the
magnetic field is adiabatically turned on, and the
M, = -1 triplet state, which does not bind at zero
field but somehow becomes bound in the presence
of a magnetic field. Basically two types of varia-
tional trial functions have been proposed. The
earliest calculations employed linear combinations
of large numbers of hydrogenlike Slater orbitals.*
These calculations appear to be excellent for the
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M, =0 singlet state in “weak” fields (y<<1) but are
considerably less good for the My = -1 triplet
level. Trial functions of this type have the dis-
advantage that it is not immediately obvious from
the calculated results what is happening to the H™
wave function in the magnetic field. All other
quantitative calculations®’ ' ® (with the exception
of Ref. 12) have used variants of the trial function

exp(i My ¢,)p, 2! expl - 4 (7,02 + 7,021 f (2 ))g(z,)
+ (1+—=2). (5)

These wave functions are simple and physically
transparent; however, they are not at all well
suited to the low- and intermediate-field region
(yz 5), and, even at very high fields, they do not
appear to give very accurate binding energies. In
Refs. 5 and 6, y, and y, are set equal to their free-
electron value y, whereas in Ref. 13 they are
treated as variational parameters. In Refs. 5 and
13, f(z,) £(z,) is taken in the form

exp-[ - (az}+ Bz3)]

with o and B8 varied, whereas in Ref. 6, f and g
are determined in a Hartree-Fock calculation.

One question unanswered by the above-mentioned
calculations is: At what magnetic field does the
My = -1 triplet state first bind? The answer has
been given in Ref. 14, where it is shown varia-
tionally that, in the limit y—0, for each M;< 0
there exists at least one bound state of H™;
therefore, the lowest M, = -1 level begins to bind
at an infinitesimal field. The trial function em-
ployed is

et tp 1MLl gmypi/agmry |

This simple trial function has no variational
parameters; it is not suitable for quantitative
calculations of binding even for the weakest fields.

In this paper, which is an extension of Ref. 12,
variational calculations are presented using rela-
tively simple and physically transparent trial
functions which produce binding energies rivaling
or exceeding those of the best previous calcula-
tions in the field range of greatest experimental
interest in semiconductors, 02 y ¥ 2, Modifica-
tions for extending the calculations to still higher
fields will be pointed out, but such calculations
have not been pursued in general since it appears
possible to extrapolate the results with sufficient
accuracy to higher fields.

The purpose of this paper is not primarily to
obtain extremely accurate binding energies for
H™ ions in a magnetic field, but rather to gain an
understanding of the physical mechanisms causing
the binding. However, the justification of the
physical hypotheses underlying our choice of trial
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functions ultimately resides in achieving accurate
binding energies.

Calculations of binding energies of the lowest-
lying states with M, = -2 and -3 have not been
reported previously. These states are of theore-
tical interest because they cast light on the role
of exchange in the H™ problem. Results are pre-
sented here for O0<y<3, :

The trial functions employed in the H™ problem
turn out to be well suited for studying certain
bound states of the He atom in a magnetic field.
Some energies are tabulated.

Finally, it is shown that positrons bind to H~
atoms in magnetic fields although, as is already
known, they do not at zero field. '

II. GROUND STATE OF THE H ATOM IN A MAGNETIC
FIELD

If there were no repulsion between the electrons
in the H™ ion, the electronic orbitals in an ap-
plied magnetic field would be just.those of a hy-
drogen atom in the field; that is, each orbital
would be an eigenfunction of H(1) given by Eq.

(1). Thus it is of interest for the H™ problem

to examine the ground state of the H atom in a
magnetic field. Although this problem has not
been solved exactly, calculations show that when
a magnetic field is slowly turned on, the !S wave
function shrinks and changes in shape to something
resembling an ellipsoid of revolution with major
axis along the field. These two effects can be in-
corporated in a variety of ways in constructing
trial functions; the energies obtained from some
relatively simple forms are compared below.

Consider, for example, the class of functions
given by

k

4’“):(2 cnzzn>e-ﬁrze-xr . )

n=0

These are quite convenient wave functions, even

though all parameters (5, k, and c,*--c,) are to
be varied. The reason is that all integrals can be
done analytically, and for given 6 and « the op-
timum c¢’s can be obtained by solving linear equa-
tions. Optimum H-atom ground-state energies
obtained from Eq. (6) are denoted E{¥. The var-
iational energies E‘{;) are most accurate at low
fields, becoming exact at zero field, for which,
of course, k=1, c,=1, and all other parameters
vanish in (6).

A two-parameter function which is much less
satisfactory at low fields but which is still easier
to handle is given with reference to Yafet, Keyes,
and Adams (YKA) by's

byya = €xp[ =37 p* —2%/0%], (M
YKA

with corresponding optimized binding energies
denoted by E{f¥A), Even at strong fields, for
which it is best suited, this function is not very
accurate, E{Y¥# being, for example, too low by
~0.36 & for y=100.

A related four-parameter function with which
it is much less easy to work than (7) but which
gives energies E‘}‘;’ of high accuracy over a wide
range of fields is

¢p=expl -1y p* —22/b — k(p>+ az?)'/?], (8)

Hydrogen-atom binding energies obtained from
these functions are compared to the extremely
accurate variational values of Praddaude'® and of
Cabib'” in Table I.

III. M; =0 SINGLET GROUND STATE

A. Low to moderate magnetic fields -

States which are bound only in the presence of
a magnetic field are qualitatively different from
the M, =0 singlet ground state, which binds at

TABLE I. Comparison of ground-state binding energies of the H atom as calculated from '
various trial functions to the highly accurate results of Praddaude (Ref. 16), listed in the col-
umn labeled “Exact.” The relevant trial functions are defined in Egs. (6)—(8). All energies
are in units of ®.

Field H-atom ground-state binding energies from various wave functions
% EY EY EY EYEA) EYP Exact
0.2 1.180 63 1.18075 1.18075 1.032 1.18075 1.18076
0.5 1.3919 1.3941 1.3943 1.251 1.3943 1.39452
1.0 1.647 1.6603 1.6617 1.524 1.6620 1.66233
2.0 1.982 2.0333 2.042 0 1.908 2.0438 2.044 42
3.0 2.199 2.3018 2.3219 2.191 2.3282 2.329 05
5.0 2.460 2.6853 2,7358 2.616 2.7594 2.76081

10.0 2.657 3.240 3.3877 3.331 3.4928 3.49561

2From Ref. 17.
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zero magnetic field; we defer consideration of
them to Sec. IV and focus here on the effects of
the magnetic field on the zero-field ground state
of H™. Perhaps the simplest of the accurate trial
functions proposed for this state in the absence of
field is the Chandrasekhar wave function' §
given by

You=1+C|T, =T ) exp(-7,/a, =7,/a,) + (1— 2)].
(9)

Here the electrons are in ground-state hydrogenic
orbitals; they are encouraged to stay apart, keep-
ing down their repulsive interaction energy, by
the correlation factor (1+C| T, —%,|), which be-
comes relatively small as |F, —%,| = 0. The best
values of a,, a,, and C are 0.930, 2.092, and
0.312, respectively. With these values the binding
energy obtained is 0.0518 & as opposed to the
“exact” value of 0.0555® 13

To generalize Eq. (9) for the magnetic field
case, one might well replace the hydrogenic S
orbitals there by some convenient orbitals appro-
priate to the H atom in a magnetic field. How-
ever, a simpler approach, and the one adopted
here, is to take trial functions of the form

Pl = Zc"(zf’u_zg") exp[-8(r;+72)|¢oy.  (10)

These functions are analogous to those in Eq. (6)
in that the zero-field wave function is multiplied
by a factor producing shrinkage { exp[ - 5(r2+72)]},
as well as a shape-changing factor similar in ef-
fect to the one used in Eq. (6). Thus $* is an
example of an H™ wave function which becomes
qualitatively just like the H-atom ground state in
the magnetic field.

The variational energies

EQ = @®|H[p® )/ @® [p®) (11)

are evaluated by introducing Hylleraas coordi-
nates,'® performing all angular integrations and
the integration over the coordinate u @ =|T, - T,| )
analytically and then evaluating the remaining
two-dimensional integrals by computer. All
parameters (¢, **¢,, 8, C, a,, and a,) are varied
to obtain the binding energies EY’, E?, E®
listed in Table II and plotted in Fig. 1.

At a fixed value of k, both ¢* and y® give
energies (for the H atom and H~ ion, respective-
ly) which become less accurate with increasing
magnetic field. From knowledge of the accuracy
of energies obtained from ¢® (see Table I), it is
possible to develop schemes for estimating the
error in energies obtained from y®’. A simple
and reasonably accurate method of extrapolating
E® to infinite ¥ would be most welcome since

TABLE II. Comparison of H- M ;=0 singlet ground-
state binding energies calculated using ¥® of Eq. (10)
with the energies, E{$ of Ref. 4, using the Slater-or-
bital expansion. E¥® is extrapolated from E{’ and E’
as described in the text. All energies are in units of R.
The numerical accuracy of E‘fgk) (=0,1,2) is estimated
to be +1 in the last-quoted digit.

H- singlet ground-state binding energies
Field from various wave functions

(0 (1) () (50 Ex
Y Eg E Eg E Eg*

0.0 0.0518  0.0519  0.0519 0.0537 0.0555
0.1 0.126 0.1267  0.1268  0.1276 0.130
0.2 0.168 0.1735  0.1737  0.1736 0.177

0.5 0.233 0.2543  0.2576 0.262
1.0 0.2503  0.3169  0.3309 0.341
2.0 - 0.3508  0.3937 0.427
3.0 0.3322  0.4082 0.475
5.0 0.2180  0.3658 0.519

actually increasing the k value in evaluating E ¥’
from Eq. (11), although certain to improve the
energy at the higher fields, becomes very labor-
ious. One method of extrapolation is described
below.

In ¢, given by Eq. (9), two orbitals appear,
an inner electron orbital, exp(—#/0.93), and an
outer orbital, exp(—7/2.092). The outer orbital
will be the more strongly affected by magnetic
fields in the range 0< y<5, and it is reasonable -
to attribute the error in E®’ for yz 0.5 largely
to the failure of ¥* to describe properly the ef-
fect of the field on the outer orbital. At zero
field this outer orbital is that of a 'S electron with
a Rydberg constant of 72/ [ 2m(2.092 a,)?] =
0.2285&% ., Thus in a magnetic field it is not un-
reasonable to attribute to this orbital an effective
y value of (37w, )/(0.2285®)=4.38 y. Denoting by

0.6 — E(E‘) (Extrapolation)_|

Binding Energy (R)

FIG. 1. Comparison of binding energies for the M;=0
singlet ground state of the H” ion from various trial
functions given by Eq. (10). E_(gE") is the extrapolated
binding energy from Eq. (13) and is expected to be clos-
est to the true binding energy. Some points used to plot
the various curves can be found in Table II.
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&™) (y) the error in the computed energy of a
hydrogen atom with a Rydberg constant of
0.2285@® in a field of 4.38 v when this energy is
calculated variationally using ¢®, we shall
assume that the errors in the H™ energies E®),
in Table I, are given by

A)E® (y)+A (12)

where A, (y) is independent of k, and A indepen-
dent of y. We define an extrapolated binding energy
and obtain an equation for A, by requiring

EGY=EQ+A,0MED () +A
=EP+A,NE® (1)+A . o (13)

A is determined at y=0, where §'=§® =0, to
be 0.0036 ® from the known zero-field binding
energy of the H™ ion.® For 1sy<5, A (y) is
found to be nearly constant, deviating from the
value 1.52 by not more than 1.5%.

Equation (13) simply requires that the energy
extrapolated via (12) from a variational calcula-
tion using »*’ should equal that from @ . If
there is merit in this scheme, then it should also
)

be true that
EéEX) =2EQ+A (18X () +A= E/S(Ex)

Checking at y=1, we find E;®™ =E{ - 0,0023® .
Comparing the apparent error in Ey* (which is
0.0023®) with that of EL’ from Table II (0.091)
shows, gratifyingly, that a nearly 40-fold reduction
of apparent error has been accomplished in E ¢’

at y=1. This result also suggests that E ™, al-
though not a -rigorous lower bound, may neverthe-
less underestimate the true binding energy at the
higher fields.

B. High-field limit

At extremely high fields where the inner elec-
tron orbital becomes dominated by magnetic for-
ces (y>1), the trial functions ¥*’ are not useful.
The motion of both electrons in directions per-
pendicular to z is determined by the magnetic
field, and H in Eq. (2) becomes approximately
separable.

In this limit a trial function of the form

{1+C tanh? e(z, —2,)]} {exp| - k(22 + a?)*/2 -ﬁ 22+ a2+ (1 2)} exp - 57" (02 + p2)) (14)

which is similar in concept to the Chandrasekhar
wave function of Eq. (9), is thought to be appropri-
ate. The correlation is provided by the first fac-
tor, which goes to 1 when the electron separation

_in the z direction is small, and to 1+C when
large. Although it is undoubtedly possible to im-
prove upon the correlation factor of Eq. (14), a
sphe'rically symmetric correlation, that is, cor-
relation depending upon |F, - T,|, which is appro-
priate at zero field, does not seem suitable in the
high-field limit because such correlation admixes
high-energy components (energies of order 7) into
the x-y motion of the electrons. Put another way,
the wave function is expected to be stiff to pertur-
bations in the x-y motion but relatively loose in
its z motion at very large y.

The distinction between inner and outer orbitals
disappears in the high-field limit, at least for the
trial function (14). Both k and B when optimized
assume a common value 2.29 at y=100, repre-
senting a nearly 30% expansion of the wave func-
tion in the z direction relative to its size when
electron-electron repulsion is turned off. On the
other hand, for y=100, 7’ in (14) is only 1%
smaller with electron-electron repulsion acting
than without, demonstrating strikingly the relative
stiffness of the wave function to changes in the x-y
motion at high fields.

Correlation is very important for obtaining good

r
energies for y>1, just as it is at y=0. For y
=100 the binding energy found employing (14) and
optimizing all six parameters is 1.44® (assuming
7.56® for the H-atom binding in this field), but

if C is set equal to zero (no correlation) and «, «,
B, and a’ are then optimized, the best binding
energy obtained is only 1.14® .

It is to be expected that the trial function (14)
would be much better at very high fields than the
function used in Ref. 13 (which is obtained from
(5) by setting My =0 and replacing f and g by
Gaussians) primarily because of correlation,
but also because the orbitals exp[ — k(2% + a?)!/?]
are better than Gaussian z orbitals. However,
for y< 5 the ansatz of Ref. 13 gives the stronger
binding because that ansatz allows distinct inner
and outer orbitals, through the two-parameter fac-

tor exp| —3(v,0? +v,p2)].

IV. BOUND STATES INDUCED BY A MAGNETIC FIELD

For My #0 the hydrogen atom does not bind an
extra electron at zero field. In weak fields, bind-
ing in M < 0 levels can occur by means of the
mechanism discussed in Ref. 12 and recapitulated
here.

An extra electron bound to the H atom in weak
fields is, presumably, only weakly bound and
therefore travels in an extended orbit around the
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central atom. The Coulomb field of this outer
electron polarizes the H atom, inducing a dipole
moment P, which, in turn, produces at the elec-
tron an attractive potential of strength proportion-
al to p/7% But, since p itself is proportional to
the electric field of the distant electron evaluated
at the center of the atom (p <7~ ?) the attractive
potential at large distances varies as ™%, The
combination of this attractive field and the two-
dimensional confinement of the outer electron in
the magnetic field produces binding.

The physical picture just presented should apply
to all bound states with M # 0 in weak magnetic
fields. To give this picture quantitative embodi-
ment in a variational calculation, we introduce a
trial function of the form

QML(TI)X(fl’ —f‘z) £(1—2),

where @, (¥,) is the orbital for the outer electron
and (¥, T,), for large 7,, approximates the
ground-state wave function in a magnetic field of
a hydrogen atom which is polarized by an electron
at T,.

To determine a form for y, we calculate the
zero-magnetic-field ground-state wave function
¥(F,, T,) of a hydrogen atom located at the origin
when perturbed weakly by a distant electron at
T,. The Schrédinger equation can be written

r
(Ho+H,)Y=EY,
H,=-Vi-2/r,
H,=(2/|% =%, -2/r) . (15)

Since it is assumed 7,/7, <1, H, can be expanded
to lowest order as

H,= 2(T,*T,)/7} = 2r(cosb,,) /7%, (16)

and this term considered a perturbation. Note that
the right-hand side of (16) describes the potential
of a uniform electric field of strength 2/72 directed
along ¥,.

The unperturbed ground-state wave function is
exp(-7,), and the exact solution to (15) can be
written completely generally as

d):ese-r2 ’ (17)

where ¢5 is a unitary transformation carrying
e~"z into the exact ground-state wave function.
The perturbation solution is found by expanding
¢S as (1+S), inserting (17) into (15) and solving
for S to lowest order in 7,/7,. Equating terms
of order 7,/7, gives

([Ho’ S]+H1)e_72=0 s (18)
which takes the explicit form

1

as _ _ 2r,cosé (19)
Sy ST

~-ViS+2 —,
¥, (8

where the z axis is now chosen along T,. It is
easy to verify that

= — (372 +7,)(cos8)/7?

is a solution of (19); so that the required perturbed
zero-field ground-state wave function is, in low-
est order,®

Py, 7)) =11 =[ G72+7,)/7?]cosb, te ™. (20)

As it stands, ¥ (F,, T,) is not a suitable form for
x (¥,,T,) for at least two reasons. First,
when 7, -~ 0 the polarization given by (20) goes to
infinity. That divergence is unphysical and turns
out to be unacceptable for M, =-1. Second, no
provision for the effect of the magnetic field on
the hydrogen-atom wave function has been made.

These deficiencies can be cured in many ways.
To solve the first problem, we have chosen to re-
place (372+7,)/r? by P (v,,7,) where

P(r,,7,)=C(e7i+7,)/[ (r2+b)(pr2+1)].

The variational parameters C and b provide an
adjustable polarization strength and a leveling
off of the electric field, respectively.

A number of choices are available for taking the
magnetic field into account. If we were interested
only in very small magnetic fields, we could have
introduced the term y%p2/4 into (15) and treated it
as a weak perturbation, just as we treated H,. In
that case, we would have found

YELTH L= Ev 73+ G+r)p2]
~[G72+7,) /r¥cos b, te 2,

which could be used as the starting point for a
variation-perturbation procedure. A better ap-
proach for higher magnetic fields would be to re-
place exp(-7,) in (20) by, for example, ¢*)(r,)
with sufficiently large k. At the likely sacrifice of
some accuracy, we have chosen instead two forms
for y,

X (F,, F,) =[1+P(r,, 7,)cos6,,]
X exp(- 673 — k7,),
X @, 7,)=[1+c22+P(r,,7;)cosb,,)

X exp(~ 6¥Z —kr,). (21)

A drawback of these wave functions at the higher
magnetic fields is that they do not take into ac-
count, except in an average way, the variation of
the polarizability of the inner atom with the angle
between T, and the magnetic field.?

For the outer orbital we have tried to obtain
considerable flexibility, choosing a wave function



TABLE III. Comparison of H- M;=~1 triplet binding
energies E{” and E{ calculated using (21) and (22) with
the energies EF® from Ref. 4, employing the Slater-
orbital expansion. E{f® is extrapolated from E{” and
E{P as described in the text. All energies are in units
of ®. The numerical accuracy of E4” and E{Y is esti-
mated to be +1 in the last-quoted digit.

H- triplet M;=~1 binding energies

Field from various wave functions

v E(TO) E(%) E(TSO) E(TEK)
0.0 0.0 0.0 -0.0073
0.05 0.0005 -0.0038
0.10 0.0032 -0.0022
0.20 0.0144 0.0079
0.50 0.0504 0.0538 0.0319 0.0544
1.0 0.0825 0.0983 0.101
1.5 0.0874 0.1249 0.133
2.0 0.0806 0.1416 0.155
3.0 0.0412 0.1571 0.188

essentially similar to ¢, of Eq. (8). Recalling that
the lowest-lying free particle Landau-level wave
function of given M, is

"ot ¢leLl e~ v/ p? ,
we have taken
2y, (%)
= expli My ¢,)p, | 2! exp[ - 17’ p? — k(02 + a2?)/?],

(22)

where y’, k, and @ are variational parameters,
and ¢, is the polar angle of T, in circular cylindri-
cal coordinates. Binding energies for triplet M,
= -1 levels are given in Table III for trial functions
employing x° and for those employing x‘*’. No
bound singlet states were found.
At all fields studied the optimum value of 7’ in
(22) remains only slightly below y; for y= 0.5,
Kk at/ 2, the parameter determining the spread of
the wave function in the z direction, is larger
than, but within 10% of, the square root of the
corresponding binding energy E‘}) of Table III. At
lower values of v, k a'/? grows relative to
(EY)'/2 becoming 30% larger at y=0.1.

The present results show one reason why pre-
vious variational calculations of the M, = -1 trip-
let state are unsatisfactory in the low-to-inter-
mediate-field regime. The orbital of the outer
electron is found here to be quite similar to that
of a hydrogen electron in a high magnetic field,
even at the lowest fields. On the other hand, the
inner orbital is at low fields, essentially a low-
field hydrogen-atom orbital. Thus a satisfactory
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variational description must be flexible enough to
encompass the two regimes, high and low field,
in a single wave function.

The trial function of Ref. 13 uses essentially
high-field orbitals for both inner and outer elec-
trons, giving an especially unsuitable description
of the inner orbital at weak fields, whereas the
Slater-orbital expansion of Ref. 4 has difficulty
representing high-field wave functions, thereby
giving an inaccurate description of the oute» or-
bital. Graphical comparison of the results of these
calculations with EY) is made in Fig. 2, using the
values set down in Table III.

As in Sec. III, it is possible to extrapolate the
energies at the higher fields in a systematic way,
thereby, it is hoped, obtaining close approxima-
tions to the true binding energies. In this case in-
accuracy in the inner orbital is assumed respon-
sible for the major part of the error in EQ’ and
E‘Y. Denoting by &%’ (y) the error in the H-atom
energies E % (y) calculated from trial functions
¢’ of Eq. (6), we assume that the error in E%’
is simply A,(»)8¥ (y) and solve for A, from

E®=E04 A, (r)80(y)

-7 (1) 1)

=E T +A]_(Y)gjn (7) . (23)
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FIG. 2. Comparison of lower bounds to the binding en-
ergy of the M;=-1 triplet level of the H~ ion as calcu-
lated by various authors. The curve marked ‘present
calculation” is a plot of E 2’ (see Table III); the curve
marked “Henry, O’Connell et al.” comes from Ref. 4 and
is tabulated in Table III as E$°°, The trial function for
E{P uses x!) from Eq. (21) and &_; from Eq. (22). The
point marked ¢ 125 x 125” was calculated from a 125
x 125 determinant involving Slater orbitals. The ansatz
for the “Natori and Kamimura” curve is described in
Ref. 13.
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For 1sy<3, A,(7)is found to remain essentially
constant, staying within +6% of the value 1.18.
Extrapolated energies E§® found from solving
(23) are listed in Table III.

We have not investigated the extreme high-
field limit for | M;| >0. As mentioned earlier,
Virtamo has studied the M = -1 level at large
values of y using the wave function of Eq. (5) with
7, =7,=7 and determined the orbitals f and g
numerically by the Hartree-Fock method.® For
v=100, Virtamo found a two-electron binding en-
‘ergy of —8.147®, which corresponds to a binding
energy of about 0.59%. A major drawback of this
calculation is that correlation is not taken into
account. Correlation can be expected to be im-
portant in the high-field limit, although it is likely
of less importance for the M = —1 state then for
the M =0 state calculated in Sec. III B.

Calculations of the binding energies for M, = -2
and -3 have been made using trial functions de-
fined by Eqs. (14), (21), and (22). Figure 3 dis-
plays extrapolated energies for these levels plotted
as functions of y. These extrapolated energies
E®% (M) are calculated from the variational
binding energies E*) (M) found using x*? in the
wave function (14), by .

E® (M)=E® M)+ & (v) Mp==-2,-3.

[ A few spot checks confirming this formula at
various values of ¥ were made by comparing
E®9 (M) with E© (M) +8 (2 (7).]

Figure 3 portrays a number of interesting fea-
tures of the My < —1 levels of H™. First, both
singlet and triplet states bind. Second, although
both singlet and triplet binding energies increase
monotonically with increasing magnetic field, for
given M, the triplet binding increases more rapid-
ly than the singlet. Third, at a given field the
singlet-triplet splitting is smaller in magnitude for
the M = -3 state than for the My = - 2. Fourth,
for a given magnetic field and permutation sym-
metry (singlet or triplet), the binding decreases as
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FIG. 3. Extrapolated H™-ion binding energies of the
deepest M ;=-2 and M ;=-3 levels of triplet or singlet
symmetry.

| M| increases.

These features have a simple physical interpre-
tation. When the outer orbital keeps the electron
far away from the inner atom, the binding is rela-
tively weak (due to the rapid diminution of the
strength of the attraction potential with distance
from the atom), and singlet-triplet splittings,
which depend upon overlap of inner and outer or-
bitals, are small. Since the outer orbital penetra-
tes least at low y and high | M| we expect in that
regime to find the weakest binding and the small-
est singlet-triplet splitting. It is well known that
electron-electron repulsion tends to be weaker in
antisymmetric states, which vanish when the
electrons come together, than in symmetric
states. Thus triplet states have stronger binding
than the corresponding singlets (but only for |M,|
>0).

The M, = -1 level is the most penetrating of all
the |[M.| >0 states at any field. There, these cal-
culations indicate, the singlet-triplet splitting ex-
ceeds the triplet binding energy at all fields in-
vestigated, and the singlet fails to bind.

The above arguments do not apply to the M, =0
ground state, for which a dominant role is played
by the exchange integral of the Coulomb attraction,
-2/, -2/r,. This exchange integral, which is
negative in the M =0 singlet state, is small in
magnitude for H™ states which are constructed
from orbitals of differing symmetry or which in-
volve a nonpenetrating orbital. Only the M, =0
state, among those considered, has orbitals which
are of the same symmetry and penetrate strongly
to the center of the atom. Physically, both elec-
trons want to get close to the proton simultaneously
and are willing to pay the price of increased elec-
tron-electron repulsion (entailed by placing them
in a singlet state) to do so. Thus the singlet is
the deeper state for My =0. We have been unable
to find a bound M =0 triplet state.

All of the bound states discussed so far have even
z parity; that is, when z,~ -z, and z,~ -z,, the
wave functions are unchanged. We have searched
without success for bound excited states of odd z
parity for M; =0 and M =~1, using an outer or-
bital of the form given by (22) multiplied by z,.

It is easy to see why it might be difficult to pro-
duce binding with states of this symmetry. If we
neglect exchange, we can visualize the field-in-
duced binding of states as resulting from a combi-
nation of confinement in the x-y plane by the mag-
netic field and binding in the z direction by a one-
dimensional attractive effective potential in z,
which is the total potential seen by the outer elec-
tron averaged over its motion in the x and y di-
rections.' One-dimensional attractive potentials
readily produce bound states. For example, it is
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well known that the one-dimensional square well,
regardless of its depth or range, always has at
least one bound state and that this state has even
parity.'® To bind, in addition, a state of odd par-
ity, however, is more difficult, requiring a cer-
tain minimum value of depth times the square of
the range.

One is led to ask whether sufficient attraction
exists to bind states of odd z parity in the high-
field region, where large binding is found for the
lowest M, =0 and M, = -1 levels. We have attemp-
ted to find such bound states using the trial func-
tion

exp[- 57’ (0} +p3)][1-Plz,,2,)]z,

X exp[ - a2+ )2 = k(z2+ a?)/2].  (24)
where

P(z,,2,)=C[K(z,)22 +2,] (tanh Az,)/(z2+ D),

%(z,) =« for z,>0 and = -k for 2,< 0, and y', C,
A, D, k, B, and o are variational parameters.
The wave function (24) represents a polarized H
atom in a strong magnetic field multiplied by a
strong-field orbital of odd z parity for the outer
electron. Exchange is neglected, since, for weak
binding, 8<<k, and the overlap of inner and outer
electron wave functions should be small. No bound
state was found at y=100,

Failure to find binding of a state with a single
node in its z orbital at high magnetic fields sug-
gests that states with z orbitals of more than one
node may also not bind. A possible exception,
however, might be excited M, =0 singlet states
of even z parity. It would he interesting to know
whether magnetic field thresholds exist at which
such states begin to bind.

V. He ATOMS IN A MAGNETIC FIELD

The wave functions introduced in this paper for
treating the H™ ion are also useful for calculating
the effect of magnetic fields on certain levels of
the He atom. If, in the definition of H(i) (¢=1 or
2) in Eq. (1), we replace —2/7, by —4/7,, then
Eq. (2) becomes the Hamiltonian of a He atom in a
magnetic field. The trial function y‘® defined by
Eq. (10) can be used in conjunction with the He
Hamiltonian to calculate the magnetic field de-
pendence of the energy of the He 1'S state. At
zero field y‘® gives a ground-state energy of
-5.8029®, which is to be compared to the exact
value® of —5.80745® . Two-electron binding en-
ergies at various values of y are listed in Table
1v.

Wave functions of the form (14), with x given
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TABLE IV. Variational estimates of energies re-
quired to remove both electrons from a He atom in the
state listed at the top of each column. Each state in a
magnetic field is designated by the zero-field He state,
which it approaches when the magnetic field is adiabat-
ically switched off. All energies are in units of ®.

Field Two-electron binding energies of He levels
y is 2lp 2!p, 2%p
0.2 6.1871 4.6888 4.5607 4.7269
0.5 6.7077 5.1500 4.9091 5.2370
1.0 7.4544 5.7599 5.3837 5.9275
2.0 8.6532 6.7182 6.1381 7.0126

by x*? of (21), and with &, given by (22) are ap-
propriate for calculations of singlet or triplet He
2P,,, 3D,,, 4F ,,...levels, whereas, if @ML is
multiplied by z,, the resulting wave functions
should be suitable for calculating energies of
2P,, 3D,,, 4F,,,...levels. At zero magnetic
field, —4.2471® and —4.2645® are obtained for
the 2'P and 2°P energies, respectively; these are
to be compared to the more accurate values of
-4.,24768® and -4.26632® for the corresponding
states found by Accad and co-workers.*?* Two-
electron binding energies obtained for the He
2'P_,, 2'P,, and 2°P_, levels are listed in Table
Iv.

The 3D_,, 4F_,, and higher angular momentum
states of He have weakly penetrating outer orbit-
als and, at least for low magnetic fields, can be
quite accurately described by assuming that the
inner He* ion acts as if it were a point positive
charge so far as the motion of the outer electron
is concerned. For the 33D level at zero field we
obtain, for example, an energy of —4.11136@®,
where the last digit is uncertain due to numerical
error. (If the inner core behaved exactly like a
point charge, the energy would have been
-4.11111&.) Some of the even z -parity low-lying
He levels in a magnetic field have been calculated
previously using the Slater-orbital expansion ap-
proach,* 28 3 method which should give accurate
energies for He at low fields. Unfortunately, de-
tailed comparison with the present calculation is
difficult because the results of Ref. 23 are pre-
sented only graphically. To within the uncertainty
in reading the graph, which can amount to several
percent in the energy, the results in Table IV
agree with those plotted in Ref. 23 for the corre-
sponding states.

With extrapolation techniques similar to those
described for the H™ ion, it is expected that the
trial functions introduced here can give useful He
energies for y as high as 20.
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FIG. 4. Estimated binding energy of a positron to a
hydrogen atom for M;=1 and M;=2. Lower bounds to
binding energies can be obtained by subtracting the
dashed curve from the solid curves.

V1. BINDING OF POSITRONS TO H ATOMS

Strong theoretical evidence supports that the
assertion that a hydrogen atom does not bind a
positron at zero magnetic field.>* Zero-field bind-
ing commences when the positron mass exceeds
the electron mass by a factor of ~2.2,

From the arguments presented here, however,
it seems clear that a positron should bind to the
H atom in states with sufficiently large | M| when
weak magnetic fields are present. In such states
the positron remains far from the proton and ex-
periences only the force of the magnetic field and
the attractive polarization potential of the atom.

In this respect the positron—-H-atom system is
very similar to the H™ ion, which, we have found,
binds in both singlet and triplet states for |M.|>1.

The positron-H-atom Hamiltonian is

2 2 2
Vi — Vi = e
i 2o, |r1—rzl
1.8 1 08\ »pi+p)
”(‘z’ 5, "7 a¢2)+ o ®

which, except for some signs, is the same as the
H™ Hamiltonian of Eq. (2). In (25) ¥, is the dis-
placement of the positron from the proton. The
trial function to be employed is

‘}ML F)xw (-{'u T, (26)

where x* is given by (21), and @, by (22) with
the proviso that M is here taken positive. Esti-
mated binding energies, energies obtained by
replacing Ey, (¥) in (3) by E ’(see Table I) and
E4-(v) by variational energies obtained from (25)

using the trial function (26), are plotted for M,
=1 and M =2 levels in Fig. 4. A rigorous lower
bound for the binding energies can be obtained
from Fig. 4 by subtracting the ordinate of the
dashed curve at the value of y of interest. Thus
rigorous binding is indicated for the portions of
the solid curves to the left of the dashed curve.
No binding was found for M, =0.

These calculations suggest that, at low fields,
the ground state is the M, =1 level, but that, as
the field increases, the M, associated with the
ground-state wave function shifts to successively
higher values. Further, for each state the binding
first increases until a maximum is attained and
then decreases with increasing field.

This behavior is consistent with our physical
picture of states which are bound only in the pres-
ence of a magnetic field. At low fields an increase
in field brings the positron closer to the atom
where the dipole attractive field is stronger; hence
the binding increases. at first. When the field be-
comes sufficiently large, the positron wave func-
tion begins to penetrate significantly inside the
atom where the repulsion of the proton is domi-
nant, At some point, further increase in the
field, by forcing the positron closer to the proton,
may actually produce a decrease in binding. Since
they have smaller penetration, states of higher
My may bind more strongly than those of lower
M, at high fields.

The foregoing results and discussion though
plausible, are not altogéther convincing. One can
criticize the appropriateness of the trial function
(26) at the higher fields. For example, it is not
clear that & ML('rl) dies off rapidly enough
as the positron approaches the proton. Also, no
configurations in which the electron and the posi-
tron form a positronium atom are admixed in the
trial function employed, although such configura-
tions are known to be very important when the
positron is sufficiently massive.

Whether a trial function sufficiently flexible to
encompass these possibilities would give behavior
qualitatively different from that displayed in Fig.
4 is unclear. However, Fig. 4 does demonstrate
that the polarization force is sufficient to bind a
positron to a hydrogen atom in a weak magnetic
field.
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