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A theory of the magnetoresistance of disordered carbons is presented and applied to experimental results
on carbon fibers and glassy carbon. The important features of the model include (a) a two-dimensional band
structure and density of states, (b) a shallow acceptor level due to defects, (c) collision-broadened Landau
levels, and (d) an extra density of states in the m = 0 Landau level to account for the effects of partial three-
dimensional ordering of the graphitelike layers. The negative magnetoresistance results from field-induced
changes in the density of states which lead to an increase in the carrier concentration with field. Four
structure-dependent parameters are used to fit the resistivity as a function of temperature, field strength,
and orientation of the sample in the field. Approaches to improving the model are discussed.

I. INTRODUCTION

Although the electronic properties of graphite
are now reasonably well understood, the same
level of understanding has not been reached for
pregraphitic, i.e., partially ordered, carbons.
Qualitative discussions have been presented’ to
describe the changes in the band structure as the
physical structure evolves from a disordered,
glassy state to a highly ordered or graphitic state,
but they have for the most part been unable to pro-
vide a quantitative description of the electronic
properties. One of the principal outstanding prob-
lems is the negative magnetoresistance observed
in these materials at low temperatures.”? Numer-
ous attempts have been made to explain this phe-~
nomenon,?-® using virtually all of the available the-
ories of negative magnetoresistance. A summary
of this situation is presented in Ref. 2, where it is
conclused that none of the theories is adequate for
the case of carbon.

The present paper describes a new theory of the
magnetoresistance of carbons which has been de-
veloped as part of a program to investigate the
electronic properties of mesophase pitch-based
carbon and graphite fibers.® Some of the central
features of this theory are drawn from the work of
Yazawa, who attempted to explain the magnetore-
sistance® and Hall effect” of carbons on the basis
of a two-dimensional band-structure model. It is,
in fact, quite natural to start from a two-dimen-
sional model for disordered carbons such as these.
The three-dimensional correlations between layer
planes, which are characteristic of perfect crystal-
line graphite, are absent in disordered carbons.’
As the structure evolves toward the graphitic
state, the “crystallite size,” or size of coherently
oriented regions, increases. Simultaneously, the
interlayer correlations gradually increase so that
interlayer interactions gradually start to play an
important role in the band structure. For glassy

20

carbon, carbon fibers, and similar disordered
carbons, however, the lack of extensive interlay-
er ordering implies that the three-dimensional ef-
fects on the band structure may be neglected in the
first approximation, and a two-dimensional band
structure is an appropriate starting point.

Yazawa’s model, however, contained several
errors, internal inconsistencies, and physically
unreasonable features which prevented him from
achieving quantitative agreement with the experi-
mental data. The theory presented here describes
quantitatively the magnetoresistance of fibers hav-
ing structures ranging from glassy to highly graph-
tic as a function of temperature and of magnetic
field strength and orientation, as well as the mag-
nitude and temperature dependence of the resistiv-
ity. When extended to the low-mobility limit, the
theory provides a good description of the magneto-
resistance of bulk glassy carbon.® The parame-
ters of the theory are related to structural parame-
ters of the material and can provide information
about the evolution of the structure of fibers from
glassy to graphitic as the processing temperature
is increased. This information is in good agree-
ment with x-ray observations on the same sam-
ples.® The theory may be applied equally well to
other forms of pregraphitic carbons. "

II. EXPERIMENTAL

The experimental procedures have been describ-
ed in detail elsewhere.® Briefly, resistivity and
magnetoresistance measurements were made on
single carbon filaments using ac and dc four-probe
techniques. Contacts were made with silver paint
to four 0.0254-mm diameter copper wires attached
to insulated copper blocks. Samples were mount-
ed, six at a time, in an Air Products and Chemi-
cals Helitran cryostat for measurements from
room temperature down to 4.2 K. The cryostat
was mounted between the poles of a 12-in. electro-
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magnet capable of fields up to 1.4 T. The cryo-
stat could be rotated in the field for orientation-
dependence studies.

III. THEORY

As in Yazawa’s theory,’'” we assume that the
electronic structure is described by the two-di-
mensional simplification of the Wallace model.

The Landau-level structure for this two-band mod-

el was calculated by McClure® and is shown in Fig.

1. The Landau levels are located at energies (in
SI units)

E, =+(2)2 e 1/2\/_ =0,1,2 (1)
m B Y 0% 7 m, m g Ly by oo

and the density of states in each level is

gm =AH. (2)
o

Here vy, is the in-plane interaction between near-
est neighbors, a, and ¢, are the lattice constants,
and H is the magnetic field component perpendicu-
lar to the layer planes.

An acceptor level of localized defect states at
energy E,~-0.01 eV and density N, is assumed,
which lowers the Fermi energy slightly into the
valence band. To approximate the effect of a
small amount of three-dimensional ordering,
which produces a slight band overlap, an excess
density of states N, is added to the »=0 Landau
level as shown in Fig. 1. This approximation will
be discussed in detail in Sec. V.

In addition to these approximations used by

H>0

k g(E) q(E)

FIG. 1. Band structure k2(E) and density of states g(E)
without and with an applied magnetic field. Asymptotes
(long dashes) indicate zero-field density of states in the
absence of collision broadening. Positions of Landau
levels are indicated by solid lines. Short dashes indicate
additional density of states Njincluded in m = 0 level to
account for band overlap. Other symbols are defined in
the text. .

Yazawa, we have incorporated several additional
features in the model which are essential for good
quantitative agreement with the experimental re-
sults. Most important of these is the collision
broadening of the Landau levels as a result of de-
fect scattering. This has the effect not only of
eliminating the Schubnikov-deHaas oscillations
(which are not observed experimentally) but also
of producing better numerical agreement with ex-
periment using reasonable parameter values. The
effect on the density of states is evident in Fig. 1.
If we assume for mathematical convenience a
Gaussian form for the broadened levels, the den-
sity of states is given by the expression

g(E )=A—I1f->l [(1+—AIX}SIL> exp(—-22E?)

{: {expl-*(E ~E, ]

+exp[ -2\*(E +E, )] }] , (3a)

where 1" represents the width of each level and
is related to the zero-field mobility p by

o 1 ( e 2 2 1/2 3
= ma () o] )
In this equation, it is assumed for simplicity
that p=e7/m*, where m* is an average effective
mass arbitrarily set equal to 0.025 times the free-
electron mass. It is also assumed that the relaxa-
tion times for conduction and for Landau-level
broadening are equal. These assumptions affect
primarily the precise numerical value of X for a
given (, rather than the functional form of the re-
lationship. Changes in \ will affect the numerical
results to a small degree but will have no essen-
tial effect on the general features of the model. A
thermal-broadening term is included as well as
the collision-broadening term, since it was found
that the use of the Fermi function alone [in Eqs.
(4) and (5)] did not account completely for thermal
effects; the latter procedure resulted in resolved
Schubnikov-deHaas oscillations at high tempera-
tures for high-mobility values.
The electron and hole concentrations » and p

are given by

° g(E)dE

n= b 1+expl(E-n)/kT] (42)
and
(e g(E)dE
p _-!). 1+exp[(E +n)/kT]’ (4b)

where the Fermi energy n is determined self-con-
sistently from the neutrality condition



5144 A. A. BRIGHT 20

N,
p-n- 1+exp|(E,—n)/kT]

A number of alternative definitions of n and p
were tried, since Eqgs. (4a) and (4b) appear to treat
the low-energy tails of electron peaks and high-en-
ergy tails of hole peaks in an arbitrary way. The
given expressions were, however, most success-
ful in fitting the experimentally observed behavior
and can be justified as follows: If we take the band
structure as well defined (i.e., E(%) is not broad-
ened but describes states with well-defined ener-
gies between which scatterings can occur), then
it is impossible for electrons to have negative en-
ergies or for holes to have positive energies. The
broadening of the density of states is merely a
way of expressing the range of levels into which
scatterings can occur. (This is different from the
case of amorphous semiconductors, in which the
energies become uncertain due to fluctuations in
density or composition, leading to band tailing in-
to the forbidden gap.) Since electrons cannot scat-
ter into holes, only positive energies can be used
for electrons and negative energies for holes.

We set the ratio of the electron and hole mobil-
ities (in the absence of a magnetic field) equal to
unity, since its value is unknown, and the calcula-
tion is not very sensitive to the exact value., We
assume that the field has no effect on the scatter-
ing mechanism nor on the effective mass. The
(field-dependent) electron and hole concentrations
n and p are used explicitly within the standard ex-
pressions for the conductivity tensor components,

=0, (5)

0(H)=(n+p)epn/[1+(uH)?] (62)
and -

0 (H)=(p-n)epH/[1+(uH)?], (6b)
in determining the field dependence of the conduc-.
tivity.

The resulting expression for the resistivity is
1 2772
plH)= . 0
2772
(2]
and for the magnetoresistance
2
—14( 2ot 7 [1 2 2(1_ (p=n) 5‘
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where the subscript zero indicates the zero-field
value. In the limit of =0, this expression reduces.
to

20-Lo_y, ©)
po P

reflecting the fact that a single-band system has

no magnetoresistance if the carrier concentration
is field independent. Yazawa’ used a two-band ex-
pression, appropriate for the case n=p, even
when n «<p, leading to serious errors in his mag-
netoresistance curves. The formula used by Ya-
zawa also implicitly made the approximation p,,
=1/0,,. This approximation is valid only when
0,,<0,,, Or uH «1, a condition not always true
for relevant field values.

The final step in the calculations is to integrate
Eq. (8) over the angular orientation distribution of
crystallites in the fiber or glassy carbon sample.
For the highly aligned structure of the fibers used
in this study as well as for the isotropic glassy
carbon, it was found that a simple average of the
resistivities of individual crystallites was suffi-
ciently accurate, since the magnitude of the mag-
netoresistance was small. In fact, no significant
differences in the results were evident when the
conductivities were averaged instead of the resis-
tivities. The ‘“true” behavior lies somewhere be-
tween these two extremes. The angular distribu-
tion of the crystallite ¢ axes in the fibers is as-
sumed to be Gaussian with respect to the polar
angle ¢ between the ¢ axis and the fiber axis, peak-
ed at §=7/2, and isotropic with respect to the
transverse orientation.

We now consider more specifically the case of
glassy carbon. The mobility in this case is some-~
what lower; therefore it is necessary to reexam-
ine the density-of-states function g(E) in this lim-
it of low mobilities. Equation (3) shows that g is a
sum of Gaussians, centered at energies E, which
depend on the magnetic field and with widths in-
versely proportional to the mobility. At low fields
or low mobilities, the number of terms needed in
this sum is large, and it is more convenient to ex-
pand g in powers of H. The result is

22
gz, =2 ERENE)
24 _4AE .,
><<No+ NV exp(\’E?) erf(\E)
_2A N~ By(s thg-zO\E)>
VB & % MBI ey ), (0)

where B, is the kth Bernoulli number, H;(A\E) is a
Hermite polynominal, erf(AE) is the error function,
and

wiw

B=%y3%a? ?ﬁ- (11)
Only even powers of H enter into this expression,
since the odd-order Bernoulli numbers are all
zero. The range of validity of this expansion de-
pends on the mobility through . For low mobilit-
ies, say, ;1~0.10 m?/V s, the expansion can be
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FIG. 2. Density of states as a function of energy for
various magnetic field strengths and a mobility of 0.10
m?/Vs. The dashed line indicates the zero-field densi-
ty of states in the absence of collision broadening. The
approximate position of the Fermi energy is indicated
by 7.

terminated at the H* term with negligible error

for fields up to 1.5 T. As shown in Fig. 2, at all
energies up to the Fermi energy the effect of small
fields is, roughly, to increase g uniformly by an
amount proportional to H2. It is only at much high-
er fields that resolvable Landau levels begin to be
evident. .

The following approximate derivation is helpful
in understanding the field dependence of the nega-
tive magnetoresistance in glassy carbon. The cal-
culations presented in Sec. IV were, however, per-
formed using the full formalism of the theory with-
out the approximations made here. We assume,
first, that only the hole band is occupied, so the
magnetoresistance is given by Eq. (9). Second,
for all energies up to the Fermi energy, AE is
small and g(E,H)=g(0,H). Third, at sufficiently
low temperatures (kT <«<17), p is proportional to g;
finally, at low temperatures, )\ is proportional to
p. Then, terminating the expansion of g at the H®
term,

g=a+bH?, (12a)
where
_xexp(=2’E?) 24
a—T—— N0+ FE) (12b)
and

b=exp(-\’E*)ABN*/6T . (12c)
The fractional change in g is

g(o, 0)= a
20, H) a+bH®

and the resulting magnetoresistance is

Ap _ b, —-AB\H?/6

o @ Ngt2A/’B

_ —1.67x10%%,?
"N+ 1.63%1077/ ;2

~1-2p2 (13)
a

HZ=-102),%H?, (14)

where p, is in m?/V s and H is in T.

The mechanism for the negative magnetoresis-
tance resulting from these calculations is most
clearly seen in the quantum limit, which occurs
at fields of order 0.2 T or less, but is valid at
lower fields as well, since all occupied levels are
included in the calculation. In the quantum limit,
only the lowest (»=0) Landau level is occupied.
Since the density of states in this level is propor-
tional to the magnetic field component perpendicu-
lar to the layer planes, the number of charge car-
riers increases rougly linearly with field, leading
to a decrease in the resistivity. At lower fields,
the broadened levels result in a structureless den-
sity of states. The calculation above shows that
this density of states increases roughly uniformly
(at low energies) with the square of the magnetic
field, resulting in a quadratic dependence of the
carrier concentration on field and a quadratic
negative magnetoresistance. However, in suffi-
ciently well-graphitized samples (p—n «<p+n) the
u2H? term in the numerator of Eq. (8) dominates,
and the magnetoresistance is positive. In inter-
mediate cases, the magnetoresistance is negative
at low fields and positive at high fields. This be-
havior results partly from the competition between
the negative linear and positive quadratic terms
and partly from the fact that the Fermi level shifts
toward zero energy as the field increases, there-
by increasing the electron concentrationsn and mak-
ing the ;2H? term more significant.

IV. RESULTS

Typical results for the transverse magnetore-
sistance of various fibers at 4.2 K are shown in
Fig. 3. A flexible simplex-type least-squares-fit-
ting routine'® was used to optimize the values of
the adjustable parameters: N, the density of
states added to the =0 Landau level; N,, the ac-
ceptor concentration; p, the zero-field mobility;
and E,, the acceptor energy. The values of these
parameters are given in Table I along with the xz
values (normalized to the mean square of the data
for each sample). The parameters vary regularly
and essentially monotonically as the degree of
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FIG. 3. Transverse magnetoresistance at 4.2K for
typical carbon fiber samples processed at temperatures
from 1700 to 3000 °C. Solid lines: experimental results.
Dashed lines: calculated least-square fits.

graphitic order increases. As expected, the most
graphitic samples have the highest mobilities, the
largest N, and the smallest defect concentrations.
The numerical values are reasonable and consis-
tent with the assumptions of the model. It should
be noted in particular that N, is of order 10** m3,
consistent with localized defect states, whereas
Yazawa® found much higher values of N, of order
102" m™3, The calculation is insensitive to the val-
ue of E, in the most graphitic cases, since the de-
fect level is far below the Fermi level. The mea-
sured and calculated resistivities were required
to agree within 10% for each sample. The quality
of the fit is not as good at high processing tem-

peratures as at low ones because the increasing
three-dimensional order makes the two-dimension-
al approximation used in the model less suitable.

The variation of the magnetoresistance with an-
gle between the fiber axis and the field is correct-
ly given by the theory as shown in Fig. 4. The
fitted parameters were determined for the trans-
verse (90°) orientation. These values were then
used to generate the magnetoresistance curves for
the other orientations varying only the orientation
angle.

The temperature dependence of the resistivity
and of the magnetoresistance of fibers can be
fitted allowing the mobility to vary with tempera-
ture while holding the other parameters fixed.
The fitted values of the mobility are consistent
with a scattering rate consisting of a constant (de-
fect-limited) term plus a temperature-dependent
(phonon) term with an exponent of about 1. This
temperature dependence is in agreement with ex-
pectations based on the low-temperature mobility
value and the observed temperature dependence
for graphite specimens of various degrees of per-
fection.!

Figure 5 shows the relation between the model
parameters and the structural features of the fib-
ers as determined by x-ray studies. The band
overlap parameter N, is plotted against the ratio
of the intensities of the (112) and (110) x-ray powd-
er diffraction lines. This ratio is a convenient
measure of the extent of three-dimensional order-
ing in carbons, since the (110) line is an in-plane
line which is unaffected by the presence of inter-
layer correlations, whereas the (112) line depends
on the precise interlayer correlations of three-di-
mensional graphite. For perfect graphite, the in-
tensity ratio 7(112)/7(110) is about 1.6. A mono-
tonic relationship between N, and the three-dimen-
sional order is evident in Fig. 5.

Figure 6 shows the defect concentration N, plot-
ted against the crystallite size, estimated in this
case by L., the stack height of layer planes. L,
is determined from the width of the (002) and (004)

TABLE I. Values of fitted parameters and X% (hormalized) for several carbon-fiber sam-

ples.
Processing p#.2K), uQm N, N, E, i

Sample temp., °C Meas. Cale. 10*¥*m= 10% m-? ev m?*V s xngm
29A 3000 3.79 3.92 19.2 1.1 -0.013 1.110 0.0371
39C 3000 5.08 '4.88 9.1 1.1 —0.0058 1.150 0.0495
924 3000 7.00 6.56 6.0 0.9 —0.0043 1.040 0.0351
39E 3000 6.62 6.80 4.5 1.6 —0.0075  0.567  0.00555
52F 2500 “6.77 6.72 5.8 2.6 —0.0118  0.371  0.00483
62B 2000 19.30 9.23 5.0 2.7 —0.0154 0.255  0.00476
62C 2000 9.24 9.18 5.4 3.2 -0.0182  0.213  0.00473
66F 1700 1245 11.80 5.5 3.5 —0.0193  0.152  0.00348
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FIG. 4. Dependence of magnetoresistance at 4.2 K on
orientation in the magnetic field. Fitted parameters
were determined in the transverse orientation (90°).
Solid lines: experimental results. Dashed lines: calcu-
lated fits.

powder diffraction lines. As is clear, the defect
concentration and the crystallite size are related
inversely, as expected; the magnitude of N, is ap-
propriate for these crystallite dimensions.

There is insufficient experimental or theoretical
information on the electronic structure of defects
in graphite to judge whether the variation of E,
with the degree of structural order is realistic.

It is, of course, possible that this apparent varia-
tion is a consequence of the simplifying assump-
tion of a single defect level rather than a distribu-
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FIG. 5. Relation between the band overlap parameter
N, and the degree of three-dimensional order determined
by the ratio of intensities of the (112) and (110) x-ray dif-
fraction lines.
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FIG. 6. Dependence of defect concentration on crystal-
lite size as represented by the layer stack height L.

tion of levels. In the absence of detailed informa-
tion on the defect states in these materials, the
inclusion of additional adjustable parameters to
specify a distribution of defect levels would yield
no useful new information and would not increase
the ability of the model to fit the experimental re-
sults. In any case, the calculation is insensitive
to the value of E, when the defect level is several
times kT below the Fermi level, as is true for
the more highly graphitized materials.
Magnetoresistance data on glassy carbon sam-
ples were supplied by Bragg.? Least-squares
fits were performed on data for a sample process-
ed for two hours at 2300°C and, after processing,
measured at various temperatures up to 100 K.
The results are shown in Fig. 7, where the fits
can be seen to be very good. At each temperature
the value of the zero-field resistivity was required
to agree with the measured value within 20%.
Table II lists the values of the fitted parameters
at each temperature. Looking first at N, and E,,
we see that they are not constant, as might be as-
sumed at first. However, it must be kept in mind
that there is, in fact, a distribution of defect-state
energies, and the use of N, and E, to represent this
distribution is an approximation. The distribution
of occupied defect states is temperature depen-
dent; so the changes in N, and E, here are not sur-
prising. In particular, the increase inN, at the
higher temperatures is what one would expect in
this context. This effect is much less apparent in
the fiber results because the more ordered struc-
tures of the fibers results in a narrower distribu-
tion of defect states. .
The temperature dependence of the mobility is of
particular interest. This is shown in Fig. 8. We
see that initially ;o varies as T-'4, This is inter-
esting in light of the observation by Saxena and
Bragg® that the magnetoresistance of these sam-
ples was a single function of H/T*/2. Recalling the
approximate expression for the magnetoresistance
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FIG. 7. Magnetoresistance of glassy carbon heated at
2300 °C for 2 h measured at temperatures from 10 to
100K. Solid lines: experimental results. Dotted lines:
calculated fits.

as proportional to y*H? we see that this depen-
dence on H/T'”? occurs quite naturally in this the-
ory.

V. DISCUSSION

The model described here appears to work well
in the regime of graphitization prior to the onset
of three-dimensional ordering where a negative
magnetoresistance is observed. At higher pro-
cessing temperatures the increased ordering be-
tween layer planes leads to significant changes in
the band structure and the magnetoresistance be-
comes positive. The model gives much poorer
quality fits in this region.

It should be possible, however, to extend the
model to account for three-dimensional effects by
explicitly including the changes in the band struc-
ture due to interlayer interactions. The Slonczew-
ski-Weiss-McClure band-structure model for

TABLE II. Values of fitted parameters for a glassy
carbon sample at several temperatures.

T Ny E, M

K 10% m-3 104 m=3 eV m?/Vs

10 8.9 8.6 —0.0101 0.1015

20 10.4 8.4 —0.0096 0.0901

40 10.8 9.2 —0.0097 0.0737

60 10.1 8.6 —0.0087 0.0863
100 5.4 12.8 —~0.0100 0.0786

0.0

L (m%/V's)

T(K)

FIG. 8. Fitted mobility values for the glassy carbon
data in Fig. 7 as a function of temperature.

graphite’® describes the bands near the Fermi lev-
el in terms of seven tight-binding parameters. In
the two-dimensional case, all but one of these
seven parameters are set equal to zero. The next
stage of approximation is a four-parameter theo-
ry.'! It seems reasonable to suppose that the be-
ginning stages of three-dimensional order can be
accounted for by using this four-parameter model
with the parameters which were zero in the two-
dimensional case “turned on” slowly toward their
values in single-crystal graphite. Figure 9 shows
how this happens.

In these curves, the Landau levels are shown as
a function of £, from zero to the top surface of the
Brillouin zone. In the two-dimensional case,
there is, of course, no k dispersion. As the band
parameters are turned on to 1% of the graphite
values, some dispersion starts to develop and the
degeneracy of the levels is split. By 3%, the dis-
persion is increasing significantly, but the bands
still look more like the two-dimensional than the
three-dimensional case. By using this approach,
a more realistic density-of-states curve could be
generated, which might extend the region of vali-
dity of the model to more highly graphitic sam-

0,020}
EeV) |
0001

2-d

T %7 ]

A s

L G Ce
-00I0}
-0020]

FIG. 9. Landau-level dispersion for two-dimensional,
mixed, and three-dimensional graphite. The magnetic
field strength is 0.10 T. The two-dimensional levels
are doubly degenerate. Only the first few three-dimen-
sional levels are shown for clarity.



20 NEGATIVE MAGNETORESISTANCE OF PREGRAPHITIC CARBONS 5149

ples.

These curves also offer some insight into the
reasons why the parameter N, is successful in ap-
proximating the three-dimensional ordering. It
looks at first as if the simple procedure of adding
extra density to the m =0 Landau level would be
too crude to work well. But these Landau-level
curves show that the dashed levels rapidly move
to high energies and become well separated from
the Fermi energy, while the solid levels remain
relatively unchanged. The important thing is that
the m =0 level degeneracy is almost not split at
all, so that this level effectively has twice the den.
sity of the others. The magnitude of N, is roughly
the same as the density in the two-dimensional
levels; therefore it is clear now why the approxi-
mation is successful. There are, of course, dif-
ferences in the details of the handling of the levels

in the approximate and the more exact calculations.

Modification of the calculation to account for these
differences would be expected to result in an im-
proved ability of the model to duplicate the experi-
mental results.

VI. SUMMARY AND CONCLUSIONS

The model described here has been shown to
provide a good fit to magnetoresistance data at
low magnetic fields (H <1.4 T) for a wide varlety
of carbon fiber samples, ranging from highly
graphitic to very poorly ordered, as well as
glassy carbon. By using four adjustable parame-
ters, it is possible to fit simultaneously the mag-

nitude and temperature dependence of the resistiv-
ity and the dependence of the magnetoresistance

on field strength, orientation, and temperature.
The model should he capable of explaining other
electronic properties as well, such as the Hall
effect and the magnetic susceptibility. No attempt
has yet been made to do so because of a lack of

the relevant experimental data on the present sam-
ples.

The assumptions used in the model are natural
and reasonable. No arbitrary, impurity-dependent
or sample-dependent features are required. Thus,
the model should be successful for essentially any
type of disordered carbon, whether graphitizable
or not.

The values of the parameters of the theory are
directly related to the structure of the sample. It
is straightforward to use the parameter values ob-
tained by analyzing the magnetoresistance to in-
vestigate the evolution of the samples as graphiti-
zation progresses.
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