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Moments of semiclassical and classical absorption and emission band shapes
of impurities in solids
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General expressions for all moments are calculated for both semiclassical and. classical approximations to
absorption and emission band shapes due to impurities whose vibrational interactions with the surrounding-
lattice of a solid contain both linear and quadratic terms. The first five moments are presented and
compared to the exact quantum-mechanical results. The semiclassical approximation is found to be most
accurate for vibrational interactions having either linear or linear plus quadratic terms with strong coupling
and/or high temperature. The semiclassical approximation is rarely, if ever, appropriate if only quadratic
terms occur. The classical approximation is a valid representation of the semiclassical approximation at high
temperatures. These conclusions are shown to be consistent with the correspondence principle.

I. INTRODUCTION

The method of moments is a useful tool for ob-
taining theoretical parameters from experimental
optical-absorption and -emission band shapes orig-
inating from defects in solids. The method was
originally developed by Lax, ' and extended and ap-
plied by others. If an absorption band shape in-
volves a single mode of vibration, then just five
unknown parameters (see Sec. II) are needed to
completely specify that band shape. These five un-
knowns could, in principle, be determined from
the first five moments of the band shape; how-
ever, unambiguously determined moments of high
order are often difficult to find from experimental
data. ' ' The lowest three moments have been used
in the interpretation of the band shapes of some
impurities in solids. ' ' Lax gave general expres-
sions for the first five quantum-mechanical mo-
ments without introducing explicit expressions for
the vibrational-interaction terms. A method for
generating all quantum-mechanical moments is
available, ' but only the lowest five have been cal-
culated. " Tg date there has been no derivation re-
ported of all the moments for the general vibra-
tional interaction.

We examine here the semiclassical approxima-
tion to the exact quantum-mechanical. treatment.
This approximation (developed by Williams" and
independently by Lax" ) considerably simplifies
the mathematics. It treats the initial state of the
electronic transition quantum mechanically and

the final state classically. We develop general
expressions for semiclassical and classical (where
both initial and final states are treated classically)
absorption- and emission-band-shape moments.
%e then compare these moments to the exact quan-
tum-mechanical results.

II. GENERAL FORMULATION

The absorption band shape I as a function of en-
ergy E for electric dipole transitions from the
ground state (of energy E, ) to the excited state
(of energy E») of the defect is

f(E)=g v j&e„jA je»&j'&(E-E»+E,.), (1)

where the electronic-ground-state quantum number
is g, and a is the vibrational-ground-state quan-
tum number. Similarly, b and P refer to the ex-
cited-state quantum numbers. Also, Av desig-
nates a thermal average over the ground-state vi-
brational levels of the product of (i) the square of
the matrix element of the electric dipole operator
A and (ii) the 5 function that locates the energy of
the an- bP transitions (at this point, n and P are
merely symbolic of the quantum numbers). The 5

function may be rewritten in the form

a(E)=(2~@| ' I dte ' '~'
~N

so that Eq. (1) becomes

I(E) =(2wh) 'Av «g &~..IA* I~»&&~»IA I~.-&exp&f[(E»-E..)~I —~]t). (2)
& -oo

The energies E» and E,„can be replaced by the corresponding Hamiltonian operators if Eq. (2) is rewritten

f(E)=(2m') 'Av dt's (4, IA*I4, ) g»je'"~' "Ae '"o' "j@, )e '"'.
~00
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Two approximations are commonly made at this point. The first (the adiabatic approximation) is that the
total wave function 4 may be written as the product of the electronic wave function Q and
function X (Ref. 15); the second (the Gondon approximation) is that the electric dipole operator A is con-
stant with respect to the nuclear coordinates. Then Eq. (3) becomes

(4)

where f,~
-=I(P, IA IQ~&I'. In the semiclassical ap-

proximation II„ is independent of p, and the closure
relation ZH I }(z&(xz I

= 1 can be used to obtain

I(E)= J dt(2mh) 'f,~Av e '"'

x (x I
fe&Hg H~)t/0

Ix ) (5)

Equation (5) will be recognized as a Fourier trans-
form, whose inverse is

1

f„Av (x,„Ie""&"" 'Iy. &
=h dvI(E)e'"

«OQ

dE I(E)e'H'/" (6)
«00

Taking the nth partial derivative with respect to
it/h and evaluating the result at t= 0, the right-
hand side of Eq. (6) becomes f dEI(E)E", which
is just the definition of the gath moment, M„, of
the absorption band shape. Thus, the semiclassi-
cal moments are

M„=f,~Av (}t l(En E ) I
(7)

Equation (7) may also be found by noting that the
semiclassical band shape is the product of the
probability of the electronic transition and the
probability that the ground state is populated:

I(E)=f,~Av

where dq/dE accounts for changing variables from

q to E." The moments are

2 2E 240 (loa)

E =(n+ 2)e(u, - (10b)

E~= E, —SRkar+ [(—,R'ur')'/'q + (SRh&o)'/'] ',
(10c)

Ez= E, —SRh&u+ R(P+ —,')R&o, (10d)

The ground-state wave function corresponding to
islv

—[((g/gh)~/2/2N Q l ]»2

x e ""/'"II„((~/t)' 'q)

The thermal-averaging operator is

1

quadratic-interaction parameter) of the vibrational
frequency of the excited state to that of the ground
state be unity. The strength of the linear interac-
tion is characterized by the Huang-Rhys factor 8
= &uq,'/2g that measures the separation q, of the
coordinates of the minima of the potential energy
curves of the ground and excited states in the nor-
mal coordinate space. The vibrational frequency
of the ground state is co. At the normal coordinate
value of q = 0, the minimum of the electronic
ground state, the curves are separated in energy
by E, that is related to the purely electronic tran-
sition (refer to Fig. 1). The quadratic interaction'7
occurs for R 41 and 8= 0, and the more general
interaction occurs for R 11 and S0. In terms of
the nuclear coordinate, and for the general vibra-
tional interaction,

M„= dE E~-E, "g E

=y'., fdqAv x 'lE, —E,)"„„
III. EXPLICIT EXPRESSIONS FOR THE MOMENTS

. Av [f]= 2sinh(8/2T} p [r]e
g» 0

where 8=}i~/h. The zeroth moment is

Mo= f,qAv X' dq= f,q

and the ~th absorption moment takes the form

(12}

To calculate the pgth moment of the semiclassical
band shape, we make the usual identification that
the ground-state and excited-state potentials rep-
resent harmonic oscillators. Meyer originally
considered the vibrational interaction between the
impurity and the lattice to be linear in the normal
coordinate that describes the interaction. This
linear interaction requires that the ratio R (the

M~ . ~ ((o/nh) ( ~'/2)q/ r
0 o-0

1/2 ) &2
x I

dqe"'/" II
I

— q
I, h

x [(2SR huF)'/'q+ 2(R' —1)v'q']".

(14)
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Eb = Eo-SR%~+ (R ~ /2 ) q +(SR%~)
" '

2 2
Eg=e q /2

FIG. 1. Configuration-coordinate diagram representing the electronic ground and excited states and their associated
vibrational levels: E = (e+ ~)Sco; E& =So-SBSco+B(P+ ~)Sm

For mathematical convenience, we calculate the
moments about E,. The Slater sum'

&-(g+)L/2)~

Hq(x)Hi(y) exp [-—,
' (x'+ y') ]

= (2v sinhg) ' ~ ' exp{-—,
' [(x+y)

' tanh(-,' z)

+ (x —y)'coth(zx)])

m, /M, (S'&u)' = 2 (R' —l)SR' coth'(8/2T)

+ —,
' (R' —1)' coth'(8/2T),

m~/Mo(k&u) = 3S'R' coth'(8/2T)

+ —", (R' —1)'SR' coth'(8/2T)

+ —"(R' —1)' coth'(8/2T) .

(17d)

(17e)

is used to remove the Hermite polynomials in the
integrand to give an integration that can be easily
performed using the binomial expansion. The re-
sult is

, + (sa')'(z'-t)" "

(2n —2i) i coth" '(8/2T)
(2i) )(n —2i).(n-i) i

The first five absorption moments are listed be-
low. Unlike Eg. (14), Eq. (1Vb) shows M, taken
about E= 0. Higher moments are taken about M„
and are thus the central moments, yn„.

M, = j&y, a)y, &)-', (17a)

M, /M, (k&o) = E,/h&o+ —(R' —1) coth(8/2T), (1Vb)

m, /M, (h&a)' = SR' coth(8/2T)

+ -'(R' —1)'coth'(8/2T),

For emission, the relation corresponding to Eq.
(7) is

M,„=fq, Av~()(~ i(E~ —E,)"iXq),

where the vibrational wave functions for the ex-
cited state are".

X~= [(R(u/vlf)' '/2&Pi]'~

x exp{-—,
' [(Rcu/I)'~ q+(2S) "]']

xII, [(R /a)'i'q+(2S)"'].

The thermal. -averaging operator is
CO

Av&[t;] = 2 sinh(R8/2T) g fg]e s+'i2)~ eir (20
/=0

and M„=f~,. The integration for emission that
corresponds to Eg. (14) for absorption can be car-
ried out to give the moments about Eo.

, ~ (2&+ 2q)! [-,'(R'-1) coth(R8/2T)] I, R8

$~0
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M..= le. J~ le.)I', (22a)

M,(/M, p(ff(dR ') = REp/ff(d —(1+R2)S

+ —,
' (R' —1) coth(R8/2T), (22b)

m42/M«(fip)R ') = S coth(R8/2T)

+ 2 (R —1) coth (RH/2T), (22c)

m„/M«(S'(dR ')'= 2 (R' —1)Scoth'(RH/2T)

+ 2 (R' —1) coth'(RH/2T), (22d)

m~/M„(R&dR ')'= 3S'coth'(RH/2T)+", (R' 1)'

x S coth2(R8/2T)

+ —"(R'—1) coth (RH/2T).

In the case of the linear interaction (and also of
the quadratic interaction), the moments ean be
calculated directly from the band shapes. Using
the Slater sum to simplify Av X

' and

(22e)

= [2&() (R' —1)(E-Ep) + 2SR'g'(d2 j '/2, (23)

with 8= 1, one can compute the moments using Eq.
(8). The central moments for absorption and
emission are identical:

The first five moments for emission are listed be-
low. M„ is taken about E= 0, but higher mo-
ments are taken about M„, and thus are central
moments.

and similarly for emission. Performing the in-
dicated integrations, one obtains just the semi-
classical result in its high-temperature limit,
where coth(8/2T) is replaced by 2T/8. For emis-
sion, the same occurs but with coth(RH/2T) re-
placed by 2T/R8.

IV. COMPARISON TO THE QUANTUM-MECHANICAL

MOMENTS

The validity of the semiclassical approximation
ultimately rests with the extent to which the re-
sulting band shapes accurately reproduce the quan-
tum-mechanical band shapes. If the semiclassical.
moments closely approximate the corresponding
quantum-mechanical moments, then the semiclas-
sical band shapes accurately reproduce the quan-
tum-mechanical band shapes. Examination of the
first few moments should reveal the extent of the
accuracy of the semiclassical approximation. Only
the five lowest quantum-mechanical moments have
been calculated for the general interaction, "but
all the quantum-mechanical moments for the lin-
ear interaction have been determined. "

It has been noted' that the semiclassical mo-
ments (Sec. II) and the quantum-mechanical mo-
ments (Ref. 13) agree exactly up through )2= 2.
The difference between the third quantum-me-
chanical moment and the third semiclassical mo-
ment, Eq. (17d), is

m, „ m, (,„) ( 222) !
) ,„

M,
(24a) (m2&Q» —m, &sc ))/M( pff&)d'

= SR'+ —,
' (R' —1)'coth(8/2T) (27)

where

p=
& ()/M (24b) for absorption, while for the fourth absorption

moments

(2i)!(- —,')'
ij'n-i t

$(I 0

(25)

To obtain the corresponding emission moments,
replace ~ and 8 with B 'co and &8, respectively.

The classical band shape results when the final
and initial states are both treated classically,
thus permitting use of the completeness relations
for both states. Then for absorption, Eq. (7) be-
comes

OO «], &oI f( dd e ~0 "~
J =dd(Z —d )"e

«&O «&O

(26)

c,= k(p[2S coth(8/2T) j '/'.
Equation (24b) vanishes because in symmetric dis-
tributions (here I and I, are Gaussians), every
central moment of odd order is equal to zero.

The quadratic-interaction moments reduce to

mgMp = n I [- 45&d(R' —1)coth(8—/2T) j"

(m4(QM) m4+c))/Mp(!2(d)'

= 4 (R' —1)'+SR'(4R' —3) coth(8/2T)

+ —'(R' —1)'(2R' —1) coth'(8/2T) . (28)

I(E) m (/2 'P ( P(2)+ 2 g(4)+ y 2P(6)
3j 4j 6j

——yyy&3 (5) 35 (7)
5j

280
Oj 1r '4"'+ ")(&9)

about a Gaussian shape,

These differences, by themselves, provide one
measure of validity of the semiclassical approxi-
mation, but a more meaningful assessment can
be made by examining how these moments are re-
lated to the band shape.

The complex band shape that results from the
general vibrational interaction can be described
by the series expansion"
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-3/2
l m3m2

2
m4m2 3 o

(3o)

(31)

y=(2v) '~'exp( —2g'),

where x=(E -M, )m, '~'. Here p'"' represents the
nth derivative of p with respect to g. The coeffi-
cients of skewness and excess (kurtosis) are

classical and classical approximations are given
by the accuracies of y, and y, . Errors in y, and

y, directly contribute, via Eg. (29), to an inac-
curate portrayal of the band shape.

Considering the absorption band shape, we de-
fine

3/2byl= m3(~) -m3$C)jim2
The coefficient of excess is a measure of the flat-
tening near the band centroid; positive y, means
a taller and sl.immer shape than the y, = 0 Gaussian
shape. These dimensionless coefficients show how

the various moments affect the shape of the band.
Thus a measure of the accuracies of the semi- and

4SR'+ (R' —1)'coth(8/2T)
4[SR' coth(8/2T) + —,

' (R' —1)'coth'(8/2T) ]' '

~2b,y2= im4~qM) —m, ~c)'rm,
"

(R' —1)'+ 4SR'(4R' —3) coth( 8/2 T) + (R' —1)'(2R' —1) coth'(8/2T)
4 [SR' coth(8/2T) + —,

' (R' —1)' coth'(8/2 T))'
(35)

b,y, = [Scoth'(8/2T)] '~',

b,y, = [S coth(8/2T)] '.
(36)

(3'I)

Both hy, and by, become sufficiently small (for
values of S and/or T that are not unreasonably
large) that the semiclassical approximation is

Comparison of higher coefficients is precluded be-
cause for the general interaction, quantum-mechan-
ical moments higher than the fourth have not been
determined. We note from Eqs. (33) and (35) that
by, and by, both decrease (that is, the guantum-
mechanical band shape approaches the semiclas-
sical band shape) with increases in R, S, and/or
T. These trends are depicted in Fig. 2. For typi-
cal values of B and 8, b,y, and b,y, are well approx-
imated by the linear-interaction results:

I

often appropriate to the linear interaction and to
the general interaction. For the quadratic inter-
action, however, small values of by, and 4y, oc-
cur only for unreasonably large values of R and/
or T, and the semiclassical approximation is
rarely appropriate. This observation is consis-
tent with the strong dissimilarity b'etween the
shapes of the semiclassical and the quantum-me-
chanical bands presented by Keil." At high tem-
peratures, coth(8/2T) = 2T/8, which is equivalent
to invoking the classical approximation.

V. DISCUSSION AND CONCLUSIONS

The ~th semiclassical and classical moments
are calculated for absorption and emission. Ex-
plicit expressions for the first five moments are
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FIG. 2. Parametric dependence on T, S, and R of the changes introduced by the semiclassical approximation in (a)
y&, the coefficient of skewness; (b) y2, the coefficient of excess.
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presented. Errors in band skewness and kurtosis
that are introduced by the semiclassical approxi-
mation are used as a measure of the validity of
the approximation. For both the linear interaction
and the general interaction, it is found that the
semiclassical approximation is often valid es-
pecially for high temperature and/or strong cou-
pling. The classical approximation is valid for
high temperatures. The regions of validity of
these approximations are consistent with the cor-
respondence principle that quantum-mechanical
results reduce to classical results for large values
of the quantum numbers. These approximations
are rarely appropriate for the quadratic interac-
tion.

For the linear interaction one can show that the
major contribution to the th absorption moment
occurs at the energies

E, a 1.4k8 [nS coth(8/2T) ]'i'.
For emission, replace E, by E, —2S@u. For the
lower moments the major contribution occurs in
the vicinity of the half-width points. However,

the location of the major contributions to the mo-
ments becomes increasingly separated from the
band centroid as ~ increases. Thus, if higher mo-
ments are to be computed from experiment, much
care should be taken to ensure that the band in-
tensity is accurate to energies well beyond the
half-width points.

At high temperatures and/or strong coupling
(for the linear and general vibrational interac-
tions, but not for the quadratic), the semiclassical
and classical moments accurately portray the
quantum-mechanical moments. For these re-
gimes, the expressions for the semiclassical and
classical moments are more useful for extracting
theoretical parameters from experimental data
than are the expressions for the quantum-mechan-
ical moments. Once these semiclassical and clas-
sical values of the theoretical parameters have
been extracted, they could then be inserted as
first-order estimates in the more exact quantum-
mechanical expressions in an iterative procedure
to determine the quantum-mechanical values of
the parameters.
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