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An analysis is presented which indicates that anisotropic contributions to the optical potential can be
caused by the broken symmetry of a surface. This anisotropy is not related to surface plasmons and extends
a few layers into the surface region. The anisotropic contributions have been estimated for a simple metal
and shown to be of the same order of magnitude as the isotropic contributions. To test possible influences
of the anisotropy, a model low-energy electron difFraction (LEED) calculation has been performed. Our
results do not show major changes in the LEED I-V profiles, which serve to lend additional credence to
previous LEED analyses in which isotropic optical potentials were used. However, it is pointed out that the
anisotropic contributions could produce larger e6'ects in other electron spectroscopies (e.g., photoemission).

I. INTRODUCTION

The time evolution of the elastic part of an elec-
tron wave function P(r, t) interacting with a scat-
tering system composed of ions and electrons is
given by the mell-known Dyson equation'

2

2m
v'+ (F) ) y(, t)+) dF'z(, ', s)y( ', t)

)

=in —„y(r,f), (1)

where v(r) is the ionic potential screened by the
electrostatic (or Hartree) potential of the elec-
trons, e; is the energy of the initial wave pa, cket
of the interacting electron (e; will be set equal to
S'p'/2m), and Z is the self-energy. Equation (1)
applies for any geometrical configuration of the
ions, but in this paper we mill restrict our interest
only to metallic surfaces. Equation (1) then en-
compasses in its description, for example, photo-
emission, ' Auger electron spectroscopy, lom-
energy electron diffraction (LEED), and more.
A first-principles description of the above proces-
ses using Eq. (1), however, is not feasible, owing
to the extremely complex structure of the optical
potential Z. This complex structure includes real
and imaginary parts which are both nonloeal and
energy-dependent,

z(r, r', e;)= V„(r,r', e;)+i V, (r) r', e;).
Our interest here is the structure of the imaginary
part, which is second in importance only to the
ion-core potential v(r) in describing the details
of the above processes. Although structure can
also exist in V„which could lead to, say, energy
shifts of peaks in LEED, any consideration of V„
will be left for future work. Ne mill therefore
restrict our attention to the anisotropic contribu-
tions to the imaginary part of Z.

In practice V, usually has been replaced by a
potential which i.s meakly energy dependent and in-
dependent of position. ' This could be a severe
approximation in the surfa, ce region, since simple
metals have been shown to have significant elec-
tronic-density variations normal to the surfa. ee. '
Thus, such an approximation certa, inly merits
close inspection, and, indeed, several aspects
have been closely scrutinized. For example, the
.possibility of a positional dependence arising from
core-state polarization has been examined by Ing'
and shown to be only a small fraction of the con-
duction-electron contribution. The conduction-
electron-density variatipn in a, unit cell, and its
effect on V&, have also been examined by Ing' and
shown to make less than a 10% contribution for
copper. Fina, lly, there is another density varia-
tion at the solid-vacuum interface whose effect on

V& was closely examined by Inkson. He finds an
additional contribution to V, from surface plas-
mons, highly localized at the surface region,
within a fra, ction of an interlayer spacing.

The nonlocal structure of Z (i.e., its dependence
on r and r') introduces additional dependence on
the momentum p of the scattering electron' (see
also Sec. II). Because of the broken symmetry
along the direction normal to the surface, Z de-
pends not only on the magnitude

~ p ~, but also on
its direction relative to the normal. Such angular
dependence has recently been studied theoretically
for photoemission' and Auger spectroscopy;"
these studies mere motivated partially by the qual-
itative observation that surface plasmons become
more significant for lom grazing angles. " In
these investigations the metal substrate was re-
placed by the step model of a surface, ' and the
only intrinsic angular dependence of V&(r, r', e;)
considered was that due to the emission of surface
plasmons when the scattering electron exited from
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the metal surfa, ce."
There is, however, an angula, r dependence of V&

which is not related to surface plasmons and which
is simply a, consequence of the broken symmetry
along the normal, and extending several layers
into the solid. In view of the fact that present
theoretical calculations are usually unable to re-
produce a,ll deta, ils of the data obtained with various
electron spectroscopies, we have undertaken a
study of these additional contributions to V&. Our
approach is similar to that used in previous theo-
retical treatment of the isotropic terms. That is,
we will first estimate the anisotropic terms theo-
retically to assess their order of magnitude, and
then, realizing that their deta, iled structure is at
present unobtainable, consider them a,s adjustable
para, meters in any calculations.

In Sec. II we present a formulation of the addi-
tional angular terms. In Sec. III we evaluate these
contributions in the random phase approximation
(RPA) in the same fashion a,s ha, s been done for
the isotropic calculations. We find the duo terms
to be of comparable magnitude. In Sec. IV we in-
clude these terms in a model I EED calculation
corresponding to the (100) surface of aluminum.
These calculated results are then discussed in
Sec. V, where we also suggest possible future
work.

II. FORMULATION OF THE ANISOTROPIC

CONTRIBUTION TO THE IMAGINARY PART OF
THE OPTICAL POTENTIAL

In this section attention is focused on the imag-
inary part of the self-energy i V, (r, r', po), with

p 0 6 p 7 a nd the approximations we have empl oyed
to determine its anisotropic structure are dis-
cussed in some detail.

We first note that V& is a functional of the elec-
tronic density n(r). Sham and Kohn' have ex-
ploited this property to suggest the following ap-
proximation for V, :

i V, (r, r', Po) =i V,(r —r', Po —v( ro), n( ro)), (3)

where n(ro) is the density at ro=- (r+ r')/2. The
insertion of v(r) in Eq. (3) is made to maintain
the invariance of Eq. (1) under a constant shift of
v(r). Since, however, we will be concerned here
with energies P, much larger than the nonconstant
term of v(ro), this term in Eq. (3) will be neg-
lected. The approximation of Eq. (3) clearly will
be the leading term of a gradient expansion for a,

system of slowly varying density. The hope is
that it will remain adequate for actual electronic
systems in which the density sometimes varies
rather rapidly. To make the solution of Eqs. (1)
and (3) more tractable, Sham and Kohn employ yet
another approximation and write P(r, t) as a local
superposition of plane waves e""".This is
similar in spirit to the WKB approximation and
should be quite adequate for the la, rge momentum
p(r) of the scattering electron. Then

i dr' V~] r —r', po, n r' r', t

= i V,"(p(r),p„n(r)) y(r, t) . (4)

The validity of Eq. (4) depends on the range of the
nonlocality

~

r —r'
~, the length scale of the density

variation n/Vn, and the wavelength of the mo-
mentum 1/p, which should satisfy (Vn)/pn &1, as
is the ca,se at higher energies. In applications,
for example, to LEED calculations, Eq. (4)
usually has been simplified even further by aver-
aging over the positional dependence. This yields
a single number i V&(~ p ~

) for the imaginary part,
which is then considered to be only weakly depen-
dent on the magnitude of the scattering electron's
momentum. Also, in practice V&(~p~) is usually
treated as an adjustable parameter. ' However, its
order of magnitude has been verified for simple
metals' by calculating the ima, ginary part of the
process given in Fig. 1(b).

It is with the same spirit that we wish to analyze
the first higher -gradient corrections to
iV, (r, r', p,). Equation (3) is now generalized to

i&~(r, r', po) =iV",(r —r', p„n(r))+i[ Vn(r) Vg, {r—r', po, n(r))+ V'n('r') V'g, (r' —r,p„n(r)}]
+ —,

' i( V'V'[n(r)g, {r—r', po, n(r))]+.V "V"[n(r')g~{r' -r,p„n(r))]]+0(Vn Vn) . (5)

There are other terms we can introduce into Eq. (5), but as we shall see shortly, the above form is
sufficient and consistent with our order of approximation. We also note that Eq. (5) is constructed so that
the operator iV, (r, r', p, ) is non-Hermitian, and thus probability nonconserving, which is as the absorptive
part of the optical potential should be. For a detailed study of the convergence of expansions like Eq. (5),
see Ref. i4.

We now follow our initial discussion and operate with i V& on our WKB wave function and, as for iV, ,
set the density at r' equal to that at r. Then a bit of algebra yields the following form for the isotropic
and anisotropic contributions to the optical potential:
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FIG. 1. (a) Contributions to the optical potential to second order in the screened external potential {X-:---);(b) the
homogeneous part of the optical potential in the RPA (the wiggly line is the dynamically screened interaction); (c) sin-
gle-plasmon RPA contribution to the optical potential to linear order in the external potential; (d) two plasmon BPA
contributions; (e) example of second-order (in the external potential) contribution to the optical potential in the RPA.

i dr'V& r, r', po r', t =i V& p r,P»n r

-g (p(r),p, n(r))(p V)(p V)n(r)+0(p 'Vnp ' Vn)]p(r, t).
Of course, a full exposition of all the terms of Eq. (5) in Eq. (6) reveals many additional contributions
such as

i
~
p( r)

~

V n( r) g2(p( r),Po, n( r)) .

(6)

However, the terms omitted all depend only on the magnitude of the momentum p(r) and therefore will not
add any additional angular features to i V&(p(r), P»n(r)). These terms can be viewed as being part of i V&.
To order V' in the gradient expansion of the optical potential, only the last two terms introduce intrinsic
angular dependence in Z, or equivalently, in i V&. It is precisely this additional feature that we will inves-
tigate ig. this work.

We conclude this section by making a connection between the anisotropic terms of Eq. (6) and the elec-
tron-gas vertex functions. Consider a uniform electron gas to which we introduce an arbitrary external
potential v„,(r). An example of v,„, would be the ionic potential v(r) in Eq. (1), without the electrostatic
screening of the electrons. To second order in v,„„the self-energy Z is given schematically in Fig. 1(a).
The linear term in v,„, [Figs. 1(a) and 1(c)] is nothing more than a three-point reducible vertex function"
A(p+q, p, p»no) The shad.ed area terminating at the dot is the irreducible vertex functionA(p+q, p, po, no),
which is related to A by

A(p+ q, p, P„n,) = v(q)[A(p+ q, p, P„n,) —1], (6)
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where v(q) is the Fourier transform of the screened external potential [i.e., v(q) = v,„,(q)/e(q)] and is
represented by the dashed line in Fig. 1. To first order in v, „„V,is given by

3 3
(v( rr', p) =(vj(r —r', p, n )+( -(

„e""'', „e"v(tj)fi(pep(, p p, n ) —nojoinj).2z) ( 2') (9)

Note that unlike, for example, Eqs. (3) or (4), the density in Eq. (8) is the uniform density n„since we
are considering V&, for the moment, strictly to linearorder inv, „, (see below). Now the density is given
in linear response by n( q) = —jj'(q)v(q), where jj'(q) is the irreducible screening function" related to the
dielectric function by e(q)= 1+ (4))e /q )v(q). Next we expand A to second order in q', i.e.,

A(p+q, p po, no) =-1+A(p, .p, p, „no)+ A'(p, pkpo, no) p q+ A,"(pkpkpopno)(p q) + Akk(p, p, p„no)q'. (10)

Inserting Eq. (10) in Eq. (9) and replacing v(q) by -n(q)/m(q), we obtain for V,

iV(r, r', P,)=iV",(r-r', P„n,) —f ( ),
e"'""'

d
e "',=-; ([ 1+A(p, p,p„n,)+A'(p, p,p„n,)p q

+ A,"(p, p,p„n,)(p ~ q)'+ A,"(p, p, p„n)q']

—adjoint) .

If we now set n(r)=no in g~ of Eq. (6) and perform
the integration over q in Eq. (10), we can relate
g to A,

" by

(pP n)=-Im+ P'P'P""' .kk(
~

82 PP OP 0 +(0)

It is this function that we approximate in the fol-
lowing section by using the RPA approximation.

The other V' term in Eq. (6) of order Vn Vn

can similarly be related to the second order in

v„, [Figs. 1(a) and 1(e)]. Since it is a second-
order term, however, we expect it to be consider-
ably smaller than the first-order term in Eq. (11).
This is particularly true for large momentum of
the scattering electron, since the V'n V'n term
represents a second-order coherent scattering"
from the external potential in the surface region.
For a, rapidly moving electron such an event is
clearly less likely as the electron traverses this
narrow surface region. Mathematically this is
reflected through an additional denominator (from
an additional electron propagator), entering terms
as in Fig. 1(e) as compared to Fig. 1(c). We
therefore neglect such contributions in this pres-
entation.

III. EVALUATION OF THE AMSOTROPIC
CONTRIBUTION TO THE IMAGINARY PART OF

THE OPTICAL POTENTIAL

In this section we evaluate the imaginary part of
A," in Eq. (11) within the RPA. Our aim is to es-
timate its magnitude within the same approxima-

tion that has been used formerly for V",. '
Vfe could start by applying standard many-body

techniques to write the approximate form for the
irreducible vertex function A of the electron gas.
However, our concern here is the surface region
of a metal, and the long-wavelength fluctuations
(or equivalently, the short-wave-vector fluctua, —

tions) are poorly represented"" by such homo-
geneous electron-gas forms, primarily due to
contributions from surface plasmons. We there-
fore choose to start by writing the self-energy Z
within the RPA approximation [Figs. . 1(b)]"for
an electron in the presence of the potential v(r).

The equations that describe this approximation
are'

P( r', P )=irf ( )
S„(T,P', P +k )je(r, r', k )

je(r, P', k )=I k'r"v(r —P )e'(r", r', k ), '

(14)

where v, (r —r') is the bare Coulomb interaction
and &

' is the inverse of the dynamically screened
dielectric function with frequency ko. 8„ is the
noninteracting single -particle propagator in the
presence of v( r). It satisfies the equation

2

V'+p, +v(r) S„(r,r', p,)= -6(r —r').
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We assume that the dielectric function is diagonal
in momentum space; that is, we ignore local field
corrections. "" Then, in the RPA,

4'' l & y) [ e '"'"
( yg ) ) '

kV Sk+ +'5' k

x [e (E) —P, ) —8 (Eg —/l)] p

(16)

where V is the volume of the electron gas, p its
noninteracting chemical potential p = 5'kar/2m,
and the Q, satisfy Eq. (15) with the 5 function re-
placed by 0. Also,

e'(x)=o, x&0

=1, x&0

8'(x) =1 —e&(x) .
Now Eq. (16) for a surface of a free-electron

metal has a rigorous k —0 limit; it is given by'

lim e '(k, k, ) —1= V —1
1 A sine

ek, k

1 1 —e(ko)

Here A is the surface area, 6) the angle of k rela-
tive to the surface normal, and e(k, ) the zero-
wave-vector bulk dielectric function given by"

(18)

with 5 a positive infinitesimal and +~ the bulk
plasmon frequency, related to the bulk density
no by &v~2 = 47tnoe'/m

We now employ the following procedures. ' '"
For small wave-vector fluctuations (k small},
Eq. (17) is a good approximation for e. Then for
for k & k„where k, is a cutoff to be chosen below,
we approximate e ' in Eq. (14) by Eq. (17). For
large wave-vector fluctuations (k & k,), we use the
homogeneous-electron-gas result for e '. The

A(p+ q, p, p„n,)

= A, (p+ q, p, p„no}+A, (p+ q, p, p„n,) ~ (19)

forms for W(r, r', ko) in the two different regions
of k are then inserted in Eq. (13). We will first
concentrate on the k & k, region, which will turn
out to be quantitatively most important, and re-
serve to the end of this section our discussion of
the k &k, contribution to Z.

Returning to Eq. (13), we first set the screened
external potential v(r) = 0. Then S„and W reduce
to their homogeneous structures, and Eq. (13)
yields the bulk form of Z or iV&. In other words,
Z =Z" or iV& =iV,", with fluctuations in the region
k & k,. If we add the contribution of the volume
term in Eq. (17), we retrieve the full structure
of i V& for all k. We next turn on a weak external
potential v( r) and expand both S„and W to linear
order in v(x). The contributions from this expan-
sion to Z are presented graphically in Figs. 1(c)
and 1(d). The wiggly lines are the dynamically
screened interactions of the homogeneous electron
gas with fluctuations restricted to k & k, . The
( p 'q)' contribution from the vertex functions of
Figs. 1(c) and 1(d) are the appropriate terms for
A," of Eq. (12). Before we turn to their evaluation
let us stress again that these terms could have
been automatically written down as the lowest
RPA corrections to Z for a homogeneous electron
gas in the presence of a weak external potential.
However, due to the presence of a surface, the
short-wave-vector fluctuations (surface plasmons)
would be poorly treated. The above procedure
allows a unified treatment of both regions, and an
.estimate of the contributions due to surface plas-
mons will be given at the end of this section. The
reader not interested in the key relationships
leading to the final form of Eq. (38) may proceed
to that equation directly.

I et us next write A, for the contribution of Fig.
1(c) and A, for the contribution of Fig. 1(d), so that

Next expand both A, and A2 to second order in q,

A, (p+q, p, po, no) =A, (p, p, po, no)+ A,'(p, p, p„no)(p q)+A,",(p, p, po, n, )(p q)'+ A), (p, p, po, no)q' (20)

and

A (p+q, p, po, no= A, (p, p, po, no)+ A,'(p, p, po, no) p q+ A",(p, p, p„no}(p.q) + A»(p, p, po, no)q', (21)

so A," of Eq. (12) is given by

lm A,"(p, p, p„n, ) = rm Af, (p, p, p„n,)

+ lm A,",(p, p, p„n, ) . (22)

Following the usual Feynman rules" we can write

v.(p - p'}
(p+q, popo, no} -tr~, I

x S(p'+ q, po)S(P', po),

(23)
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where

Q p 4p
(2 )'

We expand S(p'+ q, P,') to order q',

~(p +q, p.) =~(p,p.')+ ap'
and v, (p) = 4''/p', for notational simplicity we
set k= 1. S(p', P,') is the single-particle propaga-
tor of a uniform system,

+»'~(p', Py)cay +. . . (26)

(
I I) 8 (Ey p) 8 (ey P')

(25)
po —6-y+ 0, —Ã po —6-i+ p+B

We next proceed, in some detail, to extract the
(p q)' contribution in Eq. (23).

Here & and I3 are the three Cartesian coordinates,
and repeated indices are summed over. From
Eq. (25) the second-order term in Eq. (26) can
be written as

Q2$ I gS &S 2

~pgepI p ppo gage=2 2 2 p ~p p 'q — p, pp( I I) ( I I)( I, )2 (~I I)
0.

and the second-order q contribution to A, is

(27)

(26)

The last term in Eq. (26) corresponds to isotropic terms such as those in Eq. (7) and can be neglected.
Using the identity

yk 2 1 td 8 Iv 2 1 8 III+)) 2

(nz —1)] &i],
' (n —1)] ~(]

' (m+z —1)t &p
' o (29)

for m=3 and n= 1, and changing va, riables in the integra'. s, Eq. (27) can be further simplified to

A2=, tr„, ' ((p q)'+(k q)'+2(p q)(k'q)), (p+k, po+ky) (30)

There are several ways to evaluate Eq. (30), and we take the most obvious one by explicitly differentiat-
ing Eq. (25) with respect to g to get

g3$, (p+k, p +k, )= -6vi5'(k +p, -e;„-)5'(e;,„- —i],)+2vi5(k, +P, —e;;„)5"(&;,„" —g)

+ 6vi5" (k, +p, —e;,„-)5(e;„;—p)

~ ~

8'(~y.» —V) + 8'(~.- » —u)
(I,+k, —v.„„-—(2)' (I,+k, -v, .-, +(2)')' (31)

where the primes mean derivatives. Consider first the contribution of the last term in Eq. (31) to Eq. (30).
With our interest in only the imaginary part of A," t see Eq. (12)j, we evaluate the integral of the last
term over k, using the well-known analytical structure of e{k,ko) to give {forp & kz)

2m A, =, , k'dkv (k) f d22 I'(v.,„-—V).2'(vk;-I, )48~3m'
C

( 3
x[(p'q) +(2 q)'+2()q q)(k'q)]2m] „)0 yv]2 »0

where 0 is the solid angle. To extract the (p 'q)' term from Eq. (32) we use the identity

(33)cos8,»= cosiI, » cos,y+ sin8, »sin8»cos((t)» —(t),),
where 8,», 8,», 8» are the angles between the vectors q and k, q and p, and p and k, respectively, and p»
(t), are the azimuthal angles of k and q around p. We get, after some algebra,

OO + 00 3

Im A,".(p, p,P„n,) = ~, k'dkv. (k) dx 8'(x+ 1)8'(e;,„- —p)8'(e,-,„- -p, )E(x)fmX'g 24ym ~
e

C
Bk' e k, k

yv]( 0

(34)
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where

3k 2k 1kF(x)=- —,x'+ —x ———,+1
2 p' p 2-p' (36)

~ =
p' u' pox'tx=—cos8~ sinceP, = then a-.I-PO= +
2m Pv 0 2m m

After a very lengthy analysis, the integral over x in Eq. (34) can be evaluated to give

+ Im A,",(p, p,p„n,), (36)

where y = k'/2m -pk/m. The function Im Af, in the above equation is
e' " (P+3k)(k -P) 1 (k —P)' 8 1 ( & P'

c 6mmp' k pk2 6 k~y gy &k, y ) 2m 2m)

00

dk8 [kr —(k -p)'], Im

, x (k -k -p )/I'2Pk2. 2

1 dI'
xIm

-pt -/ )/pp)t

+ Im;
~

F(x)
mpk 8y', e(k, y, ) &

(37)

where E(x) is given in Eq. (35) and y, = kz/2m -P'/2m.
To get the final form for Im A,", from Eq. (30), we must add the contribution from the 6 functions in Eq.

(31}. We will not present the details here, but only state the final results. After a lengthy calculation,
these 6 functions precisely cancel the term Im Af, of Eq. (3't) and add two additional terms to Eq. (36).
The final structure of Im A,", is now given by

2e m
im Af, ,(pppppopno} = —

6~p4

e2
+

6mP'
a 1 8'(p+ kp —k,) 8 1 8'(p -k, -k.)'

8k ~(k, y) „,, p(p+k, ) 8k~(k, y) „... p(p-k, ) . '

(38)

where in the last two terms the differentiation is strictly with respect to k after which we set y =k /2m
-pk/m. To obtain the contribution of g,(p,p»n(r)) [in Eq. (6)] for a varying density n(r), we evaluate
the one-dimensional integral in Eq. (38) for each point r by replacing n, by its local value n(r) in 8' and
s(k, y).

Equation (38) allows for any approximation of the dynamically screened interaction (wiggly line) in Fig.
1(c}. In the following section we approximate e(k, y) by the single-plasmon approximation [Eq. (18)], in
which the last two terms of Eq. (38) drop out and the first term can be integrated analytically.

We next turn to A» given in Eq. (21}and displayed in Fig. 1(d). Applying again the Feynman rules we
obta, in

j/ v, (k+ q) v, (k)
A, (p+t), p,p, »)=-ptr~. » tr ~

I';-', .'- . S(p', p )s(p ttp —tl))—)e(k+ qp k, j.e(kp k, j

x (S(p' -k,p' -k )S(p'+q, p')+ S(p'+k, p'+k )S(p' -q, p'))
~

. (39)

Clearly to calculate the (p q)' contribution to A, is even more difficult than for A„and this contribution
will not be considered in this presentation. The A, terms correspond to coherent absorption and emis-
sion of takeo plasmons and are not therefore expected to cancel the A, contribution. These terms are not
likely to change our estimates and conclusions concerning the order of magnitude of the anisotropic terms,
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which is the purpose of this investigation.
We conclude this section with an approximate treatment of the k & k, region of W(r, r', ko). In this region,

we use the following forms for W and S„ in Eq. (13):

W(r, r', k, )=, k'dk v, (k)[e '(k, k,) —1]e'"'
v p

(40)

S„(r,r', Po+ ko) =
(2

„k'dkS(k, pa+ ko)e'"'~ "', (41)

V, (r, r', P,) = V,.(p,p„n, )

-A 1 ~c dk—,Im dQ —sin6)
V 47t' 0 k

~

~

~

1 1 —e(k, ) ( &'(P'+ k'+2p k —k2~)
x dk 1' e(k, ) 1+~(k, ) (k, -k'/2m -p'k/m+k2~/2m —i6

with e ' and S defined in Eqs. (17) and (25), respectively.
Applying the WKB approximation (Sec. II) to Z(r, r', P,), the following form for V, (r, r', P,) is readily

derived for the k &k, contribution:

8 (P'+k'+2p k —kF)

0, —0 /2 m —p k)in l k' (2m +

ill�)

' (42)

where 8 is the angle of k relative to the surface normal, It is the sin& in Eq. (42) that magee y, (p,p„n )
depend not only on the magnitude of p but also on its direction. The contribution from k & k, that should be
included in the anisotropic term of Eq. (6) is the term (p 'e)' in the expansion of Eq. (42) (i =—a unit vector
normal to the surface). Inserting the form of e(ko) from Eq. (18), the integral over ko in Eq. (42) can be
carried out. The (p z)' term is then extracted from Eq. (42) by using again the identity in Eq. (33); the
result is

2r 2%'

&(5,p, , n)= (P'~)'e
I

de@~ 4~~'0 ~)+ dy&(& y)&'(&, —4)),0& 0 y 8+p3 0

where

J
2%' 2t k k

dpH(k„p) =—+— dp
~

sing
~

ln —
~

sing ~+ cos'p+ —, sin'p
k k „k, k',

( k2 1/2
——

~

cos'P+ —,' sin'&f&-k. i
'

k.

(43)

(44)

with k, = m~/Pkz and k, = w~/(W)Pkz.
In the following section we estimate this contribution from the k (k, region (or equivalently, from surface

plasmons) to the optical potential. The results of Eq. (6), (12), and (38) are then used to perform a, model
LEED calculation.

IV. NUMERICAL RESULTS AND DISCUSSION

With our main concern the order of magnitude of the anisotropic terms, we will not evaluate the numeri-
cal integral over k in Eq. (38). Instead, it is sufficient to approximate e(k, y) by Eq. (18). The last two
terms in Eq. (38) then drop out and the integral can be evaluated analytically to give

( 3 3 2P

.kP[P -y(P, ,)] [P -y(P, .)]' [P -y(P, .)]'
( 3 3 2p

EP[P + y(P, n, )] [P+ y(P, n, )]' [P + y(P, n, )]' (45)

where
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(45)

To evaluate the anisotropic term in Eq. (6), we insert the local density n(r) for no in Eq. (45) and multiply
it by -(p. v)(p v}n(r). The cutoff k, in Eq. (45) is not well known, and many different procedures have
been suggested for its evaluation. ""We choose the value suggested in Ref. 20, i.e., k, = Pk» with P
= 0. 123, k» —(4kF/mao)'~' and a, = 8'/me'. This choice is discussed in detail in Ref. 20. For application
to aluminum ( a simple metal) we choose for n(r) the Lang-Kohn' density of a step jeliium surface with
bulk density corresponding to r,=2, where r, is defined by (4m/3)(r, ao) = 1/no. The anisotropic term is
then given by '

-g, (p,P„n(r))(p ' &)(p V)n(r) = Im A,",(p, p, p„n(z))— (47)

with w(0)=mkz/k'v .' In Fig. 2 we present the
value of Eq. (47) as a function of z and for several
energies of the scattering electron. The striking
feature of Fig. 2 is that the anisotropic contribu-
tion is of the same order of magnitude as the iso-
tropic part. It is about one third the magnitude of
V"„which is expected to be about 4 to 6 eV, over
a distance of 3.5a, into the bulk. Before we apply
this estimate in a model LEED calculation, we
turn to an estimate of the surface plasmon con-
tribution [Eq. (44)]. We assume that this con-
tribution occurs when the electron either enters
or exits the surface region. The effect on the in-
tensity is then given by dividing Eq. (44) by the
current I= (A/V)(p/m), and integrating numerical-
ly with the value of k, given above. We get the
change in the intensity of the (p z)' term due to

the emission of surface plasmons to be of the
order of a few percent for P =4k~.

To investigate possible effects on LEED of aniso-
tropy in the imaginary part of the optical poten-
tial, it was decided to perform LEED calculations
for a relatively simple model. The motivation for
performing such calculations was threefold.
First, we wanted to demonstrate that LEED cal-
culations could be performed for a model where
anisotropy was included. Second, it appeared
desirable to treat a simple ease as an initial ex-
ample in order to minimize the necessary com-
putations. Third, we considered it important to
treat a somewhat realistic model so the results
might serve to indicate directions for any future
work.

Since Al is to a good first-order approximation

ep —)6 eF

e& =10 e

0.2

O. t

0

-0.9 -0.5
zkF/2n-

FIG. 2. The anisotropic contribution to the optical potential gEq. {47)] as a function of position z for two different
energies of the scattering electron. The step jellium background is also inserted and the optical potential is termin-
ated by the cutoff k, [see Eq. (45)] where the long-wavelength fluctuations [Eq. {42)]dominate.
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a simple metal to which the analysis of Secs. II
and III would be expected to apply, we decided to
investigate a model which would correspond to the
Al (001) surface. Several previous sets of LEED
calculations have been performed for the Al (001)
surface. ' " Although all these previous calcula-
tions were performed using an isotropic V a
s udy of this collected work was quite useful in
estimating input parameters for our calculations.
For example, we adopted the "no-reQection"
boundary-matching procedure of Jepsen et al."
to match the wave field in vacuum with that in the
surface. Also, ' for the calculations reported here
we chose to apply the optical potential at a plane
on the vacuum side of the surface at a distance
d/2 from the atomic centers of the first surface
layer. All lattice parameters were sei. equal to
those of the truncated bulk, and d is the perpen-
dicular distance between atomic layers in the sur-
face.

Guided by the analysis of Secs. II and III, the
form of the optical potential used in our calcula-
tions was

Z= V„+i[a,(z)+e, (z)cos'e, ]. (48)

The angle 8~ is between p and z (the normal to the
surface). Since the thrust of the present investi-
gation concerns V„V„was specified to be a con-
stant and equal to —7. 5 eV (the value used b

32 ~Jepsen et al. ). It is seen from Fig. 2 that the
anisotropic part of V; has its largest deviation
from zero in the region of the first layer of the
surface; thus, for simplicity in an initial calcula-
tion, it was decided to let ~,(z) be a constant in
this region and zero elsewhere. Also since 6

xs relatively small over the major portion of the
energy range of a typically measured LEED I-V
profile, it appeared reasonable that the sum of
e, (z) and e, (z) should approximately equal the value
used for the isotropic V, in a previous calculation
(e.g. , Jepsen et al." employed -4. 1 eV). For the
above reasons, we have performed LEED calcula-
tions where e, (z)= —6 eV and e, (z) =+2 eV for that
part of the surface from d/4 on the vacuum side
to d/2 on the material side of the first atomic
layer. Elsewhere in the surface region, the val-
ues e, (z) = -4 eV and e,(z) = 0 were employed.
This model for the Al (001) surface is to be con-
sidered only as a simple but somewhat realistic
specification which has enabled an initial study to
be made concerning possible influences of the
anisotropy on LEED I-V profiles.

Existing dynamical LEED computer codes" "have
been modified to incorporate the type of anisotro 'rop1c

, specified above. These codes are based on the
layer KKR formalism and renormalized forward
scattering (RFS) perturbation theory for treating

O
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FIG. 3. LEED results for various beams from a
model for the Al(001) surface. The curves denoted "I"
and 'iA. " were obtained using, respectively, an iso-
tropic and anisotropic imaginary part of the optical
potential. Different intensity normalizations have been
used for two curves of each subplot in order to have the
major peaks be of the same intensity. The dash marks
on the vertical axes denote the respective intensity
zeros.

the scattering between atomic layers. ' Some
typical results obtained from these codes are
presented in Fig. 3. The curves of this figure
denoted "A" were obtained using the anisotropic
V; described in the preceding paragraph, while
those denoted "I"were obtained using an isotropic
V, with e, (z) = -4 eV and e,(z)=0 throughout the
entire surface region. The results of Fig. 3 were
obtained using Snow's Al band structure potential. "
Also, 8 phase shifts, 49 beams, 14 atomic layers,
and 3 passes of RFS were employed. These
Al (00 i1& calculations were performed to correspond
to room temperature, and a Debye temperature of
426 K was used to specify isotropic atomic vibra-
tions. The initial beam geometry for the results
of Fig. 3 was for an angle of 15' between the bom-
barding beam and the surface normal, with the
azimuth of the incident beam in the plane defined
by the reflected (10) and (20) beams. The beams
are labeled according to the primitive two-dimen-
sional unit cell as done by, e.g., Tucker and
Duke.
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V. SUMMARY AND DISCUSSION

An analysis has been presented which shows
that anisotropic contributions to the optical poten-
tial employed in theoretical treatments of elec-
tron spectroscopies canbe caused by the broken
symmetry of a surface and the resulting variation
in the conduction-electron density. These aniso-
tropic contributions have been estimated for a
simple metal [i.e., the (001) surface of Al] and
shown to be smaller, but of the same order of
magnitude, as the isotropic contributions. Be-
cause such anisotropic contributions could con-
ceivably affect, say, I-V profiles in LEED, sev-
eral model LEED calculations were performed to
test possible influences of the anisotropy. Some of
the results of these calculations are presented in
Fig. 3, where they are compared with the results
of a calculation which neglected any anisotropic
contributions to V,

Although it is perhaps surprising considering
the model for V& employed to obtain the aniso-
tropic results, the two curves for each beam of
Fig. 3 are seen to be quite similar in their major
features. However, it is fortunate that such sim-
ilarities were obtained, because significant dis-
similarities would raise serious questions con-
cerning the very considerable amount of recent
LEED work which has inferred surface crystallo-
graphic details from I-V profiles (e.g. , interlayer
spacings of clean surfaces). But some differences
between the curves are apparent in Fig. 3; we
direct the reader's attention to the 160-eV region
in the (12) beam, the differences in relative in-
tensities in the first two major peaks of the (00)
beam, and the changes in the shoulders of some
of the peaks in the various beams. These dif-
ferences, however, should not influence crystallo-
graphic conclusions in any major way. One reason
for the small difference between the curves labeled

I and A of Fi:g. 3 is probably due to the fact that
the anisotropic part of V, is restricted to a narrow
region near the surface. On the other hand, it
should not be inferred from the results of Fig. 3
that anisotropic contributions to V, will always be
of minor importance. It is possible that LEED
results for other. surfaces or other geometries
would exhibit greater dissimilarities between cal-
culations using isotropic and anisotropic models
for V&. For example, larger differences could
occur in LEED calculations for surfaces with
fractional overlayers or for reconstructed surfaces
because, in both cases, the conduction electron
density could vary more rapidly than it does for
the Al (001) surface of our example. Only future
work can determine the importance of anisotropy
in V& for such cases.

It is also important to consider the influence of
anisotropy in V& for other electron spectroscopies
besides LEED. Conceivably the effects of aniso-
tropy in V, could be more pronounced in the final
state (i.e., multiple scattering) effects occurring
after electron emission from an atom in the sur-
face region, e.g., photoemission at intermediate
energies. We currently expect that the effects
would be largest in, say, photoemission as a
function of the angle from the surface normal for
the case in which the electron emission has oc-
curred in the first or second layer of the surface.
Work has been initiated to modify existing com-
puter codes ' to enable calculations for such a
model to be performed.
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