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Scattering of atoms by a corrugated potential wall of finite height
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We consider the quantum-mechanical problem of the scattering of a particle by a corrugated wall

potential of finite height, , and the results are applied to the diffraction of low-energy atoms by a crystalline
surface. Two approximate solutions are discussed and both are based on the idea of taking the known form
of the wave function deep inside the surface and extending it up into the selvedge region. Comparison with .

similar calculations for a corrugated hard wall shows that the effect of allowing penetration of the wave

function into the surface is not qualitatively different, but variations of the order of 10-20% in certain
diffracted intensities can be readily obtained.

I. INTRODUCTION

There have recently been a number of calcula-
tions reported for the diffraction of low-energy
neutral atoms by a solid surface using the cor-
rugated-hard-wall (CHW) model. ' ~ In this model
the interaction potential between particle and sur-
face is zero if z & y(B) and infinite if z & P(B),
where 8 is the position vector parallel to the sur-
face, z is the perpendicular position vector, and

p(B) is a periodic function giving the corrguation
of the surface. Some of these calculations have
given very good agreement with experimental data
under widely different surface conditions, par-
ticularly when the effects of an attractive well
near the surface are included. '" However, be-
cause of its simplicity, the CHW model is open
to a number of criticisms, one of the most im-
portant being that the wave function is forced to
vanish inside the surface. In reality, the repul-
sive part of the interaction potential should have
a finite height, and perhaps more importantly a
finite slope which would permit penetration of the
wave function into the solid. In this work we
choose to model the penetration of the wave func-
tion by considering a corrugated wall potential
of finite height in order to see the influence of a
possible wave penetration on the diffracted peak
intensities. The exact solution of this problem is
substantially more complicated than the CHW mod-
el so we have considered two different approxi-
mate solutions. Both of these approximations
have exponentially decaying behavior deep inside
the surface and the approximation consists in as-
suming that these forms of the wave function can
be extended into the selvedge region.

We begin in Sec. II with a brief review of the
CFDYV problem which forms the basis of the form-

alism for the finite height (or soft-wall) potential
presented in Sec. II. In Sec. IV we apply the form-
alism. to the specific case of a triangular surface
profile, and calculations are presented for both
approximate solutions and compared to the avail-
able experimental data.

II. THE CORRUGATED-HARD-Vf ALL PROBLEM

Tq,. = dr ~*V j. (2)

The infinite potential at the surface gives rise to a
5-function singularity in the second derivative of
the wave function which, in turn, must be reflect-
ed in the product VP, :

V(r)g, +r =f(B)a(z - y(B)) exp(zK, - B) . (3)

The function f(B) is the source function or emitting
function and must be determined by application
of appropriate boundary conditions to Eq. (I). As
a result of condition (3) and the periodicity of the
surface many of the integrals in Eq. (I) become
trivial and one can readily obtain the following
form for the wave function, valid for all z:

) = eiKi Reii, .

j ~~j(Kj+ G)' R

kG'

dBI~(BI)e,-i@ R' ik Ig-gR') I

tlC
(4)

A convenient starting point for the elastic CHW
problem is the integral equation for the Schrodinger
wave function g,. which can be written as'

10;=6+24'i @ @ &i( (I)
j

where p, is a plane-wave state with corresponding
eigenvalue E„and the transition matrix Tzj is
given by
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where the incident wave vector has components
K; and k„parallel and perpendicular to the sur-
face, respectively; E(R) = (im jk'a)f(R) with m the
mass of the particle and a the area of the surface
unit cell; G. is a surface reciprocal lattice vec-
tor; and kG, = [K2+k,', —(K,. + G)']' '. 7he integral
is carried out over a single unit cell of the sur-
face. It is clear that in the asymptotic region
z & +,„the wave function consists of the incoming
beam plus outgoing diffracted beams with coef-
ficients

dR&(R) e-' 'Re-'~Gg~(")
~as ~ue

(5)

The experimentally measured intensity of each dif-
fracted beam is then

I = G~
(C IR

k

tg
(8)

The appropriate boundary condition for the CHW

problem in order to determine E(R) is that the
wave function must vanish on the surface

y(R, z = y(R)) = 0. (7)

y (R) Q IN'Ry (8)

which casts the wave function in the form
j(K)+G) ~ R

y(r) = 'K& ''t( '~ca ' —Q
5 N keg

~i ~$(N-0)'R' eikggl I-QR') I

uc

When the boundary condition of Eq. (7) is applied
to the wave function in the form (9), and after
subsequent Fourier transformation, the defining

It is also a necessary condition on ((l, that it vanish
at all points beneath the surface (sometimes re-
ferred to as the extinction theorem), and this has
been used as a boundary condition. "'. It has been
pointed out that this so-called "extended boundary
condition" may not always lead to a convergent
solution; however, with Eq. (7) one is always
guaranteed a solution to the problem. "

Garcia and t.abrera have developed a very flex-
ible numerical method for solving the problem with
the boundary conditions of Eq. (7) which has been
successful in explaining elastic-scatter ing data. '
The present authors have found a solution to the
problem for the special case of a triangular cor-
rugation profile which serves as.an excellent check
on the Garcia-Cabrera numerical method, and
has also been successful in interpreting the elas-
tic-scattering data from stepped copper surfaces. '

In this latter method the source function is Four-
ier transformed,

equation for the source function reduces to a ma-
trix equation

where

+M Z +NCNM t
N

(10)

and

(k ) ~t dR e-'M' R -kk( e(R )

~uc

ef(G M)' -RdR
~Gg uc

, l(N-G) R' lhG l@R) -e(R') I

uc

The Fourier components of the source function
EN are determined by inversion of Eq. (10) and the
diffraction coefficients determined from Eq. (5),
which now takes the form

CG= g FN dRe' N '
e '"G @" (13)

Cg N u(:

For the case of a triangular corrugation profile
in one dimension all of the integrals in Eqs. (11)-
(18) can be readily evaluated resulting in an es-
sentially exact solution.

III. THE CORRUGATED WALL OF FINITE HEIGHT

Using the same notation as for the CHW prob-
lem, we can define a finite, or "soft" corrugated-
wall potential by

Vr = 0, z & P(R)

= Va, z & p(R) .
(14)

y(R z) =Q b- Ne,
.((K+NR)e

N

(15)

It is assumed that the energy of the incoming par-
ticle is always less than V~. The exact solution
of this potential is complicated by the fact that in
the region of the corrugations, lI) „&z & ~~ there
will be both exponentially increasing and exponen-
tially damped terms in the wave function, as well
as the incoming and outgoing scattered waves of
the usual CNV problem.

It is convenient to use the same integral-equa-
tion formalism as expressed in Eqs. (1) and (2),
only now the integral over directions perpendicu-
lar to the surface in the transition matrix T«
is substantially more complicated. Thus at this
point we introduce two distinct but closely related
approximations. The first of these we will refer
to as the Rayleigh approach since it consists of
taking the correct solution for deep inside the sur-
face, i.e. ,
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with K»= 2m V/&' —k'„„and assuming this form
can be extended into the selvedge region, z ~ P(R).
This is seen to be very similar in spirit to the
Rayleigh method for the CHW problem, in which
the form of P valid in the asymptotic region in
front of the surface is extended backwards into the
selvedge region

As a second approximation we choose a slightly
different form for ()) inside the surface,

y(H z} Q f]~ei(K.+N) R e&»[z-4(R)] (16)
N

and again assume this form can be extended into
the selvedge region.

The reason for taking the two different approxi-
mations is as follows: The Rayleigh approach of
Eq. (15), since it starts with an exact expression,
must either lead to the correct g according to the
uniqueness theorem or it must produce no solution
at all. This situation is similar to the CHW prob-
lem where the Bayleigh method is known to con-
verge only for certain corrugations. '"" In the
models presented below, we find that the Rayleigh
approach of Eq. (15) does indeed lead to diver-
gences, but useful results can be obtained by ap-
propriate truncation of the problem. On the other
hand, the form of Eq. (16) must lead to an ap-
proximate form for g, but the advantage of this
method is that the resulting wave function is al-
ways convergent. We show below in Sec. V that
the Hayleigh approach of Eq. (15) gives satisfac-
tory results for small potential heights Vp while
the method using Eq. (16) is good for large V, with

a substantial region of overlap in which both solu-
tions agree.

T~i=-— "— BN(K»-ik~ )
'(2R)'V„

N

XQ dR i(N-G)*R izyzg(R)

4gCG

x 5 (K, —K~ + G) . (18)

Equation (18) shows explicitly that the transition
matrix is nonzero only if the difference in parallel
wave vector Kf —K, equals a reciprocal lattice
vector. The sum over intermediate states in Eq.
(1) can be converted in the usual manner into an
integral over momentum, and, after carrying out
the trivial integrations, we are left with

We begin with a discussion of the solution ob-
tained from the second assumption, Eq. (16). The
transition matrix (2), which involves an integral
over z in the region Q(R) & z & —~, can be readily
evaluated, giving

T —V Q fl~(K —1k )-1
)I dH ef(Ki -Ky-N)' R

x e-ikfgg (R)

With the exception of the factor Vo(KG —i', ) ',
this is identical in form to the result one obtains
for the CHW case using Eqs. (8) and (3). The fac-
tor V,(K„-i',) ' enters the integral Eq. (1) as
an extra pole, which has the effect of producing the
exponentially damped waves into the surface.

Since P(H) is periodic, the integral in (18) can
be reduced to an integral over a simple unit cell
with the appropriate sum over all lattice sites,
which in turn can be converted to a sum over re-
ciprocal lattice vectors

([I (r) eiKi R e-izizz + o g g f] ei(K.+G). R

@2g~ N
G N

x ~t dq
1 dH'ei(N-G) R' iq[z gR')]-

(kg —q + ze)(K» —iq)
(19)

where m is the mass of the incident particle. The integral over q can be readily carried out as a contour
integration in the complex plane and the final result for the wave function in terms of the-unknown constants

BN 1S

imV g e'&"~+G' dR'e' " ~ 'R e
y, (r) =e'"''"e "'"—

t

i(K +G)' R

(2o)

where the function b, is +1 if (z —P) & 0 and is -1 if (z —.it)) ~ 0, while S= 0 if (z = iI)) & 0 and equals +1 if
(z —p) ~ 0. A comparison with Eq. (9) shows that the first two terms on the right-hand side of (20) are
very similar to the hard-mall case, while the last term is nonvanishing only inside the surface and is a
sum of exponentially damped waves. In particular we note that the factor e'k«' ~"' ensures that in the
selvedge region the wave function will contain both incoming and outgoing scattered waves, and for z & p(R)
gives a sum of differential waves.

From the form of (20) in the asymptotic region in front of the surface, z & P, it is seen that the coef-
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ficients of the diffracted beams are

(21)

(R z y(R)) g B zi(K(+ N)' R

Evaluating the wave function (20) at the surface together with condition (22) gives the defining equation for
the B-N:

(22)

with the diffracted intensities given by (6). Again this is very similar in form to the corresponding coef-
ficient for the hard-wall problem given in Eq. (13).

The final problem is the determination of the coefficients B„, and for this we use the boundary condition
implied by Eq. (16) at the surface z = P(R),

~ iiN R -ia;,4(R) im 0
N

G, N

where the argument of both 6 and S is
matrix equation

ei' R dg ei(N-G)' R' ikgglc(g) -gb(R ')I

ka, „, (((„-isa~)

((N-6) ' R' x@[4(R) -4(R'))Se
'

e
u~

g(R) —p(R'). Fourier transforming both sides of (22) leads to a

8~~~ ~+ B~D~~
M M N NM N NM s

N N

where A. M is defined by (11),

z~ V ] f ei(N-G) ~ R' eikq 1$(R)-4(R')I
0

G

(24)

(25)

dR e '(6-M) ' R dR& e ((N- 6) ' R '
8KN[g R)- 4(R ')]g (26)

i(mV)."' 1
+NM — —

~2 + CNM i

where C-„M is defined by (12), and the matrix
DNM is given by

1
DNM — DNM ~.

~Do0

(27)

(28)

Again we see the similarities between the present
soft-wall calculation and the corresponding hard-
wall ease shown in Eq. (10). The nonvanishing
term on the left-hand side of (24) arises from the
difference in boundary conditions (i.e. , the wave
function does not vanish at the surface), while the
final term on the right-hand side is the contribu-
tion from the penetration of the wave function into
the surface.

At this point, before carrying out calculations
for a specific model, it is interesting to consider
the two special limits, the hard-mall case V0- ~
arid the specular scattering limit for a flat sur-
face, p(R) = constant.

In the limit V0 ~ we note that the matrix HNM

of Eq. (23) becomes

where D„M is just the double integral of (26) and
is clearly a decreasing function of V0 due to the
decaying exponential in the integral. Thus the
matrix equation (24) becomes

A-= ~ BI (i(mV /2)'i~/Ka)C- ——D„-- +a6-„-1 I

N

(29)

Clearly in the limit V0- ~ the only important
term in the parentheses on the right is the. one
proportional to v V, ; thus the coefficients B„are
given by

AM = g (i(mVO/2)' /ha)BgCNM. (30)
N

In the same limit the diffraction coefficients of Eq.
(20) are given by

C6 = —. i((m Vo/2)' '/lia )

x g B- dRe&(N o) R &)a,e(R) (3
N

upon making the association [(mV,)'i'/2)(i/Aa)B-„
=EN, Eqs. (30) and (31) are seen to be identical



5024 J. R. MAN SON AND G. ARMAND 20

to (10) and (13), respectively, which demonstrates
that this function has the correct hard-mall limit.

Finally we show that the problem reduces to the
correct result having scattered. beam of unit inten-
sity for a flat surface. Setting p(B) =f), where ff

is a constant we can readily evaluate all the terms
appearing in Eq. (24). From Eq. (11) we have

—t. -'~gg~ dR e-'M' R = g e-&~g Pg~
Q M, o

QC

(32)

DNM =a5N, M ~

Equation (24) for the coefficients BN becomes

aBM =a e ' ~~ 5M o

sm Voa 1. 1
+M +~@M

gz ~8/+ ~ Ne

(34)

We see that the term on the right arising from the
nonzero boundary condition exactly cancels the
term on the far left-hand side, arising from the
penetration of the wave. The B matrix has only
one nonvanishing component,

The double integrals appearing in the matrices
HNM and D„M also reduce to 5 functions. From Eq.
(25) we have

-im Vm 1 1II zz ~ - ~

NM Iz k (& ~zk ) N, M I

and Eq. (26) gives

—Zk k»~(ff fz+ Zk»z) 8
m o

(36)

The integral in the expression for the diffracted
beam coefficients, Eq. (21), is also trivial, and
we obtain

(ff~+ikG,)
(f(G -zkG, )

(37)

It is clear from Eq. (6) that the above result gives
only a specularly scattered beam of unit intensity.

A consideration of the Rayleigh approach start-
ing from Eq. (15) leads to results very similar
to those contained above in Eqs. (20)-(26); how-
ever, there are some important differences.
Again the integral over directions perpendicular
to the surface in the transition matrix (2) can be
readily evaluated giving

Tqf = Vog b~~(ff»-zk~, ) '
N

dR e~&K ~Kf+ + R ~KN (38)

The difference with the previous Eq. (17) is the ad-
ditional term f(»p(B) in the argument of the expon-
ential. Again making use of the periodicity of the
potential, many of the integrals of Eq. (1) can be
evaluated, leading to the form for the wave func-
tion corresponding to Eq. (20):

ZZZ V 5 ei(K;+G) R
t. dRi ei(N-G) R' z»4(R') iZGzlz-e(R')I

y (r) eiKi R 8 fkf zz+ -O N 8

t
e(K, + G) ~,R

(39)

where the functions 8 and 6 are defined following
Eq. (20). The boundary conditions implied by

Eq. (15) are

y(R, y(R)}=Q Q ef(Kf+N)' Rez»4(R)
N

(40)

2 kNfNM +M Z kN (kNM d»ff) &I

N N

where

(41)

dBe "N-Z 'e"»"" =&g g(zff ).
gC

(42)

When this condition is impressed upon the wave
function (39), and, after subsequent Fourier trans-
formation in directions parallel to the surface,
we arrive at the following matrix equation for bN

corresponding to Eq. (24):

The element k-NM is identical toIINM of Eq. (25),
except for an additional factor of e"N'"" in the
integrand of the first integral, and dN& is iden-
tical to D-„M of Eq. (25), except that the factor
e "N~ " ' is missing from the integrand.

A comparison of the two different approaches to
the problem shows that the final forms of the wave
functions differ only by the presence or absence of
factors of e'N@ '. However, from the point of view
of convergence arguments, these small differences
are of extreme importance. If we attempt to exam-
ine the hard-wall limit (V,- ~) of Eq. (39), we'find
that, since ff»-)I Vo, the extra factors of 8'»~ R

become. very large or very small according to the
sign of P(R). In fact, the hard-wall limit for the
Rayleigh approach does not in general exist, and
this is verified by the numerical calculations pre-
sented below. On the other hand, the specular
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limit for» - constant is readily obtained for f, Qr

of Eq. (39}for any finite value of V,.

= -2ha(a —x)/(a b), —b (x (a, (43)

where, as shown in Fig. 1, a is the period, 5 is
the vertex position, and Sa is the total trough-
to-crest amplitude. With this corrugation all of
the Fourier integrals involved in obtaining the two
different wave functions can now be obtained analy-
tically, and the only remaining calculation is the
resolution of the two systems of linear Eqs. (24)
and (41) to obtain the unknown coefficients, a rela-
tively simple numerical procedure.

Taking the same order as in Sec. GI, we will

IV. CALCULATIONS FOR THE TRIANGULAR

SURFACE CORRUGATION

In order to obtain numerical results for a physi-
cal system, we have carried out calculations for
both of the approximations outlined above using a
one-dimensional triangular surface corrugation

. profile. This seems to be a reasonable model
for describing the scattering data from stepped
metal surfaces. "'

If x is taken to be the axis in the surface plane
perpendicular to the corrugations, the triangular
profile is defined by

y(x) = -2k ax/b, 0 cx ( b

4(x)

b a

-2ha

FIG. 1. The triangular corrugation profile as defined
by Zq. (43).

consider first the solution arising fromthe approx-
imation of Eq. (16). In this one-dimensional mod-
el the reciprocal lattice vectors such as G be-
come G= (2«/a)g (g=0, +1,~2, . . . ) and Eq. (24) for
the B„coefficients becomes

0 =A «+ Q B«(If««+ D«« -a 5«„) . (44)

in V~ ~~ e..(G), (45)

where if NgM

The explicit form for the various matrices in (44)
is as follows:

A k
ha2[&-'(Nb-R( 1 ) I]

i(Mb —2k, Jga)[M(a b)+ 2k—,.Pa] '

where

(a-b)u
N-M (M+G)a+(N-M)b (N M)b -(N+-G)a j

& (
l(«-«) b ei((«+ Q)5-2 kasha) ) (&-(((«+a)b+R& )) a] 1) y (47)

ab»„ib'(N +G)'-
ha[Pr+G)'b2- (2k,.ha)'](k,', +»„') '

()(b) = P*(a —b),

(48)

(49)

n(b) = -2k~, ha 3

[(N+ G}(a —b)+ 2ka, ha][(N+ G}b —,'.ka, ha][(M+G)b —2ka, ha][(M+ G)(a —b) + 2ka, ha](-ika, +»„) '

y(b) = a*(a —b) .
(50)

(51)

Special care must be taken when b/a approaches
a rational number to use the correct limiting
forms for Q»(G). The explicit forms for the
other matrices appearing in Eq. (44) are similar.
The reflection coefficients of Eq. (21) are given
by

where Aa «(ka, ) is given by (45), with M rePlaced
by G —I and k, , replaced by k~,.

The detailed expressions for the Bayleigh ap-
proach are also quite similar to the above. Since
they are straightforward but somewhat lengthy,
we need not present them here.

m V' 1 ~ B~
(» ik (52)

V. RESULTS AND DISCUSSION

We have carried out extensive numerical calcula-
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tions for both of the approaches outlined above.
Once again we will discuss first the approximate
solution arising from assumption (16) and then con-
sider the Rayleigh approach afterwards.

To obtain the numerical results we convert the
infinite system of Eq. (44) into a finite matrix
equation by truncation at a dimension large enough
to ensure good convergence. The internal sum-
mations over G such as in Eq. (46) are carried out
over a sufficient number of terms to obtain the
desired accuracy of the respective matrix ele-
ments. Equation (44) is inverted to obtain B„and
then the diffraction coefficients and intensities are
calculated from (52) and (6).

We find that the method gives good results for a
large range of the parameters a, 5, h, and Vo.

(By "good results" we mean that the individual dif-
fracted intensities are stable and the sum of all
intensities, i.e. , the unitarity, is very nearly one. )
Furthermore, we find that the solution is always
convergent for any values of the above parameters,
that is to say, that the calculated diffracted inten-
sities stabilize and remain stable as the matrix
of Eq. (44) is truncated at larger and larger values.
This convergence is in fact guaranteed since the
matrices of Eq. (44) are of the same general form
as those which have been discussed elsewhere for
the corresponding CHW problem. '

Since this is an approximate solution to the prob-
lem, we do not expect the unitarity to be exactly
one, but it should be very near unity if the solu-
tion is to be considered good. The quality of the
solution is most sensitive to the parameters h

and Vo. However, for values of V, around five
times the incident energy and for h of the order
0.1 or less, we find that the unitarity typically
differs from one by no more than 1 or 2%. We find
that the dimension at which the matrix equation is
truncated should be larger than the number of real

diffracted beams, but still of that same order of
magnitude. Best results are obtained if the sum
over G in (25) and (26) contains at least as many
terms as the dimension of the truncated matrix.
We obtain results for all angles of the incident
beam, and the convergence seems to improve as
the angle of incidence is increased away from the
normal. For large values of V, (iten times the in-
cident energy), the results approach very closely
those of the exact hard-mall calculation. For
small Vo the approximation fails, although we find
that the unitarity remains good in many instances
even for V, as small as two or three times the in-
cident energy.

Shown in Table I are the results of calculations
for the scattering of helium using a set of pa-
rameters exhibiting only seven diffracted beams,
together with a comparison with the exact hard-
wall solution. For all the calculations a = 3&& 10'
cm, h = 0.75m, 5 = 0.1, and the incident wave vec-
tor is 7.06x10' cm '. The incident beam makes
an angle of 60' with the surface in the manner
shown in Fig. 1. Results are obtained which are
unitary to within 1% for potential heights as low
as three times the incident energy.

It is obvious from the table that there is little
difference between the CHW results and the pre-
sent calculations for V~ 100E] or greater. This
is not surprising in view of the fact that the pene-
tration depths 1/~„are of the order 2& 10 "cm
or less, while the incident wavelength is 8.9
x 10 ' cm. However, for V, of'the order 10 E,
or less, the differences become much more pro-
nounced. For the case Vc= SE, (1/z„(1.0x10-s
cm) the specular beam is enhanced by nearly 20%
while the rainbow associated with the third-order
diffracted peak has disappeared. The effect of
wave penetration into the surface tends to destroy
the well-defined rainbow pattern and push all of

TABLE I. Diffraction intensities for helium incident on a triangular profile for several values of Vc using the approx-
imation of Eq. (16). The beam is incident at an angle of 60' as shown in Fig. l. a= 6 A, b= 0.75a, and the magnitude of
the incident wave vector is 7.26 x10 cm . t& is the smallest value of Kz and corresp'onds to order 3 in this case.

Order
Scattered

angle Vc= 100E) Vc= 10E) Vp= 3E)
CHW
Vc="

Unitar ity

60 0'
34.7'
15.84

—1.4'
-18.8'
-38.1'
-66,0'

0.315
0.144
0.1 55
0.174
0.149
0.060
0.007

1.004

1.42 x10 ~c cm

0,331
0.150
0.157
0.'1 72
0.142
0.052
0,006

1.009

4.12x10 ~c cm

0.349
0.1 53
0.156
0,166
0.134
0.047
0.005

1.009

7.08 x10 ~c cm

0,367
0.1 53
0.149
0,1 53
0.122
0.041
0.004

0.989

1.00 x10 9 cm

0.314
0.143
0.1 54
0.173
0.148
0.060
0.006

1.000

0.0
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the intensities toward the specular. In a very
crude sense, one would expect the potential
strength V, to correspond roughly to the energy
necessary to make an atom penetrate substantially
into the surface, which for the case of He at a
metal surface would lead to a ratio of V,/E -10 or
higher. However, in the surface-scattering prob-
lem the slope of the potential may be much more
important than the total height in determining the
wave penetration. Hence it is quite possible that
the true experimental situation allows wave-func-
tion penetration corresponding to the larger values
of 1/~» calculated with this model. In this case
one may expect the experimental results to differ
significantly from the results of a CHW calcula-
tion.

Perhaps a much better test of the true impor-
tance of the wave penetration is that shown in
Table II. This shows calculations for the triangu-
lar corrugation profile which has been used to in-
terpret the experimental data of Lapujoulade and

Lejay for the scattering of helium from stepped
copper surfaces. " The experiments were carried
out using the (117) face of copper which consists
of (100) terraces separated by linear steps parallel
to the [110jdirection. The period is 9.13 A, and
the small angle a shown in Fig. 1 [the angle be-
tween the plane of a (117) surface and the (100)
terraces] is 11.25'. P (the angle of the step faces)
is chosen to be 20', the value which gives the best
fit with the experimental data for the hard-wall
calculation. ' This corresponds to a value of

fg = 0.065. The angle of incidence if 60'. For this
experimental configuration there are 32 open
channels for diffracted beams; however, we have
shown in Table II only the ones which have non-
negligible intensities, and all of these are scattered
on the opposite side of the surface normal from
the incident beam.

It is evident that the present soft-wall calcula-
tions give results with good unitarity for poten-
tial heights as small as three-times the incident
energy. The most striking thing about the data in
Table II is the fact that the effect of wave penetra-
tion into the surface does not affect the overall
picture of the scattered intensities very much.
The biggest change is in the diffracted peak of
order 2, which nearly coincides with the classical
rainbow angle for forward scattering from the
broad (100) terraces. This rainbow peak is re-
duced by about 15% from the CHW calculation if
the potential height is lowered to SE, On the
other hand, the rainbow pattern associated with
diffracted orders 7, 8, and 9 is enhanced slightly.
Thus, even though it appears that the penetration
of the wave function tends to reduce the rainbow
patterns, this is certainly not always the case.

Turning now to the Rayleigh approach, the trun-
cation and resolution of the system of Elis. (41)
and subsequent calculations of the diffracted inten-
sities follows the same lines as outlined above.
We have found, not unexpectedly, that this approach
suffers from numerical convergence problems
which are quite similar to those that have been

TABLE II. Comparison with the experimental results of Lapujoulade and Lejay for various
values of Vo using the approximation of Eq. (16). The incident wave vector is 1.1x10 cm
8» = 60', and the triangular profile is defined by a= 9.12 k, n = 11.25', and fi= 20'.

Scattering
angl. e

CHW

Vo= 100Eg Vo= 10Eg Vo= 5Eg Vo= 3' V= ~ Experiment

2
1
0

-1

-5
-6
~7
-8,
-9
-10
-11
—12
—13
-14

82.4'
68.2'
60.0'
53.5'
47.8'
42.7'
38.0'
33.6'
29 4'
254
21.4'
17 6o

13 9o

10.2'
6 6'
3.0'
0.6'

0.239
0.007
0.019
0.040
0.057
0.053
0.021
0.000
0.042
0.134
0.188
0.142
0.051
0.004
0.002
0.004
0.000

0.233
0.007
0.019
0.040
0.058
0.053
0.022
0,000
0.043
0.138
O. l93
0.146
0.053
0.004
0.002
0.004
0.000

0.225
0.007
0.019
0.040
0.058
0.054
0.022
0.000
0.043
0.139
0.195
0.147
0.053
0.004
0.002
0.004
0.000

0.213
0.006
0.019
0.039
0.058
0.053
0.021
0.000
0.043
0.138
0.'l 93
0.145
0.052
0.004
0.002
0.004
0.000

0.240
0.007
0.019
0.040
0.057
0.053
0.021
0.000
0.041
0.132
0.185
0.140
0.051
0.004
0.002
0.004
0,000

0.141+20
0.000+ 5
0.009 + 2
0.022+ 5
0.025 +10
0.030 +10
0.000 +20
0.000 +20
0.057 +20
0.089+30
0.063 +40
0.079 +40
0.053 + 50
0.000 + 50
0.000 + 60
0.000 + 60
0.000 + 70

Unitarity 1.006 1.015 1.014 0.995 0.998 0.568
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TABLE III. Comparison of the approximation of Eq. (16) with the Rayleigh approach for the
same system as described in Table I.

Order

0

2

3
4
5
6

Unitarity

Corrugated
hard wall

0.314
0.143
0.1 54
0.173
0.148
0.060
0.006

1.000

Approximate
soft-wall
Vp= 3F.;

0.367
0.153 .

0.149
0.153
0.122
0.041
0.004

0.989

Bayle igh
approach
Vp= 3Eg

0.332
0.147
0.149
0.161
0.132
0.050
0.008

0.980

Bayl.e igh
approach
Pp= I:1E)

0.333
0.151
0.149
0.1 51
0.132
0.060
0.011

0.989

often noticed when the Rayleigh method or other
similar simple methods are used in the CHW
problem. " If the size of the system of Eqs. (41)
is truncated at a value not too much greater than
the number of allowed diffraction channels, then
good results can often be obtained. If the size
of the system, is increased, eventually the solu-
tion becomes unstable, and the unitarity is lost,
rather like the behavior of an asymptotic expan-
sion.

We find that, within the constraints of proper
truncation, the solution becomes better and better
with smaller V„exactly contrary to the other ap-
proximation discussed here. On the other hand,
the results become poor for large V„reflecting
the fact that this method does not give the correct
CHW' limit as V

Shown in Table III are the results of some select-
ed calculations for the same system as in Table I.
The results of the two different approaches for the
same potential strength Vo are very nearly the
same. The Rayleigh approach does not work with
this system for Vo much greater than three times
the incident energy, but for the small value Vo =
1.1E. the unitarity is quite good and the inten-
sities of the diffracted beams are still not ap-
preciably different from the CHW values. Thus it
appears that, in spite of its convergence difficul-
ties, the Rayleigh approach works well in pre-
cisely the same region where the other approxi-
mation fails, but there is an overlap region in
which both solutions give practically identical re-
sults.

A number of interesting conclusions ean be drawn
from this work. We have shown that with a simple
approximation one can obtain solutions for the finite
corrugated wall which work well for a variety of
systems. Basically, the approximations amount
to solving the integral form for the Schrodinger
equation by using a limited amount of known infor-
mation about the exact solution. In this case, the
exact asymptotic form of the solution inside the

surface is known, and we make the assumption
that such a form can be extended into the sel-
vedge region.

This work also answers a number of questions
concerning the effects of allowing the wave func-
tion to penetrate into the surface. One can argue
that a disadvantage of the CHW model is that it
forces the wave function to vanish at the surface,
but it is the very region of overlap of the wave
function with the surface which is where the in-
teraction should be most important. However,
the wave function goes to zero at the surface,
but the potential rises to infinity in such a man-
ner that their product is nonzero, as shown by
Eq. (3). It seems that this overlap, which ap-
pears only at the surface, is a sufficient ap-
proximation to account reasonably mell for the
largest part of the true penetration of the wave in-
to the surface. The main effect of softening the
potential is a tendency to destroy or reduce the
quantum-mechanical rainbow pattern, ' however,
this effect is not strong even under conditions in
which the wave function can penetrate a wavelength
or more into the surface. Nevertheless, we have
shown in these calculations that the penetration
of the wave function can easily give corrections
of 15-20%. Thus, eventually it appears that a
correction for this effect will be necessary in a
complete theory of atom-surface scattering.

Finally, we would like to mention that this work,
although written from the point of view of the atom-
surface scattering problem, is valid for the re-
flection of all scalar waves under conditions in
which damped penetration of the wave can occur.
The methods can also be readily extended to the
problem of scattering of vector waves.

ACKNOWLEDGMENTS

We would like to thank Dr. C. Manus, Dr. D.
Degras, and particularly Dr. J. Lapujoulade for
helpful discussions and encouragement during the
course of this work.



20 SCATTERING OF ATOMS BY A CORRUGATED POTENTIAL. . . 5029

*The work of J.R. Manson was carried out while the
author was a visiting scientist at the Centre d'Etudes
Nucleaires de Saclay, Service de Physique Atomique,
B. P. 2, 91190Gif-sur-Yvette, France.

~N. Garcia and N. Cabrera, in Proceedings of the 7th
International Vacuum Congress and 3rd International
Conference ori Solid Su/aces, Vienna, 1977, editedby
R. Dobrozemsky, F. Rudenauer, F. P. Viehbock, and

A. Breth, R. (Dobrozemsky et al. , Vienna, 1977),
p. 379; N. Garcia, Phys. Rev. Lett. 37, 912 (1976);
N. Garcia, and N. Cabrera, Phys. Rev. B 18, 576
(1978).
R. I. Masel, R. P. Merrill, and W. H. Miller, Phys.
Rev. B 12, 5545 (1975).

G. Armand and J.R. Manson, Phys. Rev. B 18, 6510

(1978).
G. Armand, J. Lapujoulade, and J.R. Manson, Surf.
Sci. 82, L625 (1979).

C. E. Harvie and J. H. Weare, Phys. 'Rev. Lett. 40,
187 (1978).

N. Garcia, Frank O. Goodman, V. Celli, and N. 8.
Hill (unpublished).

John A. DeSanto, J. Acoust. Soc. Am. 57, 1195 (1975).
P.C. Waterman, J. Acoust. Soc. Am. 57, 791 (1975).
F. O. Goodman, J. Chem. Phys. 66, 976 (1977).
G. Armand and J.R. Manson, Phys. Rev. B 19, 4091
(1979).
For a discussion of the range of validity of the Ray-
leigh method see R. F. Miller, Radio Sci. 8, 785 (1973).
J. Lapujoulade and Y. Lejay, Surf. Sci. 69, 354 (1977).


