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%'e report the results of extensive thermal magnetoresistance measurements on polycrystalline potassium
specimens. The specimens had residual resistance ratios ranging from 2100 to 7300. Measurements were
made between 3 and 9 K, for magnetic fields up to 9.5 T. No sign of saturation was observed. The
previously observed quadratic term persists to the highest fields, completely dominating the linear term. The
various possible sources of error are carefully analyzed and discussed and we conclude that the quadratic
term is not due to probe effects or measurement artifacts. Using previously determined values of the lattice
thermal conductivity kg, we correct the data for the effects of lattice heat conduction, The corrected thermal
magnetoresistance has the same form as the uncorrected: 8'(H, T)T = W(O, T)T + AH + BH'. Values

of A and B, corrected and uncorrected for k, are presented. A = Ao+ A, ,T', with A, strongly purity
dependent and A& almost independent of purity. B is also almost independent of purity and is a
monotonically decreasing function of T. The thermal Kohler slope is compared to the electrical Kohler slope
and is found to be nearly four times larger for specimens of similar purity. A speculation concerning the role
of deviations from Matthiesson's rule on the Kohler slopes is presented. Kohler's rule is obeyed. The
Wiedemann-Franz law is not obeyed, even if the quadratic term is ignored.

I. INTRODUCTION II. EXPERIMENTAL DETAILS

It is now well known that the magnetotransport
coefficients of potassium differ strongly from the
predictions of the semiclassical theory of trans-
port in metals. None of the predicted magnetic
field dependences of the diagonal elements of the
electrical and thermal magnetoresistivity tensors
are borne out by experiment. This paper pre-
sents data from a series of measurements which
extend our previous work" on the transverse
thermal magnetoresistivity to much higher fields.
The magnetic field ranged from zero to above 9 T,
the temperature from 2 to 8 K, and the residual
resistance ratios (RRR) of the specimens from
1000 and 7300. We also report several prelimin-
ary measurements of the longitudinal thermal
magnetoresistivity. We show how much of the
intermixing among the various thermal-conduc-
tivity-tensor elements can be sorted out with the
help of the high-field measurements. Some of
the implications of the new data concerning a vi-
able magnetoresistance theory for the simple
metals are also discussed.

We note that when the measurements presented
here are included, all of the pure electric and
thermal magnetotransport coefficients have been
measured. Thus it is now possible to make ex-
tensive comparisons between the data and the pro-
posed theories, both extrinsic and intrinsic, and
to speculate about the possible origins of the mag-
netoresistance anomalies. These compar isons
will be presented in a future article.

Many of the details of the experimental pro-
cedures have been previously published ' ' in
this section the important points are outlined.

A. Specimens

It is well known that specimen to specimen
variations are of considerable importance in

transport measurements in potassium. We there-
fore describe our sample fabrication procedures
in some detail. All of the specimens used in this
work were fabricated from 99.99% pure potassium
supplied in argon-f illed glass ampules. ' At the be-
ginning of the fabrication process the end of the am-
pule is broken off and the ampule is heated under vac-
uum to a temperature just above the melting point.
The potassium is allowed to flow into glass molds de-
signed for single-crystal growth and easy ejection of
the boules. The molds are carefully cleaned and
coated with dry paraffin oil before use. The pot-
assium is held above the melting point under a
vacuum of about 10 ' Torr for 24-48 h, and then
allowed to cool slowly over a period of 6-8 h.
After ejection from the molds the boule is cleaned,
etched (secondary butyl alcohol in xylene, 2% by
volume), and stored under dry paraffin oil in an
evacuated desiccator.

The specimens are polycrystalline and were
formed in a stainless-steel sample press using
the following procedure: the oxide layer is re-
moved from a portion of the boule, and the piece
is placed between the oil-coated plates of the
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sample press and pressed to the desired thickness.
A special jig is used to slice the flat plate formed
into several specimens, which are etched, placed
in an evacuated desiccator under dry paraffin oil,
and allowed to anneal at room temperature for a
minimum of 48 h. After annealirig, the samples
are generally found to consist of two to three
large crystallites. (In our previous work' we

used specimens that had been extruded or were
single crystals, as well as those prepared with
the press. The thermal-magnetoresistance re-
sults did not depend significantly on the method
of specimen preparation nor upon the specimen's
being a single crystal; for this work we therefore
used only pressed polycrystals. )

The geometrical parameters of the specimens
are listed in Table I. The error in the geometri-
cal factors is estimated to be 4% for the width
and 2% for the thickness. The average distance
between the measuring thermometers was slightly
different in different specimens, about 1.5 cm
with an uncertainty of about 5%.

After annealing, the specimens are carefully
mounted following the procedures outlined in Refs.
1 and 5. The specimen is supported by the mea-
suring thermometers, with thermal contact to the
thermometers made via a drop of Dow-Corning
200 Fluid. ' A small "clamp" and a drop of DC-
200 fluid at the platform end ensures reasonable
thermal contact to the helium bath. A tweezerlike
heater, ' attached to the other end (also with a
drop of DC-200 fluid), provides the heat current.
After mounting, the specimen is cooled slowly
(over a 45-min period) to liquid-nitrogen tempera-
tures.

B. Measurement apparatus and electronics

Standard linear heat flow techniques are em-
ployed in these experiments. The measuring
thermometers are germanium resistance thermo-
meters, previously calibrated against tempera-
ture, and calibrated during each experiment
versus magnetic field.

The magnetic field is supplied by a 1.5-in. -bore

superconducting solenoid, nominally rated at 8 T
at 4.2 K, but capable of 10 T for TS2.4 K. The
field of the solenoid was previously calibrated
versus the magnet current using a rotating coil
gaussmeter'; the calibration is accurate to about
0.1%.

C. Data acquisition

Before measuring the thermal magnetoresistance
we measure the zero-field thermal resistance of
each specimen between 2 and 9 K to aid us in
character izing the specimens. The zero-field
thermal resistance of potassium, W(Q, Z'), is
known' to have a simple power-law temperature
dependence to temperatures in excess of 10 K:

W(0, T) =+/T +BOY'.

The values of the coefficients A, and B, are listed
in Table I for each specimen. Employing our
previous procedures, "we determine the residual-
resistivity ratio rR from the coefficient A„using
Eq. (1) and the Weidemann-Franz law,

p(0, 273) p(0, 273)
Lo[W(0, T)T)r 0 A Lo

where I,, is.the Lorenz number. Comparisons
with electrical determinations of the RRR using
the method of Bean et al."have shown that this
method provides values of RRR that are accurate
to 5% or better. ' Table I shows the RRR for our
specimens. For p(0, 273) we used 7.16x 10 '
g m. "

After the zero-field data are obtained the ther-
mal magnetoresistance is measured using the pro-
cedures outlines in Refs. 1 and 5. Temperature
is regulated with an active-bridge temperature
controller, "which uses a strontium-titanate capa-
citance thermometer" as a temperature sensor.
Both the capacitance and dissipation of these sen-
sors are independent of magnetic field, "enabling
the controller to maintain the specimen tempera-
ture to within a few mK as the magnetic field is
changed. To ensure that the magnitude of the mag-
netic fields in the normal and reverse directions

TABLE I. Geometric and zero-magnetic-field characterization of the specimens.

Sample
&p ——(WT)T = p
(10-4 m K'/W)

B a
p

O.0-5 m/WK) RRR"
Width
(mm)

Thickness
(mm)

KHF-1
KHF-2
KH F-5
KHF-7
KHF-8

4.8
7.5

10
14
4.0

1.75
1.68
1.86
2.13
1.75

6100
3900
2900
2090
7300

3.0
3.0
8.0
8.0
8.0

1.0
1.0
1.2
1.0
1.3

The coefficients Ap and Bp are obtained by fitting the data to Eq. (1) described in the text.
The residual resistivity ratio as determined from the Wiedemann-Franz law; see text.
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are matched to 0.05% or better a sensitive bis-
muth magnetoresistor" is employed. Dur ing re-
verse field runs the magnetic field is adjusted
until the resistance of the bismuth probe is
matched to its value in the normal field direction.
This procedure is necessary for fields up to 2 T.
Above that the hysteresis of the magnet is negli-
gible, and to insure equal normal and reverse
fields it is sufficient to match magnet currents.

HI. RESULTS

In order to keep the experimental results and
data separate from the analysis and interpreta-
tion this section presents the actual experimental
results together with a few brief comments and

observations. Analysis and interpretation'of the
data are in the next several sections.

The magnetic field and temperature dependence
of the transverse thermal magnetoresistivity of
potassium are shown in Figs. 1 and 2 for some of
the data on a high-purity specimen, KHF-8.
Similar data for a second specimen, KHF-1, have
been published elsewhere" and the data for the
other specimens used in this study are available
from the authors. In these figures the thermal
magnetoresistivity times temperature, W(H, T)T,
is plotted as a function of the applied magnetic
field. W(H, T)T is the thermal analog of the elec-
tr ical magnetoresistivity.
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FIG. 2. Transverse thermal magnetoresistance of
potassium times the temperature as a function of the
applied magnetic field; specimen KHF-8, two low tem-
peratures. Note that the curves cross as the field in-
creases.

These are several important features to be
noted in these data, some of which were already
evident from our earlier work at lower fields. '

(i) The relative change in the thermal magneto-
resistivity with magnetic field is extremely large,
and is so for all purities. The relative change
is 75-300 times greater than in the electrical
case. For specimen KHF-5, for example,
bW(9T, 3.4K)/W(0, 3.4) -=140, whereas for a
specimen of similar purity (e.g. , Taub ef zl, "
KX-17) b p(0, 3.4)/p(9T, 3.4) = 0.8. As a further
illustration of these differences Fig. 3 displays
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FIG. 1. Transverse thermal magnetoresistance of
potassiur. i times the temperature as a function of the
applied magnetic field; specimens KHF-8, for high-
temperature data as indicated. Note the absence of
saturation and the crossing behavior.
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FIG. 3. Comparison of the reduced transverse elec-
trical (Ap/po) and thermal (bW/Wo) magnetoresis-
tivities for specimens of similar purity.
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FIG. 5. Change in the thermal resistivity with mag-
netic field divided by the field as a function of the ap-
plied field for specimen KHF-8 at several representa-
tive temperatures. The slope yields the coefficient of
the quadratic term and the intercept that of the linear
term in the transverse thermal magnetoresistivity
[Eqs. (2) and (6)].

scattering times obtained in this manner, from
simultaneous measurements of V,T and V„T, have
the correct temperature dependence and a mag-
nitude in good agreement with theory. T,j, was
somewhat larger than predicted, a reasonable re-
sult as the theory gives the total number of scat-
tering events per unit time, but includes no mea-
sure of the relative effectiveness that each scat-
tering event has in degrading the thermal current.
From the data presented in Ref. 5 we may deter-
mine the magnetic field JI, at which co,T „,=1.
These values are listed in Table II. It may be
seen that it was possible to obtain magnetic fields
well in excess of H„ i.e. , cu,w, „»1for all tem-
peratures and purities used in this work. Qnly
those data points for which (d,v,„~5 were used in
determining the values of the coefficients A and B.
Thus we conclude that the quadratic term is not a
remnant of the low-field limit.

B. Effects of the lattice conductivity

It has been proposed that the quadratic term
may be due to the effects of the lattice thermal
conductivity. " If a tensor representing the lattice
conductivity K, =k~i is added to the electronic
thermal conductivity tensor K„ it is simple to
show that"'

detail. ) There are a number of possibilities to
be considered: (i) are the specimens well into
the high-field limit; indeed, what is the high-field
limit for thermal measurements (ii) is the non-
zero lattice thermal conductivity responsible for
the quadratic term and (iii) are there probe ef-
fects or other measurement artifacts?

A. The high-field limit

It may be shown" from quite general considera-
tions that both of the magnetoresistivities of a
metal are quadratic in the applied magnetic field
for ~,«& 1. In the electrical case, (d,z =1 for
fields of the order of 0.02-0.03 T for very pure
potassium, and the low-field quadratic term is
not observed in the electrical magnetoresistivity
measurements. Because of the important role
played by small-angle inelastic scattering in the
thermal resistivity the thermal scattering time
will differ greatly from the electrical scattering
time, perhaps by factors of 10 or 100, and it is
possible that the observed behavior of W(H, T) is
due to the fact that the high-field limit is not
reached. Thus we must determine the mean time
between scattering events important in thermal
conduction. In a previous article' we showed that
an operational definition of the thermal scattering
time can be made, namely, &u, r,„=V,T/V„T. The

W (H, T)T = W' (H, T)TMx & (I+k W8 )2+(k W8 )2

W„",g, T)T = TH g, H =W„',(H, T)T

x [(I+k~w„'„)'+(k~w„',)'] ',
(4)

where the superscript M refers to the measured
transport coefficient, the superscript e refers to
ihe transport coefficient that would be measured
if the lattice conduction were zero, and A« is
is the Right-Leduc (thermal Hall) coefficient.

In most of the simple metals k~W„'„and k~W y

are very small compared to unity, and Eq. (3)
can be approximated as

W„",(II, T)T = W„'„(H, T) T + k~T [H'/(L, Tne)' j, (5)

where we have assumed W'„, =H/L, Tne. It is
therefore tempting to ascribe the quadratic mag-
netic field dependence of the thermal magnetores-
istivity of potassium to lattice conduction. If
Eq. (5) is fit to the thermal-magnetoresistivity
data a very large lattice conductivity (five to nine
times larger than expected) with an anomalous
temperature dependence" is found. Figure 6
shows a plot of the average lattice thermal con-
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FIG. 6. Lattice thermal conductivity of potassium:
curve I, as determined from the quadratic term in the
thermal magnetoresistivity (see text); curve II, theore-
tical calculation of Ekin; curve III, as determined from
simultaneous measurements of S"„„(H,T) and 8' (H, T)
(this work and Bef. 5).

ductivity obtained in this manner from several
specimens (curve I). In addition the theoretical
calculation of Ekin~ (curve II) is shown. It is
clear that the thermal conductivity determined in
this manner does not have the temperature de-
pendence (T') expected from electron-limited pho-
non conduction.

The problem with the above analysis is that in
strong fields the large lattice conductivity de-
termined from Eq. (5) would result in a substan-
tial decrease (-40%) in the measured Righi-Leduc
coefficient [Eq. (4)]. As previously reported, ' no
such large decrease is observed and from the
smaller decrease that was observed (5% at 9 T)
a value of k, can be extracted that has the correct
temperature dependence but is somewhat smaller
than the theoretical prediction (curve III, Fig. 6).
The smaller magnitude of k could very well be
due to dislocation and strain-field scattering which
may be shown" to yield a thermal resistivity pro-
portional to p '. As k has a very small effect
on the Righi-Ledue coefficient, the error in de-
termining k, is large and we estimate it to be of
the order of 50%; the sample to sample variation
in k, is also about 50%. The lattice conductivity
determined from specimen KHF-5 is close to the
average found for specimens KHF-5, 7, and 8,
and was used to correct the thermal-magneto-
resistivity data for specimens KHF-1 and 2, on
which no Righi-Leduc data were taken. The lat-
tice correction to the magnetoresistivities was
done in the following manner. For specimens
KHF-5, 7, and 8 we used the technique described
in Ref. 5, i.e. , we treated k, as a free parameter

and adjusted it until Eqs. (3) and (4), when solved
simultaneously, yielded the observed Righi-Leduc
data. We then extract W„'„(lI, T)T easily. For
specimen KHF-1 and KHF-2 k, and RR- were
chosen to be 3.3 x 10 ' T'W/m K and 1.76
x 10 'm'K'/WQC (from Ref. 5), respectively.
Equations (3) and (4) then yield W„'„(H, T)T.

The electronic thermal magnetoresistance
W„'„(H, T)T was plotted versus field in a manner
similar to Fig. 2. It is found that the various
curves at the different temperatures are generally
shifted up or down depending on the values of H
and T, the change seldom exceeding 10% at 9 T.
Similarly, when AW/H vs H is plotted the data are
still very well represented by a polynomial to
second power in H,

W„'„(H, T)T = W(0, T)T +A'H + B'H . (6)

The values of A' and B' are listed in Table II for
all the specimens, and the behavior of the coef-
ficients g' and 8' is discussed in Sec. IVB.

There are two additional points worth pursuing.
Archibald, Dunick, and Jericho" have measured
the lattice conductivity of potassium directly, sup-
pressing the electronic conductivity. by alloying.
Their specimens were heavily doped with rubidi-
um. For their purest alloy specimen (Ref. 26,
Fig. 4) they obtain a lattice thermal conductivity
which appears to have the temperature dependence
necessary to explain our thermal magnetoresis-
tivity data (i.e. , k, is similar to Fig. 6, curve I)
but with a magnitude two to three times too small.
It is nevertheless several times larger than the
magnitude we obtain' for k, . Although their results
are intriguing, we do not feel that they are applic-
able to the problems discussed in this paper. The
atomic mass of rubidium is twice that of potassium,
and this large mass difference results in strong
Rayleigh scattering and thus strong phonon-im-
purity scattering. This scattering causes k, to de-
part from the 12 behavior because of electron-
phonon scattering at the higher temperatures. Our
specimens, however, are much purer than those
of Archibald et al. (our least pure specimens have
a RRR 50 times greater than their purest alloy)
and such scattering should be minimal. The fact
that the k, obtained from the Righi-Leduc data is
essentially independent of purity' can be interpre-
ted to mean that the samples are sufficiently pure
so that phonon-electron and phonon-boundary or
dislocation scattering is dominant. However, de-
creasing the impurity content should increase the
magnitude of k„beyond that measured by Archi-
bald et aL, perhaps to a size sufficient to explain
our magnetoresistance data. But a much larger k,
would have resulted in a much larger field depen-
dence to BR~. An additional important observation
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is that the measurements of Archibald ef aL were
performed on encapsulated specimens. This
method is now considered unreliable because of
the large pressure dependence of the resistivity of
potassium and the very real possibility of differ-
ential contraction between the specimen and the
capsule. It must be stated, however, that the k
inferred from RRL by Tausch and Newrock and
that measured by Arehibald ef al. are in disagree-
ment.

The second point is that Eqs. (3) and (4) are
sensitive to small changes in W„',. For example,
Eq. (4} may be expanded and solved for k~,

Thus the value obtained for k, depends on the value
chosen for W„'„ the electronic contribution to the
Righi-Leduc coefficient. One might start with the
free-electron value, as predicted by the Lifshitz-
Azbel-Kaganov (LAK) theory. " If however, the
actual Righi-Leduc coefficient in potassium differs
from the free-electron value, as is also true in
the electrical case" where .RH is larger than the
free-electron value R„„by about 5'l/~, then large
errors in k, will result, eventually leading to
large errors in W„'„(H, T). To avoid this pitfall
in part, Eq. (4} was fit to the Righi-Leduc data in
the intermediate-field region (2—6 T) where the
effects of lattice conduction are small. However,
the possibility of large errors in k certainly ex-
ists and, coupled with an incorrect W„'„, could lead
tolargeerrors inW' (H, T). Toobtainameasure of
these errors we have calculated W„'„(H, T)T from
typical W„"„(H,T)T data, using our best es timate for
k and W'„„,as well as values 50%%uq too large or too
small, andvalues of W„'„10%above andbelow thefree-
electron value. From calculations of all possible
permutations we are able to conclude that (a) at
low temperatures (T=2 K) the maximum error in

W,'„(H, T)T produced by a 50%%uo change in k and a
10% change in W„', is less than 0.4%. Similarly,
the errors in the coefficient A' and B' are negli-
gible; and (b) at the higher temperatures reached
(T-6 K), a+50%%uo change in k, and a 10%%uo change in
W„'„produces at most a 6%%u~ shift in W„'„(H, T), and
a similar error in A' and B'. Since we estimate
that our determination of k is correct to 50%%uz, we
feel the error in g' and B' attributable to this
calculational problem is never more than 6%, and
is generally much less. We note that the errors
in &' and B' due to the error in determining the
geometrical factors are larger.

We conclude therefore that the quadratic term
in the measured thermal magnetoresistivity is not
due solely to lattice conduction.

C. Measurement artifacts

There remains the possibility that the quadratic
term is an experimental artifact. As far as we
are able to determine there are three possible
sources of error in our measurement that could
lead to a quadratic term, or, at the very least,
to an incorrect measurement of the thermal resis-
tivity. These are a leakage conductance across
the specimen, a thermometry error, and probe
or aspect-ratio effects. We discuss these in order.

/. Leakage conductivity

Any field-independent thermal conductance which
allows a thermal current to flow across the speci-
men will result in a quadratic term in the thermal
magnetoresistance. This occurs in a manner
similar to that of the lattice conductivity. The
only possibilities in our experiments are the
thermal conductance of the residual gas, the ox-
ide layer on the specimen itself, and the thermo-
meter wires. It is highly unlikely that any of these
cause a significant effect. The vacuum in our
cryostat is of the order of 10 ' Torr, and a simple
calculation of the conductance of the residual gas
(helium} indicates that it is much too small to
cause the observed quadratic term. More impor-
tantly, in an earlier experiment the vacuum in the
cryostat was varied between 10 ' and 10 ' Torr
and no pressure-dependent effects were observed.
The oxide layer is very nonuniform and quite thin;
since it is an insulator it is quite difficult to
imagine that it has any appreciable thermal con-
ductance. Finally, there is 5 Q of resistance wire
separating the various thermometer leads from
one another and from the heat stations. This is
more than enough to eliminate any thermal leaks.
Perhaps the most compelling argument against
leakage conductivity may be found in the Righi-
Leduc data. ' If leakage conductances are to have
a noticeable effect they must be at least of the
same order of magnitude as the lattice conductance.
Such leakage conductances would add to the lattice
conductance, creating an effective lattice conduc-
tance, which would be the quantity determined
above [Eqs. (3) and (4)]. However, the k, we de-
termine is less than the theoretical expectation,
not greater. In addition the lattice conduction de-
termined above has the quadratic temperature de-
pendence typical of phonon-electron scattering.
Thus it is unlikely such leakage is present, but
should such conductances be present they would
be too small for an observable effect on W„'„(H, T)T.

2. Thermometry

The resistances of the germanium thermometers
used in this work increase with field roughly as
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II'; thus the possibility exists that the quadratic
term might be due to calibration effects peculiar
to our measurement techniques. To eliminate the
possibility, the thermal magnetoresistance of a
potassium specimen has been measured in a con-
stant field using different heat currents. The size
of the thermal gradient varies with the heat cur-
rents and moves the hot thermometer resistance
farther from or near er to its value during the
calibration run. We found the thermal magneto-
resistance to be independent of the magnitude of
the heat current. In addition, with the same
thermometry and calibration techniques, no
quadratic term was observed in the longitudinal
thermal magnetoresistance. We note that Fletch-
er,"using different techniques, has also observed
the quadratic term.

3. Probe effects

In magnetoresistance measurements it is ex-
tremely important to consider the placement of
the potential and current probes carefully. It is
well known, for example, that a poor choice of
aspect ratio will result in a magnetoresistance
that is linear in the magnetic field. '" In this case
we must consider the effects on the thermal mag-
netoresistance measurements of the placement of
the measuring thermometers, the injection and
extraction of the thermal current, and the geo-
metrical arrangement of the specimen.

In the case of the electrical magnetoresistivity
the problem of the distortion. of the equipotentials
by the voltage and current probes has been investi-
gated by several authors. " Among other possibil-
ities Jensen and Smith" consider the case of point
voltage contacts with electrical current injection
and extraction via perfectly conducting contacts
that completely cover the ends of the specimen.
They demonstrate that for cop =~ most of the dis-
tortion occurs within a distance from the ends of
the specimen equal to the specimen's width. If
the voltage probes are away from the ends of the
specimen by a distance equal to the specimen's
width they show that the error in the electrical
magnetoresistivity measurement is less than 0.1%,
and decreases .rapidly as the distance increases.
If the current is injected and removed through
sufficiently high impedances these effects are
substantially reduced. The Qow of thermal cur-
rent is similar to the flow of electrical current.
That is, if we inject and extract the heat. current
through perfect thermal conductors, and if the
measuring thermometers are more than a speci-
men's width away from the current probes, the
distortion of the isotherms by the current probes
should result in an error in the thermal magneto-
resistance of less than 0.1%, and the error will

also be substantially reduced by using high-impe-
dance heat-current injection and extraction. In
our experiments the potassium specimen is
clamped at the cold (platform) end, and a tweezer
heater is fitted to the hot end. ' The heater is
thermally attached to the specimen by a thin film
of DC-200 fluid which is glassy at low tempera-
tures. We feel that this is certainly "high-impe-
dance" current injection and extraction. In addi-
tion, in some of our measurements the measuring
thermometers were closer to the ends of the
specimen than the width, and in some cases sev-
eral times as far away. Over the past several
years a wide variety of specimens with various
purities and aspect ratios have been measured;
the consistency of the data is convincing evidence
that there are no probe effects in the data.

In sum, we are reasonably certain that the
quadratic term is not due to lattice conduction, to
probe effects, or to any other spurious effect, but
that it is an intrinsic part of the thermal mag-
netoresistance of potassium. However, as.there
are noprobeless methods for measuring thermal
resistivities, we cannot completely exclude the
possibility of some form of systematic exotic
pr obe effec t.

There are several important criticisms of these
arguments that should be mentioned. It is entirely
possible that the dip in 7'RR~ with field which we

previously reported' is not due to the lattice con-
ductivity but is due to an intrinsic field dependence
of RR„. This possibility cannot be discounted,
particularly since field-dependent Hall coefficients
have been observed and predicted by theory (see
below). Second, in obtaining the k, used to correct
our measured values of the thermal magnetoresis-
tivity, we assumed that W„'„was nearly equal to
the semiclassical prediction. We can also reinvert
the resistivity tensor and obtain

0„,= (-1/W~, )/t1 + (W„"„/W„",)'].

If our values for W„"„and W„"„are inserted in this
equation, 0„, is not field independent as predicted,
and our original assumption is violated. There
are a number- of possible explanations.

(i) Our BR~ data are incorrect. This is very
unlikely. Aside from the various precautions
mentioned above we have measured RR„ for alu-
minum and have reproduced the expected results.

(ii) The inversion of the resistivity tensor to
obtain conductivity tensor elements is incorrect.
This is the most likely explanation. Without an
adequate knowledge of the causes of the magneto-
resistance anomalies and the way in which the con-
ductivity tensor elements are affected such an in-
version is improper and can lead to error. The
most obvious case is an extrinsic mechanism
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which contributes to the effective resistance, such
as sample inhomogeneity or end effects. Clearly,
if such mechanisms are present conductivity ten-
sor elements cannot be calculated correctly from
the resistances. Thus without knowing the ulti-
mate source of the magnetoresistance anomalies
such inversions must be viewed with some sus-
picion. Note however, that the fact that TV„can-
not be properly inverted can be interpreted in a
manner which lends credence to claims that the
magnetoresistance anomaly is extrinsic.

(iii) The results of Archibald et al."can be in-
terpreted as supporting Fletcher's argument";
that is, the entire quadratic term may be due to
lattice conduction. This of course leaves unex-
plained the behavior of the Righi-Leduc coefficient.

We also observe that the lattice conductivity
does not produce a quadratic term in the longi-
tudinal magnetoresistivity and the absence of such
a term in the data is also interpretable as support-
ing the extrinsic hypothesis.

V. DISCUSSION

In this section we discuss the thermal magneto-
resistance of potassium, taking two somewhat dif-
ferent approaches. In the first the linear term in

Eq. (2) is investigated and correlations between
that term and the linear electrical magnetoresis-
tivity are examined. Here the quadratic term with
its strong temperature dependence is treated as
an additional anomaly. Much of this discussion is
similar to that of Ref. 1, except that now lattice
conduction effects are included. The second ap-
proach is an examination of the thermal magneto-
resistance in its entirety. Several important ef-
fects are noted.

A. Linear term

In Fig. 7 the coefficients of the linear term [Erl.
(2)], A and A' corrected and uncorrected for K,
are plotted versus the cube of the temperature for
specimen KHF-8. The data are represented very
well by A. '=A,'+A,'T' to temperatures of nearly 8
K. The values of A.,'and A', for all. the specimens
are listed in Table II. In general we observe that
by correcting the data for the lattice conductivity
we may extend the apparent 7.' behavior to higher
temperatures. The deviation of A.' from T' be-
havior at high temperatures is not due to leaving
the high-field limit, as may be observed from the
values of H, listed in Table II.

There are several interesting points concerning
the temperature and purity dependence of A'. As
may be observed from Table II the temperature-
independent portion of the linear term A,' is purity
dependent. Thus this term appears to be directly

0
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FIG. 7. Coefficient of the linear term fEqs. (2) and
(6)] vs the cube of the temperature for specimen KHF-8;
corrected (6) and uncorrected (Q) for the lattice con-
ductivity.

related to the impurity content and defect structure
of the specimen. Following our previous proce-
dure' we find that the linear term in the thermal
magnetoresistivity can be expressed in terms of
a thermal Kohler slope S~

EW(If, T) A'H, L,o
W(0, T)T );„„, W(0, T)T RH

(8)

If we assume that the semiclassical prediction for
the off-diagonal elements of the resistivity tensors
is valid (it is to within a few percent), the zero-
temperature Kohler slope may be written as S'~

=A;/R«T. We also assume that the Wiedemann-
Franz law is obeyed for the off-diagonal elements,
at least to within 8%-10% (Refs. 1 and 27). Since
we are only interested in rough comparisons be-
tween the thermal and electrical cases such errors
are unimportant. Using' gB» =1.76 x 10 '
m' K'/WQC we may now determine S'r, and this
is listed in Table II, along with the electrical
Kohler slope for specimens of similar purity.
The thermal slope is usually three to four times
larger than the electrical slope. In Ref. 1 it was
pointed out that strain and dislocations in the
specimens may be responsible for this difference.
Precautions were taken to limit the strain induced
in mounting and precooling the specimens. How-
ever, our method of sample preparation (pressed
plates) may be considered a "high-strain" tech-
nique. " As noted in Ref. 1 the linear electrical
magnetoresistance of one of our pressed speci-
mens was quite large, indicating the presence of
strain. That specimen was frozen in place by oil
for helicon measurements; thus it is possible that
the electrical measurement was on a strained
specimen, whereas the thermal measurement was
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FIG. 8. (a) Kohler slope of the transverse electri-
cal magnetoresistance as a function of purity as mea-
sured by the RRR (from Refs. 17 and 32). (b) Zero-
temperature Kohler slope of the linear term in the
transverse thermal magnetoresistivity as a function of
purity (from Ref. 1 and this work). (c).The coefficient
Bo [Eq. (1)] as a function of purity (from Ref. 1,3, and
this work). In all three figures the lines are drawn to
indicate the trend of the data and have no further mean-
ing.

not. Also, as discussed above, the lattice con-
ductivity varies as T', but has a magnitude less
than the theoretical prediction; strains and dis-
locations can produce such an effect." On the
other hand the data from the single-crystal
specimens used in Ref. 1, fabricated using a "low-
strain" technique, are quite consistent with the
data from the polycrystals.

The nature of the purity dependence of the two
Kohler slopes is similar. In Figs. 8(a) and 8(b)
S~ and S~ are plotted vs RRR. Although the num-
ber of thermal data points is insufficient for any
firm conclusion, the purity-dependent portion of
the linear thermal magnetoresistance appears to
depend on purity (as determined by the residual
resistivity) in much the same manner as the lin-
ear electrical magnetoresistance. This is illus-
trated by the large peak in the Kohler slope for
a RRR of 1700. Figure 8(c) is a plot of the purity
dependence of the phonon term in the zero-field
thermal resistivity [B„Eq.(1)j. (The data are
from Refs. 1, 3, and this work; see Ref. 3 for

the details. ) We offer the following speculation
on the origin of the large peak in S~ and S~. B,
is essentially constant for very pure or very im-
pure specimens (as determined by their RRR),
and rapidly changes in the intermediate-purity
regime. This variation with purity of the magni-
tude of the temperature-dependent portion of
the zero-field thermal resistivity is a form of
deviation from Matthiessen's rule. ""' The re-
sponse of the electron distribution function to the
applied electric field is changing from being dom-
inated by impurity (or strain field) scattering (at
low RRR) to being dominated by phonon scattering
(at high RRR). From a comparison of Figs. 8(a)
through 8(c) we see that the change in B, occurs
over the same purity range in which both Sr and

S~ rise, reach their peaks, and fall. Therefore,
the purity dependence of the thermal and electrical
linear magnetoresistances might simply be mani-
festations of deviations from Matthiessen's rule
and not directly related to the cause of the. mag-
netoresistance anomalies.

Since the temperature-dependent term in the
zero-field thermal resistivity shows substantial
deviation from Matthiessen's rule. It is natural
to look for such deviations in the temperature-
dependent term of the linear magnetoresistivity

As seen in Table II, no such effects are ob-
servable within the experimental uncertainty.

Reference 1 describes a relationship between the
temperature dependence of the linear thermal
magnetoresistivity, the zero-field thermal resis-
tivity, and the analogous terms in the electrical
resistivity. The temperature-dependent portion
of both the zero-field thermal resistivity (WrT
=W(T, 0)T —[W(T, 0)T]r,) and the linear term in
the thermal magnetoresistivity have the cubic
temperature dependence typical of phonon scatter-
ing, and the temperature-dependent portions of
the zero-field electrical resistivity and the linear
electrical magnetoresistivity also have the same
temperature dependence. ' This is also apparent
in the data presented here, and we therefore re-
iterate the conclusion of Ref. 1: "It appears that
the temperature dependent portions of the linear
magnetoresistances are related- to the strength of
the electron-phonon interaction (as measured by
the zero-field resistivities) even though the rela-
tive contributions of large and small angle scatter-
ing are much different in the two cases."

9. Quadratic term

In very strong fields (&o,7» 1) the quadratic
term dominates the transverse thermal magneto-
resistivity. There is no analogous term in the
transver se electr ical magnetoresistivity. Figure
9 shows a plot.of lnB, the coefficient of the quad-
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FIG. 9. B [from Eq. (6)J vs the temperature. B is
seen to be a monotonicaQy decreasing function of tem-
perature with no simple temperature dependence.

ratic term vs T for all the specimens. There is
no simple power law dependence. I3 is seen to be
a monotonically decreasing function of P and, from
Table II, may be seen to be essentially independent
of purity (within the experimental error) although
KHF-7, which has a Kohler slope at the peak of
Fig. 8(b), appears to have the largest B.

From our discussion it is clear that the quadra-
tic term cannot be ascribed solely to lattice con-
duction, and that lattice conduction can only ac-
count for a small portion of it. We are unable
to offer any explanation of the origin of this term,
but assume it to be related to whatever is causing
the linear anomalies. It should be noted, however,
that this term causes drastic deviations from the
Wiedemann- Franz law. Since the high-field trans-
verse thermal magnetoresistivity is quadratic in
the field, whereas the transverse electrical mag-
netoresistivity is linear in the field, the Lorenz
ratio decreases with increasing field,

the thermal magnetoresistivity have been discussed
separately. In this section they are treated to-
gether, and a method of analyzing the data is pre-
sented that appears to eliminate much of the com-

p licated temperature dependence. This may shed
some light on the ultimate source of the anomalous
magne tor es istivities.

Using the methods outlined in Ref. 5, we may
obtain values for the thermal scattering time z,„;
using these values we then investigate changes in

the transverse thermal magnetoresistivity as a
function of temperature at constant values of (d,~,h.

We proceed as follows: from the known relation
between ~,„and T the magnetic field necessary to
yield a given value of ~,r,h (at a given tempera-
ture) is determined. We obtain the transverse
thermal magnetoresistance at that field and tem-
perature from the measured values of W(H, T) or
from Eq. (6). Repeating this at a variety of fields
and temperatures for each value of cop,„we plot
the results in Fig. 10 for specimen KHF-6 (simi-
lar data for KHF-1 have been published else-
where") This figure displays the thermal mag-
netoresistivity times temperature at constant
u,r,„,W(e,7th = c)T, versus the cube of the tem-
perature. Also included in the figure is the zero-
field thermal resistance data for the specimen,
W(0, T)T.

As may be observed in Fig. 10, for specimen
KHF-8, as well as for all the specimens, over
the entire purity range investigated W(~,~,„=c)T
is a cubic function of the temperature over a range
of values of (d,g,h from zero to at least 90. The
complicated temperature dependence of the ther-
mal magnetoresistivity (as shown in Figs. 1 and 2)
has been eliminated. There is none of the cross-
ing behavior present, and little or no deviation

IO

p(H, T) p(0, T)+ZH Z 1

W(H, T)T W(0, T)T+A H+B'H P'H '

Z is very nearly temperature independent, "
whereas B' increases rapidly as the temperature
decreases (Fig. 9) and the deviation from f., is
largest at low temperatures. In the low-tempera-
ture regime elastic impurity scattering is expected
to be the dominant scattering mechanism, and this
deviation is difficult to understand.

C. Kohler's rule

To this point the linear and quadratic terms in

Q
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FIG. 10. Thermal magnetoresistivity at constant
e~r th times temperature as a function of the cube of the
temperature [S'(td v th=c) T vs T ] for various values

C

of z 7'th, specimen KHF-S.



HIGH-FIELD TRANSVERSE AND LONGITUDINAL THERMAL. . . 513

hW(H, T)/W(0, T) =F((u,T,„), (10)

or

W(H, T) =W(0, T)[1+F(&up,„)].

Since W(0, T)T is a cubic function of the tem-
perature over a wide range of temperatures, ' the
fact that W(+,. 7,„=const)T ~T' means that Kohler's
rule is valid, at least for the range of fields and

temperatures investigated here, The fact that
Kohler's rule holds is somewhat surprising: at
the lower temperatures of our measurements the
electrons are primarily scattered by impurities,
while at higher temperatures they are predomin-
ately scattered by phonons.

This is an extremely important result and has
significant consequences. The domain of validity
of Kohler's rule has not been delineated other than
in the simple relaxation-time approximation. It
can however, be shown that if anisotropy is sig-
nificant (e.g. , with open orbits or magnetic
breakdown), there will be large deviations from

from T,' except possibly at the lower tempera-
tures. At low temperatures the percentage error
in the value v,„ is considerably larger than at the
higher temperatures, and because of the large
quadratic field dependence of W(H, T)T the calcula-
tion of W(&u, w = c)T at low temperatures is quite
sensitive to small changes in co,v,h.

This is a very striking and surprising result.
Although the coefficient of the linear term is a
cubic function of the temperature the coefficient
of the dominant quadratic term has no simple tem-
perature dependence, and W(H, T)T has no simple
temperature dependence.

In Fig. 11 the slopes (I') of the curves in Fig. 10
as well as the slopes of similar curves for the
other specimens are plotted versus (d,7.,h. Except
for specimen KHF-7 the slopes have nearly the
same dependence on +,7th. This is consistent with
the results discussed above for the purity depen-
dence of the slope of the linear terms. Sample
KHF-7 has a RRR of 2090, nearly at the top of the
peak in Fig. 8(a) and in the middle of the rapid
variation of B, in Fig. 8(c) the other specimens
have RRR's on the flat parts of those curves. We
observe that scaling the KHF-7 data by the proper
ratio of B,'s produces, within experimental error,
a, universal curve. (The tips of the arrows in
Fig. 10 show the location of the scaled points. )
This is further evidence of the possible effects of
deviations from Matthiessen's rule.

The fact that W(~,~ =c)T is a cubic function of
the temperature for all ~,zth including zero indi-
cates that Kohler's rule holds. A thermal Kohler's
rule" may be defined as
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~ KHF-7
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~c
FIG. 11. Slope (I") of the curves in Fig. 10 along with

the slopes of similar curves for the other specimens.
The tips of the arrows (for specimen KHF-7) indicate
the values obtained when the slopes are scaled by the.
ratio of the coefficients $0 (see text) to correct for
possible deviations from' Matthiessen's rule.

Kohler's. rule. $t will be violated if the field de-
pendence of the magnetoresistance is not due
solely to the curvature of the electron orbits
about the field direction. " This has important
consequences in the creation of a correct theory
of the magnetoresistance anomalies. In particu-
lar, any theory of the anomalous magnetoresis-
tances of the simple metals which is based on the
introduction of open orbits or magnetic break-
down cannot be correct.

Qf all the experimental observations discussed
in this paper and elsewhere, several stand out as
being crucial to understanding the magnetoresis-
tance problem. They are (i) the nonsaturation
of either of the longitudinal magnetoresistances,
(ii) the large deviation from the Wiedemann-
Franz law at low temperatures, (iii) the incorrect
magnitude of the Hall coefficients, (iv) the Koh-
ler's rule scaling of the thermal magnetoresis-
tance. Using these observations we are able to
eliminate many of the proposed mechanisms and
this will be discussed further elsewhere. "
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