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Quantum-statistical mechanics of extended objects. II. Breathers in the sine-Gordon system
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The analysis of the solitons in paper I is extended to breathers in the sine-Gordon system. The breather
energy, the inertial mass of the breather, and the breather density at finite temperatures have been
calculated. It was shown that the quantized breathers behave like elementary particles at low temperatures.
At high temperatures (E, & T & m, where E, is the soliton energy and m is the mass of radiation), the total
breather density becomes comparable to that of radiation, implying that the breather degree of freedom is
essential in the thermodynamics of the sine-Gordon system.

I. INTRODUCTION

In the first part of this series, ' which we shall
hereafter refer to as I, we have extended the
earlier quantum-field-theoretical treatments of
the sine-Gordon system by Coleman' and by
Dashen, Hasslacher, and Neveu' to finite tempera-
tures. In particular, we have determined the
thermodynamic properties of kinks of the sine-
Gordon system; However, the question of breath-
ers was deliberately left untouched. In this paper
we shall analyze the thermodynamics of breathers
in the sine-Gordon system. We shall again follow
in great detail a work by Dashen, Hasslacher,
and Neveu' (DHN II), where they discussed the
quantization of the breathers.

'The paper is organized as follows: In Sec. II
we calculate the partition function for the system
with a single breather. Also a moving breather
is considered. From the partition function we
obtain the breather energy, the breather inertial
mass, and the breather density at finite tempera-
tures, which are summarized in Sec. III. We show
that the quantized breather contributes to the
thermodynamics significantly. In particular, in
the weak-coupling limit the total breather density
becomes comparable to the radiation density at
the high-temperature region (E, & 7» m). The
present result contradicts the earlier transfer-
matrix-technique (TMT) result" for the sine-
Gordon system but is consistent with an heuristic
ideal-gas model for the sine-Gordon system. '

II. PARTITION FUNCTION FOR BREATHER

As in I we shall consider the system described
by the following Hamiltonian'.

A. Static breather

As is well known, the sine-Gordon equation

m'
, + sin(gg) =0,~t' &x' g

which is obtained from Eq. (1), allows, besides
kink solutions, breather solutions given by

( ), , (1 —ni')'~' sin(mwt)
M coshlm0 - w')" 'tl) '

(3)

The breather may be considered as a bound state
of a soliton and an antisoliton. In the classical
theory ze is a continuous parameter 0&& &1 and
the energy of the breather is given by

Ecl(~) (1 ~2)1/216m
2 (4)

As shown by DEN II in the quantum-field theory
w cannot take continuous values but is limited to
the discrete values. DHN have first shown that
the Bohr-Sommerfeld (BS) quantization of the
breathe rs4

T 00

dt dxm I ' = 2nn,

with T = 2m/mw, and n an integer yieids

where z(x) = SP/St, and m* and g are the bare mass
of the Bose field P(x) and the coupling constant,
respectively. The last term with m„ the physical
mass of the P field at zero temperature, is added
for later convenience. The bare mass m* in the
coefficient of the cosine potential will be replaced
by m, the temperature-dependent physical mass
after renormalizatiori of loop diagrams, which are
logarithmically divergent. '

dx w'x+ s'il 2 sP„' = cos(—,', ng') . (6)

2(m*)' 2pl2
cosgP—

w(x) has been already defined after Eq. (1).
Substituting Eq. (6) into Eq. (4), DHNobtaineda

discrete energy spectrum for breathers
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Es'(n) = sin( —,', ng') .

Furthermore, DHN were able to improve the
Bohr-Sommerfeld result (7) by including the
corrections arising from the quantum fluctuation
around the Bohr-Sommerfeld solution at the ab-
solute zero of temperature. These corrections
modify Eq. (I) into

E02) (22) = „' sin( —,', 22g")16mo (8)

at T = 0 K, where g"=g'/[1 —(1/8m)g2]. They also
speculated that Eq. (8) may be exact, although its
derivation is approximate. Equation (8) is one of
the basic results of DHN.

We are interested here in the breathers at finite
temperatures. For this purpose we first substitute
(t) (x) in Eq. (1) by p2) (2()) + Q, with w = H~ given by
Eq. (6), and Q2)(2()) the classical solution Eq. (3}.
Then expanding Eq. (1) in'powers of (t), we can re-
write Eq. (1} as

) 2

H =E~'(w)+-2 jt dx v(x}2+
~

+m'cos[g(t)2)(M))]$'x)
2 +I

m2 cos[gy, (w)]D—

&(2(), k) =4 tan '(
I, tat (14)

This phase shift implies that the breather po-
tential gives rise to two bound states with energy
~a~, = 0, and M)~, = mar. With this knowledge at hand,
we can calculate the partition function associated
with the breather as

(2 (au)=(0 0(0)exp( —
~

dv00(0 +0)l 0),
4 -0 B )

(15)

while earlier Z„ the partition function of the'¹0
sector in I, is given by

eigenvalue problem associated with the potential
&(nr; x, t) = m' cos[g(t)2)(m}]. In a sharp constrast
to the case of the soliton, the potential depends
now on time t as well as the space coordinate x.
However, as in the case of the soliton, the po-
tential is again ref lectionless. Therefore, in spite
of its time dependence, the incident radiation
acquires asymptotically only a phase shift, which
is independent of time. 'The phase shift of the
radiation with incident wave vector k is given by'

where we have kept up to the quadratic termfl in
Here E2)'(2()) is the energy of the classical solu-

tion given by Eq. (4) with 2()„8 [i.e., Eq. (V)], m is
the physical mass of the (t) field, and D is the
equal space-time propagator of the Q field

and

1f (Pm) = dk (02 f(I(GJ2) 0
W p

where (d = (k'+ m')' ' and N (E) = (ys —1) '
In deriving Eq. (9), we have first rewritten the

cosine potential in terms of the "normal product"
at finite temperatures introduced in I,

(m*)' m'
cos(g(t)) = +N(cosg(t)),

with

m = (m*) exp(=,'g'D),

and then make use of the relation

N((t)') = P D. -
Furthermore, as in the analysis of the solution,
we have substituted for m and D, the ones corre-
sponding to those in the absence of a breather.

In order to calcul. atg the partition function as-
sociated with the breather, we have to solve the

Z, = 0 Q exp — dTX 0

Then the Q-field contribution is evaluated within
quadratic approximation as before, which should
be valid at least in the weak-coupling limit.

Although Eq. (15) is the exact transcription of
the DHN approach for finite temperatures, a few
remarks will be useful. Since the breather be-
longs to the N = 0 sector, we need here a finer
classification of the Hilbert space (or the func-
tional space) than that used in I. Here we assume
with DHN that each nonlinear classical solution
defined a new "sector" in the Hilbert space; we
assume that the Hilbert space defined by a breath-
er is different from the one with no breather.
This finer partition of the Hilbert space is quite
consistent with the separation of independent
variables of the sine-Gordon system discussed by
Korepin and Faddeev, ' for example. However,
contrary to the sectors discussed in I, there are
many local operators which can connect two sec-
tors discussed above. 'Therefore our basic as-
sumption that the Hilbert space can be partitioned
into disconnected parts by means of different
classical solutions appears plausible, but its rig-
orous justification is difficult for the moment.

Then the thermodynamic potential Q~(2()) (=-

-P'[InZs(w)-inS, ]) for the breather is given by
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1 Ph 80 (w)=E" (w) ——' dk &(w, k)—&(&uk)
2W& h

where

+ X(mw) —2X(m)

+ —,
' m' ~"dx[1 —cos[gq, (w)]]D, (17)

X(y) = P
' in[2 sinh(-,'Py)],

and 0 (= -P ' 1nZO) has been calculated in I. The
third and the fourth terms in Eq. (17) arise from
the bound state associated with the breather and
two states in the P = 0 vacuum compensating for
two bound states. The last term in Eq. (17) is time
dependent and has to be replaced by its time aver-
age. Then, as in the case of the thermodynamic
potential of the soliton, the logarithmic diver-
gence of the second term is exactly canceled by
the last term. Equation (17) is further simplified
to

ns(w) = „(-1—w')'t'+ 4m(1 —w')'~ fo

B. Moving breather

Now let us consider a breather moving with
uniform velocity v. The corresponding classical
solution is given by Eq. (3), where now t and x are
replaced by t'= (t+vx)(1 —v') ' ' and x' = (x+at)
(1 —v') ')', respectively. Again as in the analysis
of a moving soliton in I, it is more convenient to
analyze the P-field corrections in the rest frame
of the breather. Then we obtain (see Appendix A
for details)

(1 —w')'~'m
f, (w, v)=-

2K

and

dk((o'- m'w') '

&& in[i —exp(-P&u~)]

I'16 I'1 —w' '
Qe(u) v) =i,2+4fo

I 2 +4Tf~(w, v)
g ' (1-v

+ T 1n(1 —exp[-Pmw(1 —v') '~']), (23)

where

+4Tf, (w)+T ln(l-ee" ), (18) 'The energy of the moving breather is then given by
where f, has been already defined in Eq. (11), and

2 ). /2

f, (w) = —
i

dk((v~2 —m'w') ' ln(1 —e e")),
p

(19)

and w hereafter takes only the discrete values w„
given by

E~(w, v) = as(w, v) —T df4(w, v)

III. BREATHERS AT FINITE TEMPERATURES

A. Breather energy, inertial mass, and fugacity

(2S)

w„= cos(—,', ng" }, (20)

which is essentially Eq. (6) with quantum correc-
tions (g -g').

The breather density [the probability of finding
a static breather (v =0) with parameter u) = w„) is
given by

n (w v = 0) = e e"&'"~'

Furthermore, we can extract the breather energy
at finite temperatures from Eq. (18) by

Ee(w) -=f4(w) —T dQs(w)

—„+4f,
i
m(1 —w')' ~'16

j

E, =8m(g') '.
Here we have made use of the asymptotic ex-
pansions of fo and f, (w); for Pm«1,

(27)

'The breather energy at finite temperatures is
given by Eq. (22}. As already mentioned, in the
low-temperature region (T(m), Eq. (22) reduces
to the DHN result [Eq. (8}]. However, in general
Es(w) has a more complicated temperature de-
pendence than, say, the soliton energy discussed
in I. In particular, in the high-temperature region
(T»m), we obtain

Es(w„) = 2(E, + T) sin(+ng") —T+0(Pm)', (26)

where E, is the temperature-dependent soliton
energy calculated in I;

+mwÃ(mw) ~1+ T ' -4T'~

(22)
where we have discarded the terms of the order of
g". At T =0 K, where f, and f, vanish exponen-
tially, Eq. (22) reduces to Eq. (8) the DHN result.
At high temperatures the term +g"T(Sf,/ST) in
Eq. (22) gives rise to a correction of order of
T/E„and we shall neglect this term hereafter.

f ( )=0-,e'e '+—ln(——,z',f(3)
2m (4m' 2(2m)'

f, (w) = ——,
' luff[1+ (1 —w')'t']]

+g ———cos w w„4 2g

(28)

(29)
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Ee/(n)„) = Eue(n) (31)

where z = Pm.
Equation (28) has been already derived in I,

while the derivation of Eq. (29) is given in Appen-
dix B. In contrast to the soliton energy in I, the
breather energy at finite temperatures is no longer
a simple extension of the zero-temperature result.
In particular, Es(w„) appears to become negative
at a finite temperature, although this has no signi-
ficant consequences on the thermodynamics of the
breather as Qe(w„} is always positive.

The energy of a moving breather Eq. (25) be-
e.omes

Ee(w„, v}=E3(n)(l —v') '/'+O(e "2, e~~) (30)

at low temperatures (T «m), as is required from
the Lorentz invariance. This implies

/

and

m [1+ (I w2)1/2(l V2)l/2]2
~B(w& v} eT (1 V2)1/2 (38)

m [I+ (I w2}1/2]2 (I (I 2)l /2 )
eTw 'I, l+ (1 —w2)'/2 &"

+ 0 (v') (39)

In particular, we have

)
m[1 + sin(12ng )]

eT o(—'g")
in the high-temperature region (E,» T» m).

B. Breather density

(40)

We have already seen that the probability of
finding a breather with velocity e = 0 and w= w„ is
given by

at low temperatures (T «m), where Ee(w) is the
inertial mass of the breather. At high tempera-
tures (T» m}, on the other hand, Ee(w„, v) is given
by

Ee(w„, v}=Ee/(w„)(l —v') '/' —T

ne(w„, 0) = exp[-PQs(w„)]

for pQe(w„)» 1. Similarly, the probability of
finding a breather with velocity v is given by

ne(w„, v) = exP[-PQe(w„, v)],

(41)

(42)

Ee (w„—) + 2'v'E e (w—„),
where Ee(w„) [=-Ee(n)] is given by

E,'(w„) = Ee(w„)+ T

= 2 (E,+ T ) sin(—,', ng"),

(32)

(33)

where Qe(w„, v) has been given in Eq. (23). The
total probability of finding one breather with w
= w„(i.e., the breather density) is then given by

1
ne(w„) =—t dp ne(w„, v),

(34)

where Ez(w„) has already been given in Eq. (26).
The difference between Eel(n) and Ez(w„) may be
interpreted as the inertia of the scattered radia-
tion due to the moving breather.

Finally, the fugacity fs(w, v) is given by

Le(w, v) = exP[PPe(w, v)] = exP[Se(w, v)],

where the momentum P is determined by

P=)t vdEs(w, v).
0

In evaluating Eq. (43), it is convenient to consider
three temperature regions separately. First, at
low temperatures (T «m), we obtain

where the entropy Ss(w, v) is given by

( )
dQe(wl V)

g wyv

nz(w„) = —
l exP[-PEue(n)],

Eue (n)) '/2
(45)

4f ( ) 4 df (wlv}
GfT

+Pmw(1-v') ' 'N[mw(l —v') ' ']
-in]1 —exp[-Pmw(1- v') ' 2]].

(35)

le(w, v) = 1. (36)

In the low-temperature limit (T &m), Eq. (35) is
proportional to e ~ and we obtain

where Eue(n) is defined in Eq. (8). Here the breath-
er behaves like an elementary Boltzmann particle.
This disagrees with the expression derived by
Trullinger, previously based on a heuristic ideal-
gas model for solitons and breathers of the sine-
Gordon system. 'The origin of the discrepancy is
that he has neglected the corrections due to the
radiation scattered by the breather, which we have
included in the present theory.

Second, in the intermediate-temperature region
[ E(e„w))T»m], we have

(3V)

On the other hand, in the high-temperature re-
gion (E,» T» m), we obtain

Sz(w, v) —= —1+ Inl
1 2, /2

/Pm [1 (1 w2)1/2(1 v2)1/2]2)

&w

+ O(Pm, (PE,}-'}

tEI n )1/2

1 fl —(1-w„')' '& T
2 l(l+ (1-2/2}'" )E'(n)

x exP[- PEel(n)]. (46)
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+ (3 —2~„'}Ko[pE~(n)]j

mT, E,'(n)
wu„Ee(n) ( T (47)

where K, (z) is the modified Bessel function. Here
we have made use of the relation

P =E'(n)v(1 —v') 'i'. (48)

At first sight Eq. (47) appears to predict ever-
increasing ns(w„) with temperature. However,
this tendency is only true for T, E,» T»Ee~(n).
As the temperature approaches the T„=e 'E,' dis-
cussed in I, the ratio T/ E(en)becomes

T/E (ne) = T[2E', sin(„ng")] '

= [2e sin( —,', ng")] '. (48)

Therefore in such high temperatures ne(m„) is
saturated.

From Eg. (47) we can calculate the total breath-
.er density in the high-temperature region (T„
&T»m):

(50)

If we substitute Eq. (47) into Eq. (50), the sum-
mation in n has to be cut off around Es(n) = T:

In this temperature region only the breathers with
small velocity (i.e., ~v

~

« I}are thermally excited.
Finally, for low-lying breathers, the region E,
&T»Ee(w„) may be easily accessible. In this
temperature region the thermally excited breath-
ers are almost relativistic (v = 1), and we have to
take into account all the singular terms in Qe(w„,
v), which give rise to diverging contributions in
the limit v = 3.. In this limit we have

mE'
n (xo„)= fK, [PE (n)]+4(1 —g)„')'~'K, [PE (n)]

'Therefore, we conclude that the breathers are as
important as the radiations in the thermodynamics
of the sine-Gordon system.

The above conclusion confirms the heuristic
ideal-gap model for the sine-Gordon system, ' but
contradicts the result of the transfer matrix tech-
nique (TMT).' The origin of this discrepancy may
be ascribed to the deficiency of either the 'TMT

or the quantum-statistical mechanics used in this
paper. In TMT the Hamiltonian is first separated
into two parts: the one with v(x) and the other
without m(x). In an ordinary system this decoupling
is equivalent to the classical approximation; the
quantum corrections arising from the noncom-
mutability of v(x) and P(x) are neglected. However,
in the case of the sine-Gordon system with the
infinite conservation laws, it is possible that this
decoupling of the Hamiltonian into two parts may
destroy these conservation laws even at the classi-
cal level. In this case the degree of freedom as-
sociated with the breathers, whose existence is
guaranteed by these conservation laws, is likely
dropped from the outset.

On the other hand, at the present moment we
cannot exclude another possibility, i.e., that the
fault lies in our present approach. In particular,
it has been shown previously4 that the radiation
becomes the n = 1 breather, if it is properly re-
normalized. If this is the case, we are in fact
overcounting the degrees of freedom associated
with Q(x); the radiation contribution might have to
be subtracted from our Q.

If the radiation contribution is subtracted from
our 0, we can again recover the TM'T result at
high temperatures at least in the weak-coupling
limit. Indeed, how to define the functional space
properly is one of the fundamental problems in
the modern field theories. "

(51)

with

16 . , t' T T
g' I2E, mo

Since the most important contributions come from
the breather modes with small n, we can approxi-
mate sin(—,', ng") by (—,', ng") for small g" (i.e.,
0&g"«1), and we obtain

(52)

C. Correlation function

s, (q, ~} Q(1+m, (w„, qfz,'(m)j'))g*„

x 5(~- (0E'(n)]'+ O'P" - T)) (54)

As in the case of the soliton, the breathers con-
tribute to the cos-cos correlation function. In
particular, the breathers give rise to a series of
~-function contributions in the Fourier transform
of the correl. ation function:

n,~ =— dk N(&o~ }=——ln' =2wJ„'=w m
(53)

for small g". The total breather density in the
small g" limit is comparable to the radiation den-
sity given by

2 (v/2m)(o
m sin[(w/2m)(u]

(55)

where na(w„, v) has been defined in Eq. (42), and
g„' is obtained from the matrix element for the
soliton scattering by analytical continuation. De-
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tails of this procedure will be published elsewhere.
The summation over n has to be carried out over
all the breather modes. 'The correlation function
Eq. (54) describes the creation of breathers from
the ground state. It is therefore of great interest
to see if the quasi-one-dimensional ferromagnet

'CSNlF3 in a strong magnetic field exhibits such
fine structures associated with the breather in the
neutron scattering experiment. "'"

In the classical limit (i.e., g"-0) the above
discrete spectra will degenerate into a broad
continuous background, which may resemble that
obtained in a molecular-dynamical analysis of
the classical sine-Gordon system. " However,
when the quantum corrections are included the
breather peaks appear in a higher-energy region
than the radiation peak.

IV. CONCLUDING REMARKS

We have extended the previous analysis of the
soliton to the breathers in the sine-Gordon sys-
tem. The breather energy, the breather inertial
mass, and the breather density at finite tempera-
tures are obtained. The quantized breathers be-
have like a new class of elementary excitations.
In the high-temperature limit (E,)T» m) and in
the weak-coupling limit (0&g"«1), the total
breather density becomes comparable to the total
radiation density. Therefore, the breather modes
give significant contribution to the thermodynamics
of the sine-Gordon system in the high-tempera-
ture region, which is consistent with the heuristic
ideal-gas model but at variance with the TMT re-
sult. Thus the present calculation resolves one
of the outstanding problems in classical statistical
mechanics.

We predict also that the existence of breathers
can be most directly seen in the cos-cos correla-
tion function. More details of the dynamic response
of the sine-Gordon'system will be given in a future
publication.
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APPENDIX A: PARTMON FUNCTION FOR
MOVING BREATHER

As in I the partition function associated with a
moving solution is evaluated in terms of H' and
E" in the rest frame of the breather, where

H = (0'+ vP')(1- v')-'/' (A1)

where v is the velocity of the moving solution.
Then the partition function Q~(w, v} (~ -p'
x [InZ&(w, v) - lnZ, ]) is given by

where k'= (k+vw, )(1-v') '/'.
As in Eq. (17}in the text, the last term in (A2}

is, understood as the time average. We can then
evaluate the integral over k' and obtain Eq. (23).

APPENDIX B: ASYMPTOTIC BEHAVIOR OF f&(w, v)

The function of f, (w, v) given in Eg. (24) is trans-
formed as

f,(w, v)

2 i/a
d8 cosh8(cosh'8 —w') '

2m
I

x In{1—exp[-z(cosh8+ v sinh8)

x (1 —v')-'/']j

with z = Pm.

@cl(w) 1 t iL 8
&s(w, v) = (1,,'/, —— /fk'&(w, k'), x((o,)

+X[mw(1 —v') t/'] —2K[m(1 —v') ' ']
2

(1 —v') '/' dx'(I —cos[gps(w)]]D,

(A2)

In the high-temperature region (z «1), we transform (Bl) as

(1 w2)1/2
f,(w, v) = -— d8 cosh8 (cosh'8- w') '

2m

+ —,'z (cosh8+ v sinh8)(1 —v') ' '+ ln[z (cosh 8+ v sinh8)(1 —v') ' ']
z'(cosh8+ v sinh8)'(1 —v') '

(2 )2 t

where we made use of a relation

(B2)
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1-e "=e '~'y 1+
2'& j

Each term in Eg. (26) is integrated easily although it is tedious, and we obtain

(as}

f (M, gy)=- -g(1 —U) e + ~ tan, ), (,)
(1-w')' ' »g, w

2' 1 $p ~~2 j. 2

, „,ln(z [(1-v')-"'+ (1-w')"']]

where

d8 1n[X„(8)]+2v ln2
~1 —w p )

g ' lg ' ' &z~ (8) = 1+ ].+
~

— (v'+ w' —v'w') sin'8 + 4
~

— v'(1 - w') sin'8 cos'8
2~p jj2gv ~2wv

vo = (8/2w) cosh8O . (a6)

fn the last term of (H4), the cutoff in the integral is transferred to that of the summation as discussed in
Finally, for z «1, (a4) reduces to

~&'

f,(w, v) = ——,'in/g[(1-w')'~'+ (1 —v') '~']]+z(1 —v ) ' —sin 'w ——(1 —w')' 'ln —+0(e'),
2m 2m 4m

where the divergent term (-8,) in the first term is exactly canceled by the last term. fn the limit v 0,
(aV) reduces to Eq. (29).
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