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A model for condensed matter is described in which the ions surrounding a particular atom are replaced
by a positive charge distribution which is constant outside of a sphere containing the atom and zero inside.
The orbital functions, both bound and free, are obtained as solutions of the Dirac equation and are used to
self-consistently determine the potential function. In order to obtain the desired equation-of-state data from
the calculations, three different and somewhat arbitrary prescriptions are used to separate quantities
pertaining to the atom fro~ those of the electron gas in which it is imbedded. Results are shown for 14
elements, including the Sd transition metals, in the neighborhood of normal solid density. Equation-of-state
data for nickel, copper, and zinc are also given and are compared with experiment.

In astrophysics and in other sciences there is
sometimes a need for information about the prop-
erties of matter —particularly equations of state-
in extreme conditions of pressure or temperature.
Experimental methods of obtaining data are limit-
ed to moderate pressures and temperatures, so
one turns to theoretical models. When the atomic
density is very low the appropriate picture is one
of isolated atoms in equilibrium with free elec-
trons. Isolated atoms and ions can be dealt with
in a number of ways; e.g. , spectroscopic data may
be used or self-consistent field calculations may
be performed. In the case of very high density,
the statistical or Thomas-Fermi-Dirac (TFD)
method is useful. However, both of these methods
are poor in a large intermediate region. A model
:s set forth here which may be expected to be fair-
ly good at the extremes of high and low material
densities, since it closely resembles the accepted
models in these limits. Also, since the model is
expected to work at very low and very high den-
sities, there is hope for it in the intermediate re-
gion. Some comparisons with experimental equa-
tion-of-state data will be given to test the model in
the intermediate density region where its justifica-
tion is most uncertain.

Closely related models have been proposed by
Almbladh and von Barth' and by Bryant and Ma-
han' for the purpose of studying localized states in
solids. Our concern has been mainly the calcula-
tion of equations of state and therefore our start-
ing point —the TFD model —is different.

At very high matter densities, the TFQ method
applied to an atom confined in a sphere is regarded
as adequate although it is uncertain just how high
the density must be for the results to be trusted.
Like others, we start with the notion that an ap-
propriate generalization of the TFD model will
improve its accuracy and extend its range of valid-

ity to lower densities. Part of the simplicity of the
TFD model comes from the spherical symmetry
of the atomic cell used in the calculations. Or-
dinarily the spherical cell is regarded as an ap-
proximation to a polyhedral atomic cell which is
part of a large periodic array of atoms. However,
another picture is possible. Instead of a polyhe-
dral cell being regarded as surrounded by other
identical ceQs, the nearly equivalent spherical
cell can be regarded as surrounded by a uniform
electron gas whose density is the same as the sur-
face density of the atomic cell. In the TFD approx-
imation, the electron gas outside will not alter the
charge distribution inside the cell if its density is
correctly chosen nor will the atom affect the elec-
tron gas.

Going back to the periodic array of atoms, we
know that it is possible to do much better by using
the self-consistent-field (SCF) approximation in-
stead of the TFD method. The result is the usual
band theory. It is an excellent method for equa-
tion-of-state purposes but is quite complicated
from a computational point of view. What we pro-
pose here is to make a similar improvement in the
model of an atom imbedded in an electron gas by
using the SCF approximation.

Figure 1 illustrates the model. At the center of
a spherical cavity is a point nucleus. Outside the
cavity there is a uniform distribution of positive
charge which takes the place of the surrounding
ions. There are sufficient electrons in the system
to give overall electrical neutrality, and the ad-
ditional requirement of electrical neutrality in-
side the sphere is imposed. To simplify the com-
putations somewhat, the electron density outside
the sphere is replaced with its volume average in
all potential-energy expressions. This is the so-
called "muffin-tin" approximation which is often
used in band-structure calculations. '
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we find that it describes an isolated atom or an
ion in equilibrium with an electron gas. The de-
scription is approximate, of course, and the ap-
proximation is that of using the method of self-
consistent fields. Thus the model appears to be
appropriate to both limits of high and low den-
sities. This is encouraging for the intermediate
density region which is the most interesting and
the most difficult.

I. DESCRIPTION OF THE PROPOSED MODEI.

FIG. 1. A schematic distribution of charge for this
model: A, a point nucleus at the center of a spherical
cavity; B, a constant positive charge density outside the
cavity which represents the surrounding ions; C, a
spherically symmetric electronic charge density inside
the cavity; B, a volume averaged electronic charge
density outside the cavity. R is the radius of the cavity
which is electrically neutral. The outside region is
also neutral.

A more detailed description of this model of
condensed matter —so f3r described in general
terms in the paragraphs above and in Fig. 1—
will now be given.

The positive charge in the model consists of a
point nucleus at r = 0 and a constant density dis-
tribution outside of a sphere of radius A. The
positive charge outside the sphere is caHed p, (r)
and equals pB(r -R) where B(x) is the familiar
Heavyside step function. p is chosen so that there
is the same amount of positive as negative charge
outside the cavity:

j( prrr= I p pr)dr.

The self-consistent-field approximation, when
applied to an atom imbedded in an electron gas,
results in one-electron equations with a spheri-
cally symmetric potential function. The poten-
tial resembles an atomic potential inside the
atomic sphere, and outside it is constant because
of the muffin-tin assumption. There are a finite
number of bound states and a continuum. Most
atoms will have resonances in the continuum, so
appropriate computational methods for handling
them are necessary. Compressing an atom will
change bound states into resonances and then
cause the resonances to broaden. These changes
should occur without any unphysical discontin-
uities in energy or pressure.

Since the one-electron orbitals are, to a great-
er or lesser extent, spread out over the entire
volume of the system, there is no unambiguous
way of separating the system into parts which can
be associated with the atom and with the surround-
ing medium. Three somewhat arbitrary prescrip-
tions for effecting this separation are tried and
compared.

The model proposed here is a natural extension
of the TFD method which itself is a valid high-
density approximation. However, if we examine
our model in the other extreme of low densities
where the spherical cavity becomes very large,

Electrical neutrality is also required inside the
atomic sphere:

Z= p r dr.
r&R

These requirements are somewhat arbitrary, but
they seem reasonabje and do coincide with the
TFD model discussed above. The electrical neu-
trality condition, expressed in (2), is achieved
by varying the sphere radius or by adjusting the
chemical potential.

The electron density itself is given in terms of
normalized one-electron orbital functions,

(3)

)
"

(g
l Hsdn8 +l

4w

for r &A and

(4a)

where the n, 's are occupation factors and the sum
includes an integral over the continuum. p (r)
will exhibit the well-known Friedel oscillations
outside the atomic sphere. Also tails of the bound-
state orbital functions will extend into that region.
These deviations from constant electron density
outside the atomic cavity can cause some com-
putational problems, so we resort to using an aver-
age value for the electron density there. We define
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j„)np (x) dx
p(r) = "'"r

J„»dx (4b)
malization of the orbital functions,

, r 'dr= 1;
for r &R. This is very much like the mell-known
muffin-tin charge density' except that the sphere
radius is somewhat larger than is usual in band-
structure calculations. The name muff in-tin
will be retained despite the fact that a single
sphere is involved here. The potential energy will
be expressed in terms of the muffin-tin charge
density, and from it will come a one-electron po-
tential function which wi. ll have the muffin-tin char-
acter also.

It is our intention to use the Kohn-Sham' local
density scheme for obtaining the self-consistent-
field equations. The obvious mean field generali-
zation to finite temperatures will be used as we
are interested in thermal effects. Also we are
interested in high Z materials, so relativistic
effects are included through the use of the Dirac
equation.

The total energy of the system is a sum of kine-
tic and potential energy terms

g =K+ U+ V+ lV.

The kinetic energy of electrons, whose orbitals
satisfy a Dirac equation, is

a fixed number of electrons in the system,

n;=N;

p(r) dr=z.
r&R

(13)

The usual method for finding an extremum when
there are constraints is to use Lagrange mul-
tipliers to form a functional

j(())„R,n,]= E —TS —pÃ —v p(r) dr
r&R

—Z » f I A (»;)I'&»

and then require

M 0 J 0 J
5P(* ' BR '

Bn(

(14)

The variation of J with respect to the orbital
functions gives us one-electron Dirac equations,

and the assumption of electrical neutrality of the
atomic sphere,

('» = P»», f (r()»(p»»+»p»' —»')t)(r) dr . (6)
[co. p+ Pc' -c'+ v(r)]y((r) =(l, /n, )y,(r).

= e, y, (r), (16)
(We are using atomic units with e'= 5=m = 1 and
c =137.036.) The potential energy terms are

fJ= — —[p(r) -p, (r)]dr,
r'g

1 ( [p(r) -p, (r)] [p(r') -p, (r')]
J

(7)

where the potential function is

p(r') d-, , [»'p(r)1"'
r

if r &8 and

v(r) = -(3m' p)' i'/7) = v „

(1Va)

(1Vb)

and

p(r)[3&'p( )]"'dr.3
(9)

S= —g [n, inn, + (1 n, ) ln(1 ——n, )]. (10)

Temperature is in energy units (hartrees) and the
Boltzmann constant is unity.

The free energy, F=E —TS, is to be minimized
subject to certain constraints. These are the nor-

The Kohn-Sham local density expression for ex-
change is used and correlation terms are neglect-
ed. Equation (9) is really correct only for zero
temperature, but at high temperatures the exchange
energy is unimportant when compared to the kine-
tic energy, and the simple form used here should
be adequate.

For electrons interacting through a mean field,
the entropy is

n, =1 (/exp[P(~, —g)]+1] . (19)

if r&B.
The Lagrangian multiplier v is determined from

the condition sJ/sR = 0. When account is taken of
the explicit dependence of p on R as given by Eq.
(4b), the result is

=[[4-P/p(R)1(3 p)"'- 3[3 'p(R)]"']/4 (18a)

If this dependence is ignored,

v = 3[p/p(R)(3)T'p)'" —[3w'p(R)]' "]/4m (18b)

is obtained. Some of our earlier calculations' were
done with the latter prescription, but none of those
reported here. v is generally quite small, par-
ticularly when defined by Eq. (18a), but equation-
of-state results are rather sensitive to it.

As is usual in statistical mechanics, the varia-
tion of J with respect to the n, 's determines the
average occupation factors:
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For computational purposes it is useful to use
the Dirac equation to convert the expression for
the kinetic energy from the one in Eq. (6) to

IC I =II;(I,. —v ) —f II(r)[v(r) —v„]I(r..
t

(20)

Several of the above equations involve sums over
sirigle-particle states. Both bound and continuum
states are involved. To go beyond a purely for-
mal treatment it is necessary to separate the
bound and continuum parts of these sums and
examine the continuum part more closely. A typi-
cal sum is

dk+o= Z Jl ( )o (V Vr}n~

and the remainder,

(23)

dk d5;,
~ra o Tt dk

SQ p (24}

form electron gas terms, that is, those propor-
tional to the volume of. the electron gas. Call the
volume of the atom V~. Then the number of elec-
trons to be associated with the electron gas is

g'r + Zc ~ (21)

where 5 and e represent bound and continuum
states. The bound states are finite in number and
represent no problem. The sum over the con-
tinuum is expressed in terms of integrals:

I dk dpi (k)
( )

jim &0 F dk
(22)

H. MODEL T (REPERENCE 5)

The second term on the right comes from the al-
teration of the density of states caused by the po-
tential. ' 5„(k) is a scattering phase shift. While
the first term on the right is proportional to the
number of electrons in the entire system, the
second one is similar in magnitude to the num-
ber of atomic electrons, very much less but still
significant. One circumstance where it can be
ignored is in calculating the electron density in-
side the atomic sphere.

In devising this model of condensed matter,
where a single atom is imbedded in an electron
gas, we introduced the electron gas to simulate
the effects of the surrounding atoms on a particu-
lar one. .However, it is the properties of the
atom —its energy, for example —which concern
us. However, the mathematical expressions for
these quantities include large contributions from
the electron gas. In E(l. (22) this is evident in the
term that is proportional to the volume of the en-
tire system. We want to make a separation of ex-
pressions like (22) into parts associated with the
atom and with the electron gas. There is no
unique way of doing this. We are forced to experi-
ment with different prescriptions which seem
plausible, and we judge them by how well they
work. These will be taken up next.

are taken as belonging with the atom. [In (21) and
(22), n, has been used for g, , and then the desired
separation has been made. The total number of
electrons in the system, Ã=N~+N~, is given by
(12)]. Vr is now dejined so that the number of
electrons associated with. the atom is equal to the
atomic number: N~ =S. V~ is not the same as the
volume of the atomic sphere whose radius is A.
Usually, though, it is fairly close, particularly
in circumstances of high compression or high
temperature.

The kinetic energy is dealt with in a similar
manner. The expression for it in E(l. (20) contains
an integral whose integrand is zero outside the
atomic sphere. Clearly it belongs with the atom.
The other term involving a sum can be handled
in exactly the same way as in the case of the num-
ber of.electrons, ¹ The potential energy terms
U and V are given by (7) and (8). They also belong
wholly with the atom as such terms vanish for the
uniform electron gas. The exchange energy term
(9) must be split between the atom and the elec-
tron gas. We have chosen to take the part inside
the atomic sphere as the exchange energy of the
atom. The entropy 8 is handled like the number
of electrons, ¹

The model T prescriptions for the atomic quan-
tities are thus

(26)

dk
+a ~s ~ +~ r i3 V~n~ &r, -e„

I'" dk d5, r

dk ~r ~r
Jim 0 7T dk

I

p(r)[~(r) —~ ]dr,

The governing idea in this precription is the
removal from expressions like (22) of the uni-

g
Ur = — p(r)dr, —

~r&Z r (27)
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rdr',p(&)p(&')

IVr = — p(r)[3w p(l')] ~dr,
4w

(28) HI. MODEL A

The second prescription for separating the atom
from the electron gas surrounding it is a division
based on location. Most of the quantities of in-
terest are expectation values of the form

and f, = )f A*(r)f6 Qr dr . (31)

Sr = —g [n, Inn~+(1-n, ) In(1-n, )]

, Vr [n~ Inn~ + (1 - n~) In(l -n~) ](2v 3 r

k" [n~lnnz+ (1-n~)ln(1-n~)]..~r

jim "0

(30)

We arbitrarily take that portion of the integral
within the sphere bounded by r =R as the atomic
part, and the part outside is discarded. The volume
in Model A is the atomic sphere volume: V„
= —,'4' . The number of electrons associated with
the atom is the integral of the electron density in-
side the sphere:

p(r) ~r,
r&B

In Model T the various contributions to the quan-
tities above are not limited to the region inside
the atomic sphere. All deviations of the system
from a uniform electron gas are regarded as con-
nected with the atom and are assigned to it, in-
cluding tails of bound-state orbitals and the con-
tinuum terms proportional to the derivatives of
the phase shifts.

which by the constraint of Eq. (13) is equal to S.
Contributions from terms proportional to d6»(k)/
dk are of order V„/V and can be dropped because
integrals now are confined to the atomic sphere.

If p(x} is written in terms of orbital functions for
the bound and continuum one-electron states as in

Eq. (3), the number of electrons inside the atomic
sphere may be expressed as

N~=gn f lo, ldr~+2 f "
m f lg~, I dr=gm@+g I ex~, .

b re n r&R jim 0
(33)

The normalization of the continuum wave functions
has been changed here to

Igr

, 6(k —k')5~.~6, ,6

which means that the radial parts are, asymptotic-
ally, unit amplitude spherical Bessel functions.
The various energy and entropy terms can be writ-
ten down in a similar form:

p~ vr -v„dr,
g

4r~ r

V„=
2 ~

jt [p(r)p(r'}/~r -r'~]drdr',
r,r 'CR

3
p(r }[3m'p (r) ]'~ 'dr,W~ =—

0" 2k'dk
E&= Nb 6b —v Xb+~ I nz 6& —v~

firn

4Q

(36)

(36)

(37)

(38)

" 2k dkS„=—g [n, lnn +(I-n~}In(l -n, }]X,- g [n, Inn~+(1 —n~) In(1 —n~)]X~, ,
b jim p

(39)

The use of the factors X,. in the entropy is some-
what arbitrary in that entropy is not a sum of ex-
pectation values of the form in Eq. (31).

Model T and Model A use the same charge den-
sity and potential function. They differ mainly in
the way the continuum contributions to the energy

and entropy associated with the atom are defined.
The terms containing d6»/dk in Model T come
from a few extra states which are spread out over
the entire volume V. These terms are omitted in
Model A, but contributions within the atomic sphere
are larger or smaller in proportion to the squares
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of the orbital functions in that region. Despite
these differences the two models are very similar
in the results they give.

SPV~=+ n, f [gfca—]r pg)+c. c.] dS

2
P d&~c

~=a d
(40)

The use of this expression for the pressure in-
volves much the same sort of ambiguities that
were encountered in the prescriptions of Models
T and A. It is properly applied to the surface of
a system on which the boundary conditions are
specified and inside of which wave functions are
normalized. We are applying it to an arbitrarily
chosen part of a much larger system. If, as we
expect, the atomic sphere to which we apply the
pressure formula is a close approximation to the
Wigner-Seitz cell of a periodic solid its use is
justified, and it will give pressures that are close
to those obtained from band-structure calcula-
tions.

Pettifor' has used the same pressure formula
in a spherical model with considerable success.
His model is based on Anderson's" atomic sphere
approximation and is closer to a conventional
band-structure calculation. The application of the
pressure formula in such circumstances should
not involve the same uncertainties which affect
our model.

V. SOME RESULTS

A computer program has been developed on the
basis of the theory outlined in Secs. I-IV. It is an
outgrowth of an earlier relativistic self-consistent-
field program for atoms. " In most cases it func-
tions smoothly, taking about three to ten times
as much computational time as an atomic SCF cal-
culation and being 50 or 100 times faster than a
highly developed Korringa-Kohn-Hostaker (KKB)

IV. PRESSURE FORMULA

For equation-of-state purposes, which have
mainly concerned us in these spherical Inodels of
condensed matter, the pressure is the most in-
teresting of the thermodynamic quantities. Models
T and A enable us to compute free energies, and

by means of numerical differentiation the pres-
sures can be obtained. An alternative procedure
is to turn to the virial theorem, and, in particular,
that form of it that expresses the pressure as a
surface integral over the atomic cell." The pres-
sure formula appropriate to the Dirac equation
ahd a self-consistent-field local density potential
function is

program. " The program has been used over a
very wide range of material compressions and
temperatures.

A variety of data is readily obtained. Phase
shifts for elastic scattering are generated for use
in Model T and have a number of well-known ap-
plications, such as in transport coefficient cal-
culations. Wave functions, both bound and free,
can be obtained. The self-consistent-field charge
density can be used for band-structure caLculations.

Up to now we have mostly been interested in
equation-of-state information which can be obtained
from the calculations and, in particular, in the
density region for solids where the pressure is
close to zero. Calculations based on the TFD
model are known to be poor here. Recently it has
become evident that for simple metals the self-
consistent-field band-structure method is remark-
ably good. " It can be expected that the model we
have developed here will lie somewhere in be-
tween —we hope closer to the band-structure cal-
culations than their TFD counterparts.

7o get an idea of the worth of these calculations
in the low-pressure region and to learn some-
thing about the merits of the three prescriptions
described above, a series of calculations have
been done for the 5d transition metals and some
other elements in the same row of the Periodic
Table. Results from these calculations, from the
TFD model, and experimental data are shown in
Figs. 2-4.

In Fig. 2 the calculated pressure for each ele-
ment at normal solid density is given. The ex-
perimental pressure is, of course, zero. For most
of the elements, the TFD pressure is from 1 to
6 Mbars. Model A pressures are mostly around
100 kbars, which is a substantial improvement.
Model T does not give solutions for atomic vol-
umes V~ as large as the actual ones in most cases.
[In some earlier calculations' reasonable values
of the atomic volume were obtained with Model
T. At that time the Lagrange parameter p was
chosen to be that defined by Eq. (18b). It seems
likely now that Eq. (18a) is the correct one. ] It
may be noted that the shape of the curve of TFD
pressures in Fig. 2 is a reflection of the experi-
mental atomic volumes used in the caleulationa and
is not a shell effect in the computed electron den-
sity distributions.

Another test of the calculations is a compari-
son of bulk moduli at normal solid densities. '
These are shown in Fig. 3. Again Model T re-
sults cannot be shown as solutions were not found
at these atomic volumes for most elements. The
TFD bulk moduli are also not shown as many of
them are too large to fit on the graph. Most are
greater than 10 Mbars. Both Model A and the
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FIG. 2. Pressures calculated for ceQ volumes cor-
responding to the actual volume where the pressure is
zero. The calculated pressures are a measure of the
errors in the various methods. Absolute values of the
pressure are plotted and their signs are indicated. P&
is the Model A pressure, PJ; is from the pressure for-
mula, and PTFD is the Thomas-Fermi-Dirac pressure
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FIG. 3. Computed bulk moduli at normal density and
experimental values from the article by Birch (see Ref.
12).. No values are quoted for rhenium and osmium.
Experimental values are shown with triangles (k), Bz
and B+ are Model A and pressure formula results, re-
spectively.

pressure formula give bulk moduli in fair agree-
ment with the experimental values, but some dis-
crepancies of a factor of 2 or more do exist.

Another way of viewing the calculations for the
same series of elements in the solid state is to
compare atomic cell sizes at zero pressure. In
Fig. 4, the three prescriptions for the zero-pres-
sure cell radii are given together with the experi-
mental values. The calculations follow very well
the trend of the observed cell sizes which shows
a minimum near where the 5d shell is half filled.
7he TFD model radii are almost constant at about
4.7 a.u. The Model T radii are consistently small,
but are not unreasonable. Model A fails to show
cohesion for three elements. The pressure for-
mula seems to do best overall. Most of the cal-
culated radii differ from the correct ones by a few
percent which is fairly good agreement, but the
band-structure results of Moruzzi, et al."are
distinctly better.

It is hoped that the model developed in this paper
will be useful for calculating equations of state of
compressed solids. As pressures get higher, ex-

perimental data becomes scarcer and less ac-
curate, and eventually must be supplemented with
calculated results. At present, the usual proce-
dure is to use the TFD model for the extreme
high-pressure region. Experimental data are
used for low pressures, and the two regions are
joined together by an interpolation. %ith a better
theoretical model, the high-pressure equation of
state can be improved and the task of interpolating
made easier.

Two elements for which our model works very
well are copper and zinc. In Fig. 5 the zero-tem-
perature isotherms based on shock wave data"
are shown together with the pressures calculated .

using Model A. Aboveabout 2 Mbars the calcula-
tions are within estimated experimental errors, "
Experimental data does not exist for pressures
higher than those shown in the graph, but we have
carried our calculations to the neighborhood of
100 Mbars and could easily have gone much high-
er. The pressures computed from our other two
prescriptions are in poorer agreement with ex-
periment and are omitted to avoid cluttering the
graph. The TFD pressures are very much too



4988 DA VIO A. LIBKRMAW 20

6Cs Ba La.Hf Ta N Re Os Ir Pt Au Hg Tl Pb
ac f I & l & I f f I l I

5

O

CO2
Cl

K

Lal

C3

X

o
4

I I I yv 1 I I I t I I

55 57 72 74 76 78 80 82
ATOMIC NUMBER

FIG. 4. CeQ radii at which computed and experimental
pressures are zero. Triangles {k) are experimental
values; open triangles (g correspond to Model T; circles
(g) to Model A; and squares (p) to the pressure formula.
The TFD radii are represented by a dashed line. Gold,
mercury, and thulium did not bind according to Model A

pre scriptions ~

high and cannot conveniently be shown on the
graph.

There are less favorable cases also. Nickel
is an example —see Fig. 6. The error in the cal-
culated density grows from 0.5% to 6$ at I Mbars.
The quoted" experimental error is 3.5%. Pro-
bably the main source of error in the calculations
is the assumption that the medium in which the
compressed atom is imbedded is a simple elec-
tron gas. Also we have made no allowance for
magnetic effects." Despite these shortcomings
our calculations should still be preferred to those
based on the TFD model.

%e conclude that we have a useful model for
equation-of-state calculations —much better than
the old Thomas-Fermi-Dirac method but falling
somewhat short of the best self-consistent-field
band-structure calculations. However, it is more
flexible in use and more economical, and per-
haps it can be further improved.
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temperature by Al'tschuler eE al. (Ref. 13). The boxes
{g) are the results of Model A calculations.
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APPENDIX

A matter of concern in using the local density
approximation for exchange is that eigenvalues of
the one-electron equations are not good represen-
tations of the electron binding energies. For
example, in neutral argon the magnitude of the
eigenvalue of a 3p electron is 0.33 hartree while
the measured binding energy is 0.58 hartree. It is
usual for the magnitude of the eigenvalue corre-
sponding to a particular electron in an atom or ion
to be less than the actual binding energy, as in
this case. This seems to indicate that a model
such as ours based on local density SCF calcula-
tions will systematically predict ionization at a
lower temperature than it should, but this is not
quite the case. Suppose that the temperature is
high enough for half the atoms in a gas to lose an

electron. In an "average atom" model this is
represented by an ion with Z ——,

' electrons. It is
then found for argon that the magnitude of the eigen-
value is 0.54 hartree which is quite close to the
correct value. (If a local density correlation ener-
gy had been included, the eigenvalue probably
would have been still closer. } Finally, when the
temperature is just high enough to remove one
electron from the average atom, the magnitude
of the eigenvalue is 0.76 hartree. What happens
in this calculational model is that ionization of a
particular level starts at too low a temperature
and is only complete at a temperature higher than
it should be. The 50% ionization level for a give~
electron will occur at about the right temperature.
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