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Universal model for the surface energy of solids
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The surface energy cr is considered as the work done in reversibly cleaving a bulk solid. I.et F(z) be the
force per unit area required to increase the spacing between the end planes from a to a +z. For small z,
F(z) =Az, where we show how A can be determined from the bulk phonon spectrum, and for large z,
F(z) = Clz', where C can be determined from the bulk frequency-dependent dielectric constant. Vfe
assume that, apart from scale, the function F(z) has a universal shape f~(z). It then follows that
cr = a~(AC)" where a~ is a universal constant. Preliminary comparison with experiment gives good results
with a* = 0.476.

I. INTRODUCTION

c =—r' F(z)dz = ,' Ea, —
0

(1.2)

which does provide a rough correlation with ex-
periment. (The factor of z in the above expression
is due to the fact that two surfaces are created
during this cleavage process. ) The estimate (1.2)
focuses on the short-range behavior of the clea-
vage force.

Another approach emphasizes the long-range
behavior of the cleavage force. Lifshitz has shown
that when the two halves of the crystal are far
apart, there exists an attractive polarization force
per unit area of the form

This paper represents a contribution to the the-
ory of surface energy. Our point of view is to re-
gard the surface energy as the work done in rever-
sibly cleaving a bulk solid along some crystallo-
graphic plane. This general approach is quite na-
tural and estimates along this line can be found in
earlier works.

Thus, one can write, very roughly, that the
cleavage force per unit area is

~ ~ ~

~

&(z/a), for z~ a
(1.1)

0, for z&a
where F- is an appropriate elastic modulus, a is
the lattice interplanar spacing, and z is the sep-
aration of the two half crystals during the cleavage.
This gives for the surface energy per unit area

(For a jellium-type metal with plasma frequency
&u&, C = 1.79 &&10+h&y~). A simple approximation,
analogous in spirit to Eq. (1.1), is

C/z', for z~ zo
F(z) =

0, for z&zo
(1.5)

giving

o =C/4zp2. (1.6)

where

and

(1.9)

By Eq. (1.2), this form gives

In this form the theory can be related to some re-
cent ideas of Schmidt and Lucas, 3 and of Craig.
These authors gave arguments (whose validity has
been questioned) for effectively setting zo =0.33vz/
&~ for the case of metals, where n& is the effec-
tive Fermi velocity of the metal electrons. With
this choice they obtain semiquantitative agreement
with experiment.

A simple functional form for the force F, which
has the correct small z behavior (F =Az) and large
z behavior (F=C/z ), is

F =C/z (1 3) o= — I' zdz= —-'Uo = —AC ' (1.10)
Here the constant C is related to the frequency-
dependent dielectric function e(&u) by

s. c" ",~(fu}+1't',
64v2 0 p q fu —1&

(1.4)

The constant A. was computed by Zaremba' in
terms of the lattice-phonon spectrum, by modeling
the cleavage process as a rigid displacement of
one-half of the crystal with respect to the other
half. Again, qualitative agreement with experi-
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ment is obtained for metals, although the theoret-
ical values are substantially (-40%} too low.

The present paper differs from the work of
Zaremba in two respects: (1) In computing the
force constant A for small cleavage separation, we
do not make the rigid lattice assumption but allow
for relaxation of the interplanar spacings near the
cleavage plane; (2} instead of the particular form
(1.7)-(1.9) for E(z) we postulate that E(z) can, to
a good approximation, be expressed in terms of
an as yet unknown universal function f (z). These
two points are discussed in the following two sec-
tions. The result is a universal approximate the-
ory of the surface energy of all simple solids with
nonreconstructing surfaces, involving a single
dimensionless parameter a*, one-half of the in-
tegral of the universal function f*(z). Section IV
makes a very preliminary comparison of this the-
ory with experimental data on cubic metals, which
gives agreement to within about 16%. This is of
the same order as the error in the experimental
surface energies. Section V discusses the signif-
icance of the results and suggests future directions
of research.

H. INITIAL CLEAVAGE FORCE

For simplicity we consider here only crystals
with one atom per unit cell. We imagine that equal
and opposite forces are applied to all atoms on
two adjacent planes. e As the forces are slowly
increased, the crystal is cleaved. We denote by
E(z) the force per unit area being exerted on the
right portion when the distance between the two
outermost planes has increased from a to a+ z
(see Fig. 1). For finite z, the spacing between
other lattice planes near the cleavage plane will
differ somewhat from their equilibrium spacing in
the bulk to minimize the total energy. Including
these relaxation effects, the surface energy per
unit surface area equals one-half the total cleavage
work per unit cross-sectional area, and is thus
given by

0 0(0 0 0 0+0 0~ 0 0
o o o o
0 0 0 0

0 0+0
0 0+0

0~0 0
0+0 0

(a) (bj

FIG. 1. Reversible cleavage of the crystal. (a) Shows
the uncleaved crystal, with all interplanar spacings par-
allel to the cleavage plane (shown dashed) equal to a.
(b) Shows the crystal during cleavage, with a spacing of
a+ z between the two outermost planes, and naturally
relaxed spacings between the other planes.

1 a '~' sin2(qa/2)
1l'

0 (d {q)
(2.4)

Equations (2.3) and (2.4) are general and exact.
Note that if only nearest-neighbor interplanar

forces are significant, then

~(q) = &u sin(qa/2), (2.5)

where & is the maximum frequency. In this case,
(00 =(d o

We also compare our result with that of Zarem-
ba, ~ who modeled the cleavage process by a rigid
shift of one portion of the crystal relative to the
other. His result for the coefficient A can also be
written in the form (2.3), but with &uo given by

(2.6)

(g', & ((g', )„and A & A„. (2.7)

In typical cases A is about 20 to 40% smaller
than A

where the index r refers to the rigid cleavage.
Clearly, for the nearest-neighbor spectrum (2.5),
(&vo), =&a; i.e., in this case (understandably) there
is no difference between the two values of A. How-
ever, whenever there are interactions between
planes beyond nearest neighbors it is obvious that

o= —' lt E(z)dz. (2.1) IH. UNIVERSAL MODEL FOR THE CLEAVAGE FORCE

For small z, I' has the form

E(z) =Az . (2.2)

We have seen that, for small and large g, the
cleavage force behaves, respectively, as

As shown in the Appendix, A is given by

A = —pa(d() y (2.3)

A z (z «a)
z

C/z' (z»a),
(3.1}

where p is the density, a is the equilibrium inter-
planar spacing parallel to the cleavage plane, and

og is given in terms of the frequencies &u(q) of the
longitudinal phonons perpendicular to the cleavage
plane by the expression (3.2)

where the coefficients A and C differ from mate-
rial to material. Let us now scale the force F in
units of (A C)~~4 and the distance z in units of
(C/A)'",

E =(ABC) f[z/(C/A) ]
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so that

z for z«1
I/z for z»1.

(3.3) [ sch e rn at i cj

(3.4)

where A is given by Eqs. (2.3) and (2.4), C is the
Lifshitz constant [Eq. (1.4)], and

It can be directly verified that (3.2) and (3.3) lead
to (3.1). The curve f(z) is plotted schematically
in Fig. 2.

The surface energy of any solid is then given
exactly by

o = n(AC }'~2,

j= —+".1

Z3

FIG. 2. The scaled force function f(g). Note the be-
havior for small and large values of z.

n —= i f(z)dz,2
0

(3.5}

which will be characteristic of each material and
each crystal face.

The function f(z) has, by construction, the same
behavior for both small and large g for all mate-
rials. In the absence of additional information it
is reasonable to try the simple hypothesis that,
to a good approximation, f(z) equals a universal
function, f*(z), for all materials. Then n, Eq.
(3.5), becomes a universal constant, n", and

(3.6)

for all materials.
If Eq. (3.6) is indeed an accurate representation

of surface energies, a plot of n vs (AC)'~2 for dif-
ferent materials should fall on a single straight
line, passing through the origin, whose slope de-
termines a*. The functional form

10 1/2
&n*= — (n, —n")' =0.16n*,10, ,

(4.2}

which is of the same order as the error in the
experimental values for the surface energies.

We may ask how significant the inclusion of re-
laxation effects is in the use of the universality
principle. If one attempts to fit the same'10 data

3ppp erg/cm'

that obtained with the simple form (3.7}.
The accuracy of the universality principle (3.6)

can be judged by computing n for each of the 10
metals from Eq. (3.4} and then comparing this val-
ue with n*. This results in the root-mean-square
deviation

f(z) =(1+,2)2 (3.7)
2000

corresponding to the simple form (1.6)—(1.8) for
E(z) gives n*= ~, and one would expect the best
universal n* to be not too different from this val-
ue, 1000

IV. COMPARISON WITH EXPERIMENT

n* =0.476, (4.1)

which, surprisingly, is almost twice as large as

A test of our hypothesis (3.6) requires a reliable
knowledge of 0 from surface-energy measure-
ments, of A from measured phonon spectra, and
of C from the measured bulk optical constant e(&u).
The overall experimental situation is not too good.
In this preliminary comparison with experiment,
we choose the (110) faces of 10 cubic metals for
which reasonably reliable data exist. We find that
the plot of n vs (AC)' does indeed fall reasonably
well on a straight line passing through the origin
(see Fig. 3). A least-squares fit gives the value

0
0 2000 4000

(AC)
' erg/cm'

6000

FIG. 3. Experimental surface energies vs (AC)
The straight line represents the best fit with &*=0.476,
The sources of the experimental points were the follow-
ing. Surface energies: Li (Ref. 8), Na, K, Rb (Ref. 9),
Pb (Ref. 10), Al, Cu, Nb, Ta, Au (Ref. 11), Cu and Ta
Q,ef. 12). Dielectric constants: Li, Na, K. Rb, Al—free
electron model with u& ——(47rnzn!e ); Pb (Ref. 13); Cu,
Au, (Ref. 14); Ta (Ref. 15); Nb (Ref. 16). Phonon spectra:
Li (Ref. 17), Na (Ref. 18), K (Ref. 19), Rb N.ef. 20), Pb
(Ref. 21), Al (Ref. 22), Cu (Ref. . 23), Nb (Ref. 24), Ta,
(Ref. 25), Au (Ref. 26).
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by the formula

e=n„(A„C)'i', (4.3)

where A„ is the rigid-lattice force constant (see
Sec. III), one can partly compensate for the fact
that A„)A by using a smaller value for a„*. How-
ever, the root-mean-square deviation of the data
from (4.3) is about 50% larger than from (3.6).

V. DISCUSSION

A comparison with some limited data on metals
indicates that the hypothesis of a universal value
n* in Eq. (3.6) for the surface energy may be of
quantitative value for estimating the surface en-
ergy from independent experimental data about the
elastic and the optical properties of the bulk ma-
terial. Since direct measurements of surface en-
ergies are very difficult compared to those of the
elastic and optical quantities A and C of the bulk
materials, a sufficiently accurate, universal re-
lationship of the form (3.6) could be of great value
for surface physics. Evidently, more compre-
hensive tests of Eq. (3.6}would be of great inter-
est.

Of course, the assumption of a universal n*,
derived from the postulated universal form of the
normalized cleavage force f*(z), cannot be strictly
exact. It would therefore be interesting to examine
if there are systematic variations of the experi-
mental quantity n, defined by Eq. (3.4), for dif-
ferent classes of surfaces, e.g. , (001}and (111),
or metals and insulators. At the present time
such variations may be undiscernible because of
uncertainties in experimental values of 0, A, and
C. This reemphasizes the need for better data for
these quantities. If, however, systematic vari-
ations of this sort were found, they would stimu-
late careful thinking about the nature of surface
"bonds" for different classes of surfaces.

The large empirical value of n* (=0.476) is
somewhat disturbing. If we use the schematic rep-
resentation for f(z),

e is also approximately constant for a given ma-
terial at different temperatures. Thus, if we de-
note by y(T) the surface Helmholtz free energy at
temperature T, this suggests that

y(T) =a[A(T)C(T)/A(0)C(0)]'i',

so that the temperature dependence of y(T) would
stem from the temperature dependence of A. and C,
Eqs. (2.3), (2.4), and (1.4).

A final remark about the constants A and C:
When a phonon spectrum is not available, but the
velocity of sound c perpendicular to the cleavage
plane is kriown (e.g. , from the elastic constants),
a rough approximation to &0 can be obtained by
postulating the nearest-neighbors type of disper-
sion spectrum, (2.5), which results in &u&

—ca/2.
When the dielectric constant z(v) is not available,
one can attempt to represent the electrons by an
effective plasma frequency, +~ ', and then set
C =1.79&10 S&u~

' [see Sec. I, Eq. (1.4) ff].
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APPENDIX' CALCULATION OF THE FORCE CONSTANT A

We wish to calculate the displacements u& and
uo(=-u, ) when forces F (and -E) per unit area
are applied to the lattice planes m =1 (and m =0).
We therefore consider the equations of motion of
the lattice planes under the action of a general
force E:

(AI)

(5.1}

we obtain 0,**=0.500. We conjecture that the near
equality of the mean empirical n* with a** comes
about by a near cancellation of two effects: a re-
duction of+*(z) for z&1 by anharmonic (z2) terms
and an increase for z & 1 by higher-order (z ) po-
larization terms.

We turn next to the question of temperature de-
pendence. If n is indeed a good universal con-
stant a* for different surfaces at zero tempera;
ture, because of the approximate universality of
the function f(z), it is natural to hypothesize that

where M is the mass per lattice plane per unit
area,

(A2)

where

(u (k) = ——QA(l)e'~", (A4)

(p=density, a=interplanar spacing), and A(l ) are
the interplanar force constants.

The normal modes of vibrations of the planes
are given by
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Next we consider the static displacements u
due to static forces I . We write

i „=QZ(k)e"

u„=Qu(k)e"

Substitution into (Al) gives

(A8)

(A8)

$k(m-& )I f k~um —~M~ z(k) [e -e ] &

and in particular

Ea '~' sin (ka/2)
vM, ), (oz(k)

2 1

PQ (dp

(A9)

(Ala)

For our case

& =+(~~(-&~p) ~

(A7)

(A8)

l a t"~' sinz(ka/2)
2W J egg (d (k)

Since z = (u& -up) = 2u~, we have

fl l

(All�)

(Al2)
If we impose periodic boundary conditions after
N planes, we find which is used in Eqs. (2.2) and (2.2).
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