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Scattering of electrons by impurities in a magnetic field
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The difFerential scattering cross section for electrons by impurity atoms may acquire a right-left
asymmetry linearly proportional to an applied magnetic field. If this were true, there would arise a new
contribution to the Hall coefficient. The Boltzmann transport equation ordinarily used in magneto-transport
theory requires that each one-electron wave function be described in its own time-dependent gauge. In order
to calculate quantum mechanically the difFerential scattering cross section, the ingoing and outgoing wave
functions must be transformed into a common gauge. When this is dont: the scattering matrix element has
no contribution linear in the magnetic field for an isotropic scattering potential. Consequently, there will not
be a new contribution to the Hall coefficient.

I. INTRODUCTION

In a magnetic field the differential scattering
cross section for electrons by impurity atoms may
acquire a right-left asymmetry linearly propor-
tional to the applied magnetic field. If this were
true, it would produce a new contribution to the
Hall coefficient.

This intriguing idea was first suggested by Cham-
bers, ' who argued that this effect would occur for
free electrons scattered by a central potential.
Chambers applied his theory to the Hall effect in
liquid transition metals. A rough calculation in-
dicated that the effect was of the right order of
magnitude to explain some of the experimental re-
sults.

In this paper we reexamine the theory of this
effect. We show that the differential scattering
cross section for free electrons is unchanged to
first order in the applied magnetic field if the
scattering potential is isotropic. Consequently
there will not be a new contribution to the Hall
coefficient.

Several sources of a right-left asymmetry in the
differential scattering cross section are known. '
For example, if the scattering potential includes
the spin-orbit interaction between the electron and
the impurity, there will be a right-left asymmetry
linearly proportional to the spin of the electron,
which yields a contribution to the Hall coefficient. '
This asymmetry is caused by the spin-orbit inter-
action.

In this paper our sole concern is the possible
asymmetry due to the effect of the applied magnetic
field on the scattering. In order to avoid any con-
fusion between this and other sources, we assume
that the scattering potential depends only on the
position of an electron relative to an impurity.
Since the spin of the electron is irrelevant, the
electrons may be imagined as spinless.

We consider a system of free electrons scattered

by random impurities in a uniform magnetic field.
We assume that the magnetic field is sufficiently
weak that the motion of an electron between col-
lisions may be treated classically. Each electron
state corresponds to a classical trajectory r(t) of
an electron in a magnetic field.

The Boltzmann equation for the momentum dis-
tribution is

——(v-„x B)~ " =C(f„-),et Sc

with the collision operator

(Ia)

In order for. the simple relation m(v) = (p) to hold,
the gauge must be chosen so that (A) =0.' In a
uniform magnetic field this may be accomplished
by choosing a time-dependent vector potential

A = —,
' B x (r (r)), (3)

(Ib)

f;(t) is the number of electrons whose mean mo-
mentum is p =8k; v~ is the velocity of an electron
with momentum p=kk. zv-„. -„ is the transition rate
between electron states due to scattering by a sin-
gle impurity and N is the total number of impuri-
ties.

Although the motion of an electron between colli-
sions may be treated classically, the scattering
probability must be calculated quantum mechani-
cally. In order to take into account the effect of
the magnetic field on the scattering, the electron
wave functions corresponding to the classical
trajectories in a magnetic field are required.

In a magnetic field, the physical interpretation
of an electron wave function + depends upon the
gauge. The mean velocity of an electron is
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which is different for each classical trajectory
r(t) = (r). With this choice, the wave packet

eik r (4)

describes an electron with (Jones-Zener gauge)

&v&= (h/m)&k). (5)

Since the motion of a free electron is classical,
the rate of change of its mean velocity is propor-
tional to the Lorentz force so that (Jones-Zener
gauge)

the kinematic momentum mv= p+ (e/c) A. The
rate of change of the kinematic momentum is equal
to the Lorentz force; the rate of change of the
dynamical momentum depends on the vector poten-
tial and is, in general, not equal to the Lorentz
force. For a classical system the momentum dis-
tribution satisfies the Boltzmann equation (1) pro-
vided that what is meant by the momentum is the
kinematic momentum mv. In order that the mean
dynamical momentum (p) of an electron wave func-
tion be equal to its mean kinematic momentum

m(v), the Jones-Zener gauge must be chosen. '

I

If instead of choosing the Jones-Zener gauge, we
had chosen the symmetric gauge, with

A=2B xr, (t)
then the wave packet (4) would describe an elec-
tron with (symmetric gauge)

& v) = (h/m) (k)+ (e/2m c) B x & r)

and (symmetric gauge)

h = —((v) x B),d(k) -e
dt 2c

II. ELECTRON WAVE FUNCTIONS IN A MAGNETIC FIELD

Let r(t) and v(t) be the classical position and

velocity of an electron in a uniform magnetic field,
whose initial position and velocity are r(0) and
v(0). To find the electron wave function corre-
sponding to this classical motion, we choose the
Jones-Zener gauge with the vector potential

A= —,'B x [r —r(t)]. (10)

The scalar potential 4 is determined by

=0
C Bt

which is one-half the Lorentz force.
Thus the Boltzmanr. Equation (1) with v~=5k/m,

which is ordinarily used in magneto-transport
theory, requires that each electron wave function
be described in its own time-dependent gauge, the
Jones-Zener gauge (3). When there is no mag-
netic field, the momentum p=hk has the physical
meaning of being proportional to the velocity v,
i.e., p=mv. The Jones-Zener gauge is the only
gauge which preserves this physical meaning.

In a magnetic field there is, in general, a dis-
tinction between the dynamical momentum p and

so that

vC = —= [v(t) x B].
C Bt 2C

It is convenient to choose

C = (-1/2c)[v(t) x B] ~ [r+ r(t)].
Substituting into the Schrodinger equation,

8% 1 e -)'
ih = — p+ —A~-eC 4,

&t 2m c ]

we obtain

(i4)

2 2

+
2

(pxrr) Ir —r(r)I+ —,]Bx[r—r(r)]]'+ —[r(r)xrr] ~ [r+r(r)])r .

If the electron is described by a wave packet, then
for small magnetic fields the center of the wave
packet follows the classical trajectory. Thus, the
term proportional to B2 will be small in the region
where the wave function is not zero. Neglecting
this term, the solution for 4 is

e = exp (t[k(t) ~ r —(uy, t] t. (16)

k(t) is related to the classical velocity by hk(t)
=mv(t); h(()"„=h'k'(t)/2m = 8'k'(0)/2m is the classi-
cal energy.

A wave packet may be formed by combining the

solutions (16) corresponding to the classical tra-
jectories whose initial positions are all r(0) and
whose initial velocities are centered about v(0).
Since there is a different gauge associated with
each classical trajectory, the wave functions must
all be transformed into the same gauge, the gauge
associated with the classical trajectory whose
initial position and velocity are r(0) and v(0), be-
fore being combined. It can be shown that this
wave packet corresponds to the classical trajec-
tory. Its mean position and momentum are (r)
=r(t) and (p}=h(k)=mv(t).
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III. SCATTERING IN A MAGNETIC FIELD

We now consider the scattering of an electron
in a magnetic field by a potential V(r) centered
at the origin. The scattering potential causes
transitions between the electron wave functions in
a magnetic field. In order to calculate the transi-
tion rate zo„-„-, , the electron wave functions 4'& be-
tween which transitions occur must be identified.

In the Boltzmann equation the collisions are-
treated as instantaneous. The transition rate re~&.

in the collision operator describes transitions be-
tween electron states whose momenta at the instant
of the collision are p = hk and p'= hk'. On the
other hand, the effect of the applied magnetic field
on an electron between collisions, which is de-
scribed by the Lorentz force drift term in the
Boltzmann equation, is treated as continuous.

If the collision is not instantaneous, then during
the collision the electron's momentum will be
changing due to the combined effects of the scat-
tering potential and the Lorentz force. In order
to avoid overcounting the effect of the magnetic
field, the change in momentum due to the Lorentz
force that an electron would experience during the
collision, if it were free, must be subtracted from
the total change in momentum during the colli-
sion.

This may be accomplished by choosing 4-„ to be
the electron wave function in a magnetic field
corresponding to the classical trajectory whose
position and velocity at t = 0 are r(0) = 0 and v(0)
=hk/m. Letting r-„(t) and v1(t) be the classical
position and velocity of this trajectory, the elec-
tron wave function 4-„ is

e;= (1/v 0)exp(i[k(t) r —(e; t J) (17)

in the Jones-Zener gauge with

A; = -,' B x [r - r-„(t)],

C-„= (-1/2c)[v-„(t) x B] ~ [r+ r-„(t)].

In these equations, the subscript k labels the clas-
sical trajectory in a magnetic field with r(0) = 0
and v(0) =5k/m. The wave function +-„ is nor-
malized in the volume 0 of the system.

For krak', the gauges (18) associated with 4'1

and 4~, are not equal. Thus, during the collision,
the electron wave functions (17}of the initial and
final states are defined in different gauges. It is
mandatory that the transition rate be calculated
between wave functions defined in the same gauge.

Having identified the electron wave functions
between which transitions occur, each defined in
its own gauge, we may now transform them to a
common gauge in order to calculate the transition
rate. Introducing a gauge transformation A~ from
the Jones-Zener gauge (18) to the symmetric

gauge,

A'= ~B xr, c, r Q

the wave function (17}is transformed into

4'-„=exp[-(ie/Ic)A;(r, t)]4'f.

The gauge transformation A-„ is determined by

VAf =A' —A~= 2B xr-„(t),

(2o)

c(4-—C;) = --', [v-„(t) x B] ~ [r+ r-„(t)]. (21)

From (21), A-„may be expressed as

A-„( r, t) = -,' [Bx r-„(t)] r+ y;(t),

with

(22)

—'=--,' [v;(t}xB) r;(t). (23}

The classical position r1(t} satisfies

v;(t) —v-„(0) = (e/m c) B x [rt(t) —r-„(0)] . (24)

Setting v~(t) =Kk(t)/m, k(0) =k, and r~(0) = 0,

k(t) —k = (e/I'c) [Bx r-„(t)]. (25)

From (22) and (25), the transformed wave function
(20) may be expressed as

4'-„= exp i~ —,'[k(t)+k] r —
&orat

——A~(t) ~
. (26)

exp i —,
' [k(t)+k] r ——).;(t) (28)

We expand the electron wave function in the states
t

C-t g8'

Substituting into the Schrodinger equation in the
symmetric gauge,

S+' 1 e -,)'
ih = p+ —A'~ + V(r)et 2m c j (30)

The wave vector k(t) rotates about the direction
of the magnetic field B at the cyclotron frequency
ar, =eB/mc. Thus, for krak', the states 41 and
4-„', will be orthogonal as long as &o,

~

t
~

«1. If the
duration of the collision is much less than the
cyclotron period, the initial and final states in
the symmetric gauge will be orthogonal during the
transition.

We treat the scattering between the electron
states 4-„' by the method of variation of constants. '
We put

(27)

From (26)
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q,
" = (1 ——,

' i(o,t l,)(t-„"'. (34)

1=—r x (1/i)v is the orbital angular momentum
operator p~ n. iay be interpreted as the state ob-
tained from (t.(+ by an infinitesimal rotation of an-
gle —2(d,t about the direction of the magnetic field.
Thus, to first order in the magnetic field,

(35)

with

. V'= V+ ~i(o,t[l„V]. (36)

U' is the transformation of U under an infinitesimal
rotat'ion of angle ——,'~, t about the direction of the
magnetic field.

If V= V(x) is a central potential, [I„V]=0 so
that the matrix element UH, is unchanged to first
order in the applied magnetic field. From the
equations of motion (31) of the expansion coeffi-
cients, the same will be true of the transition
rate (up„, (to all orders in the potential V). Thus
the differential scattering cross section is un-
changed to first order in the applied magnetic
field. Consequently, there will not be a new con-
tribution to the Hall coefficient.

IV. DISCUSSION

It is instructive to examine this problem in the
limit of classical scattering. During a collision,
the electron's velocity is changing due to the com-
bined effects of the Lorentz force and the scatter-
ing potential. There will be a magnetic field cor-
rection to the transition rate if either the change
due to the Lorentz force is modified by the scatter-
ing potential or the change due to the scattering
potential is modified by the Lorentz force.

and neglecting terms of order B' as before, we ob-
tain the equations of motion of the expansion coef-
ficients,

ih = g V-, c-,e'"H'~C-
kk' (31)

k'

with V'-„„-, = (g-„~ V~ p~.) and (o-„I.= (o„- —(o-„,. The depen-
dence of the transition rate on the magnetic field is
contained in the matrix element Vk~, .

Expanding P to first order in the magnetic field,

pt = [1 —(ie/2m c)(k x B) t r] g(", (32)

with

~(o) (I/~g)e(k r
k

being the free electron wave function in the absence
of a magnetic field. Taking B=Be, (32) may be
expressed as

Since the Lorentz force is proportional to the
velocity, it may appear at first sight that the elec-
tron's velocity will be rotated by the magnetic
field during a collision by a different amount than
if it were free. If this were true, the difference
would have to be included in the transition rate.
However, since the cyclotron frequency does not
depend on the electron's velocity, the angle of ro-
tation of the electron's velocity is the same
whether or not the electron experiences a colli-
sion. Thus the change in velocity due to the
Lorentz force is not modified by the scattering
potential.

As a result of the deflection of an electron by
the magnetic field, the path of an electron through
the scattering region will be different than if there
were no magnetic field. Thus, the change in velo-
city due to the scattering potential may be modified
by the magnetic field. Our result implies that
there will be no change to first order in the mag-
netic field if the scattering potential is isotropic.

Our conclusion disagrees with Chambers's. '
During a collision the velocity of an electron will
be rotated by the Lorentz force about the direction
of the magnetic field. If this change of velocity is
included in the calculation of the transition rate,
there will arise a left-right asymmetry in the dif-
ferential scattering cross section, as noted by
Chambers. However, this velocity rotation caused
by the magnetic field is already included in the
Boltzmann equation by the Lorentz-foree drift
term; it must not be included a second time in the
collision oper ator.

In most applications of the Boltzmann equation,
the effect of the applied magnetic field on the
scattering is neglected. Then the free-electron
wave functions in the absence of a magnetic field
may be used to calculate the transition rate. If
the effect of the applied magnetic field on the
scattering is not neglected, the electron wave
functions in a magnetic field must be used.

In order to identify the correct initial and final
states, it is essential to realize that each electron
wave function is described in its own time-depen-
dent gauge, the Jones-Zener gauge (3). Quantum-
theoretic scattering rates can then be calculated
only after initial and final states have been trans-
formed to a common gauge.
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