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Dynamic correlations in an electron gas. I. First-order perturbation theory
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Properties of a uniform electron gas in the jellium model are investigated by means of perturbation theory
in the electron-electron interaction. First-order diagrams for the proper polarizability are evaluated for
arbitrary wave vector and frequency, their singularities and analytical properties are examined, and a
reliable numerical procedure for calculating them is established. Quantities such as the dielectric function
e(k,eo), the dynamic-complex-local-field factor G(k, co), dynamic structure factor S(k,co), static structure
factor S(k), and pair correlation function g(r) are calculated and compared with the corresponding
quantities in the random-phase approximation (RPA). The plasmon dispersion in a wide range of
momentum transfers and the shape of S(k,co) versus eo agree well with experimental data for Al, indicating
that the first-order theory is reasonable even at r, as large as 2. Significant improvement over RPA is
observed.

I. INTRODUCTION

Since the pioneering work of Bohm and Pines~
and Lindhard, done almost three decades ago,
much effort has gone into developing a theory,
which is valid for all wave vectors and frequen-
cies, of the dielectric function of a homogeneous
electron gas at metallic densities. The latter
quantity plays an important role in determining
many of the properties of metals. The simple the-
ory of the dielectric function which goes under the
name of random-phase approximation (RPA) has
been fairly successful in accounting for many me-
tallic properties for the reason that it treats pro-
perly the long-range part of the Coulomb inter-
action. However, it neglects the important short-
range exchange and correlation effects among the
electrons and this causes the theory to display
some undesirable features, e.g. , negative values
of the pair correlation function g(r) at short dis-
tances.

In recent years several attempts' "have been
made to improve upon the RPA using different
mathematical approaches and approximations. In
the formulation of Singwi et al. , it was argued
that the exchange and correlation effects which
lead to a local dept. etion in the density around each
electron should be expressible in terms of the
static pair correlation function. The latter is then
determined self-consistently through the use of the
fluctuation-dissipation theorem. A modified ver-
sion of this theory due to Vashishta and Singwi, "
which took care of the compressibility sum rule,
has been fairly successful in its applications. In
particular, it leads to very good results for the
phonon dispersion relations'~ of simple metals.
This is true of some other theoriesi ' too.

The various theories that have been proposed as
improvements on the RPA include short:-range

exchange-correlation effects in an approximate
way through a static-local-field factor G(k). The
assumption of a static local field implies that as
a particle moves in response to a perturbing force
it carries its exchange-correlation bole rigidly
with it. This is true only if'the perturbing force
varies slowly in time as is the case, for example,
in tbe calculation of pbonon frequencies: Here
the electrons respond instantaneously to the much
slower motion of the ions and the exchange-cor-
relation hole is able to adjust itself continuously
to the motion of the particle it surrounds without
distorting appreciably from its static value. For
a rapidly varying external perturbation, the be-
havior of the exchange correlation hole is much
more complicated: It deforms appreciably and
also executes a dynamical motion relative to the
particle as it attempts to keep up with it. Both
these effects can be described adequately only by
a complex, frequency-dependentlocal field G(k, v).
The complex nature of G follows very generally
from causality arguments' and is necessary to in-
clude properly dissipative effects which give rise
to a damping of the long wavelength plasmon.

For external fields characterized by frequencies
much less than the plasma frequency &~, the in-
verse of which is a measure of tbe characteristic
time of the medium, a static local field is a good
approximation. On the other hand, for external
fields varying with frequencies comparable to (d~
only a dynamic local field can provide an adequate
description of the system response. It shall be
our purpose in this paper to construct such a dy-
namical local field for the electron liquid. In the
past there was not much incentive to include dy-
namic effects in the local field, but it has now be-
come imperative to do so if we are to understand
the results of recent inelastic electron' and x-
ray 3 scattering experiments in simple metals.
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Such experiments probe the excitation spectrum
of density fluctuations in the system and thereby
measure the dynamic structure factor S(k, &p), which
in turn depends on the dynamic local field G(k, ar).
Both the simple RPA and the mean-field theories
of Singwi et al. '5 fail to reproduce the experi-
mentally observed S(k, &u), particularly at large
momentum transfers. As pointed out above, the
failure of these theories to account adequately for
the dynamical response of the system is due to
their complete neglect of dynamical and dissipative
effects in the local field (in the RPA, G =0 and in
the theories of Singwi et al. it is purely real and
static).

To formulate a microscopic approach to the
problem of dynamical correlations which is phys-
ically transparent and at the same time tractable
enough to yield results that can be compared with
experiment is a far from easy task. The work of
Brosens et al. ' can be regarded as a first
step in this direction. In a future publication 4 in
this series of papers we shall make an attempt to
develop a theory of dynamical correlations by
starting from the exact quantum mechanical equa-
tions of motion for the system formulated in terms
of the Wigner distribution functions. For the pre-
sent, however, we shall content ourselves with a
more straightforward attack on the problem which
is based on the methods of perturbation theory.
This paper should be viewed as exploratory in
character, the aim being to see what one can learn
about dynamical correlations in the electron liquid
from a low-order perturbation calculation that can
be done exactly.

In the above context, the quantity of basic in-
terest is the screened response function or the
irreducible polarization propagator w(k, &o). The
lowest-order term in the perturbation series for
m gives the RPA. In the next approximation one
calculates the first-order diagrams, which con-
sist of both self-energy and exchange contributions.
This was done in the ~-0 limit in an important
paper by Geldart and Taylor, "who examined the
consequences of these and some higher-order
diagrams for the static screening function. '4 How-
ever, the full impact of these diagrams can be
realized only by evaluating them for m bitraxy
frequencies and this is what we propose to do in
this paper. %e find that the first-order graphs
display pathological singularities for some values
of frequency. %hile this is not entirely unexpected,
as foreshadowed earlier in the work of Glick,"
the situation nevertheless demands detailed exam-
ination. By carefully examining the nature of the
singularities encountered in our calculation, we
are led to important conclusions about the validity
of perturbation theory. Our main conclusion is

that the perturbation theory for m is not valid for
all frequencies (for a given k} but breaks down in
the neighborhood of the characteristic frequencies
co, = [pk tk ~. This information will prove most
helpful in interpreting the results of our future
work.

The plan of this paper is as follows: In Sec. II,
we introduce our notation and write down the ex-
pressions for the first-order diagrams. In Sec.
III we examine the high-frequency properties of
these diagrams, their connection with the fre-
quency moment sum rules and the long wavelength
plasmon dispersion. In Sec. IV, we present the
final results of our evaluation of the first-order
diagrams, relegating -the details of the calculation
to Appendices. A and B. A comparison is made
with the zeroth-order diagram (i.e., the Lindhard
function) in order to estimate the relative impor-
tance of the correction we have calculated. A de-
tailed examination of the singularities present in
the theory is taken up in Sec. V and the structure
of the perturbation theory is analyzed. Section VI
contains a discussion of the dynamic local field
G(k, &u) in this theory and we also comment upon
the work of other authors. 3 ~' In Sec. VII we
present the results for S(k, ~z}, the plasmon dis-
persion, the static structure factor S(k), and the
pair correlation function g(r} Fina.lly, Sec. VIII
contains our concluding remarks.

(2.1)

We shall use the 4-vector notation k =(k, &o), P
=(p,Pp), etc. The free-particle Green's function
C is given by-

GP(p) = . , q = 0' (2.2}
1

pp -(gp -$7) sgn(kp —
I p))

(0) (b) (c)
FIG. 1. Diagrams for proper polarizability: (a) the

zeroth order, . (b) and (c) the first-order self-energy and

exchange contributions, respectively.

II. FIRST-ORDER DIAGRAMS FOR THE PROPER
POLARIZABILITY

The diagrammatic expansion for the proper (or
irreducible} polarization propagator v(k) has been
developed in many textbooks ~ and will not be re-
derived here. The lowest-order graphs for w are
shown in Fig. 1. The zeroth-order contribution
m is, of course, just the Lindhard function:
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where k~ is the Fermi wave vector and ~;
=)ip /2m. The first-order graphs divide into a
self-energy part m and an exchange part m ".
The expressions for z and z ' are easily written
down using the standard Feynman rules:

d4
m (k) =—

Jf 4.Go(p)GD(p + k)

x [Z'(P }G'(P) + T, '(P + k)G'(P + k)],
(2.3}

d'P d4 '

x (p —p')G'(p')G'(p'+ k) (2 4)
l

where

v(q) = 4zM z/q',

and

(2.5)

&'(p) =--,.v(p' —p)G'(p') exp(zpozt)a (2v) z
(2.6)

is the Hartree-Fock self-energy.
The frequency integrals in (2.3) and (2.4) are

easily performed by contour-integration. Once
this- is done we can switch from the interaction
representation to the more physically relevant
retarded form' by shifting any poles lying above
the real w axis to below it. In this way we obtain

k (2')z (2v)' ((u + (gy —(u;, r+ izt)z

P (2m) (2w) ((o+(uj -(up, ~ +izt)((g+(o;. —(o;, . ~ +izt)

(2.7)

(2.8)

where n-= 8(kr —[p ~) is the free-particle Fermi function at T =0. Before proceeding further it is conve-
nient to express the integrals in dimensionless form. Introduce the dimensionless polarizabilities

Q' ' *(k (u) = -v(k)m' ' *(k (u) (2.9)

and measure wave vectors in units of k~= I/eaor„e =(4/9m) and frequencies in units of 2E„/fi (Er
=)I'k~/2m is the free Fermi energy). Equations (2.7) and (2.8) are then transformed to

2
USE, Ex(k )

DFSE,Ex(k ~)
k

d Pd P' (n;-n„r, )(n,.-n. ..&)

(p —p ') (~g + &o- —~s-,z + z rl)

(2.9a)

(2.10)

(P —P ) ((0 + co& —(8 +f + z zt)((d +g& i —(8& i +p +z zl)
(2.11)

In these formulas u&-, =—,'q~ and nv = nr, /vz.
The functions I' and F " are complex at finite

(d but become purely real when (d =0. The first-
order static polarizability is thus given by the real
quantity

Q (k, O)=Q (k, O)+Q *(k, O)

4m3
ImF ' *(k,(g) =, [8(l —v )C ' *(v., k)

k

—8(l —v )4 ' *(v,k)],
(2.13)

where

Q=~[F (k, 0)+F *(k, 0)]. (2.12) ,=+-„--, k= /kJ,

It is precisely the expression (2.12) that; has been
evaluated by Geldart and Taylor'z[in their notation
F„jk)=niF *~ (k, 0)]. We shall here extend
their & = 0 calculation to arbitrary frequencies.

We first consider the imaginary part of Q» which
turns out to be simpler to evaluate than its real
part. Leaving the details of the calculation to
Appendices A and B, we present only the final re-
sults:

4' (v, k) =vfi(v) -(v+k)fi(v+ k)

+kfi((v+k)z+ 1 —vz)~~z

1 -x2 1+x
fi(x)= p+ ln

It is noteworthy that ImF can be evaluated ana-
lytically in closed form without recourse to nu-
merical integration.
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Cz*(v, k) = —G&(v) +Gs(v+k, 1 —vs), (2.14)

The expression for 4 is somewhat unwieldy: It is worth pointing out that the above form of the
first-order polarizability is analogous to the fol-
lowing form of the zeroth-order polarizability:

~ where

G&(v) = -'(1 —v')S
I(I+ vj

—
z~ v[(1 - v}ln(l —v)

+ (1 + v) ln(1+ v) —2 ln2],

with

(2.15)

ImQ (k, (d) =
ks 8(1 —v~)l( .

k )
nr, 2 fl —v'. l

tl —v'
(2.25)

The real part of Qs can now be obtained numeri-
cally through the dispersion relation

~i /I g~—ln(1+x), if Oaaa 1

g(a)= '
-g(I/a), if 1 & a & ~ .

(2.16)

G,(x„xs)= —-P ~ d g
&(5&xi~xs) (2.1V)

To express T compactly we introduce the following
auxiliary functions:

ys(x„xs) =xss+ xs, (2.18)

A, (g, x,) =2(~ -x,)',
As(), x,) =4(1- g )($ -xg),

(2.19)

(2.20)

(2.21),As(), x)) =2)(( -xq) —1,
[(rs+As)'+As]'" -(rs+As)

AX( yX2 2(1 —h')
(2.22)

The 8 functions in (2.13}ensure that g(a) and all
logarithms are only needed for positive arguments:

ReQ (k, u))=--P ' ldto'
7T J -m (d —40

(2.26}

which follows22 from the fact that Q (k, &o} is ana-
lytic in the upper half of the complex &u plane and
falls off at large &g as I/&o (this latter fact is dem-
onstrated in the next section}.

IH. HIGH-FREQUENCY BEHAVIOR OF Qi (k,w);
SUM RULES AND PLASMON DISPERSION

. I

Before discussing the nature of Q' for arbitrary
k and ~, we shall first examine its behavior in
the limiting case of large frequencies (and finite

lkl) where it takes on a particularly simple form.
Because of the 8 functions in Eq. (2.13), ImQ
vanishes in this limit and only ReQ survives. On
expanding the denominators of E in Eq. (2.10)
and E * in Eq. (2.11) in powers of I/&o we obtain
after some algebra (PV denotes Pathak and
Vashishta~)

In terms of these functions
(dQ'(f,~) =-"fG'„',(k)+ ol (3.1)

1"(t xi xs)=l ~--1+(I-& )(I-t)l/A A
l 2t 2 ]
xl, lA +2('-g'}tl
-xslnA&+(1- g )[t —1 —ln(t)]. (2.23)

In Eqs. (2.22) and (2.23) the arguments of the
functions occuring on the right-hand side have
been omitted for brevity and are the same as those
occuring in the defining equations (2.18)-(2.21}.
Taking stock of the formulas for ImF ', we see
that it has been reduced to the evaluation of two
one-dimensional integrals g(a) and Gs(xs, xs). Both
these integrals possess well-behaved integrands
and their evaluation by numerical methods poses
no essential problems. (For more details see
Appendix B.)

Having calculated both 4 and 4 ', we can con-
struct the total imaginary part of the first-order
proper polarizability

4m3e2
ImQ'(k, (o) = 6 ~(8(1-vs)[4' (v„k)+4 *(v., k}]

-8(1-v')[4' (v, k)+4 "(v,k)]j.
(2.24)

In this formula &gF=ns(3r, )'~2 is the plasma fre-
quency at zero wave vector (expressed in units of
2EF/8) and

0~q~ 23$
4 16'

SnF(q}=
1, q&2

(3 3)

is the Hartree-Pock static structure factor. GH&

can be evaluated analytically. The result is

Ger(k)=- 2 lln ( ——+-k --k +-k )Fv 3 ~ k 2 22 24 2 2 4 1 6

16ks & k-2
(k+2)(k 2}' '2

7 g 6 )~

38 Yi 2 i 4

21k2
+ 3i5+ 840k + 840k (3.4)

Gssr(k) =- lr dq q'. [S„F(q'}-1]

(k'-q')' 'k+q' 'i

l&6 2k~ 4ksq' k -q' I,
(3 2)

where



4916 A. HOLAS, I'; K. ARAVIND, AND K. S. SINGWI 20

It has the following limiting properties:

GsPvr(k) = 23k2+O(k4), for small k, (3.5)

PVG„v(k=2) = —
16x3

x(3 x 28 ln4 —1427) + +»

(3.6)= 0.2427,

Gsv(k) =
3 +O(1/k ), for large k. (3.7)

The density-density response function (or total
polarization propagator) is given by

Q(k, oo)
X( t ) (k) 1 Q(k (g)

(3.8)

In the present order of approximation it is

1 Q'(k, ~) + Q'(k, ~)
v(k) 1+Qo(k ~)+Q (g ~) (3.9)

-v(k)X (k»}= z- + 4 +0 -f I,
I( M3 1t

Q) a)'
where

&i) 2

(3.11)

(3.12)

Knowing (3.1) and using the well-known result for
large w

~' ~3k' k41
Q'(k, &) = -~2 -~41 +—I+o ~ I, (3.10)

(d (5 4j (d)

we can calculate the leading terms in the asymp-
totic expansion of X (koo). We find that (3.16)1 + Q (k, a ) + Q (k, w) =0 .

In the limit k- 0 and e =so~ the imaginary parts of
both Q and Q' are zero because of the e functions
in Eqs. (2.25}and (2.24). For the real parts we
find that

Eqs. (3.12}and (3.13) we see that M~" ——M&, where-
as M3 '0 M3. Thus our present theory, which cor-
responds to retaining only the zeroth- and first-
order contributions to the proper polarizability w,
satisfies the first moment (or f-sum rule) exactly
but fulfills the third moment sum rule only approx-
imately. The latter discrepancy arises because,
firstly, (E«,) in Eq. (3.15) has been replaced by
its free-particle value of —,'Z& and, secondly,
G (k} has been replaced by G„F(k}i.e. , its Har-
tree-Pock value. Both these deficiencies can be
rectified only by including a suitable class of
higher-order diagrams for m which contain poten-
tial effects that restore the third moment to its
correct value. It is a challenging (and as yet un-
solved) problem to identify these diagrams. In a
later publication we shall develop a microscopic
theory which satisfies exactly both the first- and
third-moment sum rules.
We shall now obtain an expression for the plasmon

dispersion at long wavelengths. Since the plasmon
frequency is given by the pole of the density-den-
sity response function [in the present approxima-
tion, by the pole of the right-hand side of Eq.
(3.9}],we have to solve the equation

ReQ'(k, ~) = -~ 1+, +O(k')
5(d

(3.17)

(3.13)

M, =v(k) — d&a 'oo'ImX(k, &u ') = —3r,n (3.14)

and

MP'= —(oq(k /4+ 3k /5+oogl -G„F(k)]].
On the other hand, it can be shown 8 that the

exact density-density response function also pos-
sesses an asymptotic expansion of the form (3.11)
but with the M,"' replaced by the following M, :

and

3k
ReQ'(k, ~a}=~4 + O(k }.&4 20 (3.18}

Note that these formulas also happen to be the
k-0 limits of the high-frequency expressions for
Q and Q' [Eqs. (3.10) and (3.1)] derived earlier.
Equation (3.16) may now be solved to yield

M3 ——v(k) — t d(u'~a 3lmX(k, ~w')
oc

I4=-&,' —+ "" k'+&,'[I-GPv(k)) ~. (3.15)

ur»(k) =&a~+ (1 —4u&&)k +O(k ) .
10~p

Defining o. through the relation

u)~, (k) =&~+ nk +O(k ),

(3.19)

(3.20)

In (3.15) (E~„}is the average kinetic energy per
particle in the interacting electron gas and G (k}
is defined exactly as in Eq. (3.2) for G„F(k) except
that the Hartree-Fock structure factor S»(q) oc-
curring there is replaced by the true S(q) for the
system. Equations (3.14) and (3.15) are often re
ferred to as the first and third frequency moment
sum rules, respectively. On comparing them with

we see from Eq. (3.19}that in the present case
1 2n =n R~~(1 —
4 a&), (3.21)

where nnp„——3/10~~ is the contribution predicted
by the RPA alone. This result has been derived
earlier by Du Bois and by Nozieres and Pines.
For r, =2.07, &~=0.68, Eq. (3.21) predicts that
e =0.39, which agrees well with the experimental
value of 0.38+0.02 quoted by Batson et al .' for
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Al. Since ImQO and ImQi vanish in the k- 0 limit,
the long wavelength plasmon is undamped in the
present approximation.

IV. DISCUSSION OF Qt AND ITS COMPARISON WITH +
In Fig. 2 the function ImEI (k, &o) has been sketched

as a function of frequency for the three cases
k& 2) k=2, and k&2. In all the cases ImF is
an odd function of frequency; this follows from
general symmetry requirements. Restricting our-
selves to positive frequencies, we see that for
both k & 2 and k & 2 ImF has jump discontinuities
(shown by circles in the figures) at the character-
istic frequencies w, =sk +k and Jsk -k[. For
k =2, there is only a single jump discontinuity at
co, =4, the second one disappearing at ~=0. The
origin of these discontinuities lies in the sharp
cutoffs imposed by the free Fermi functions NI„
combined with the squared energy denominator
occurring in (2.10).

A careful examination of Eqs. (2.15) and (2.1V)
reveals that the frequency derivative of ImF ' also
possesses singularities at the characteristic fre-
quencies +,. However, the function ImF ' itself
is continuous. Thus ImQ, which is proportional
to the sum of ImF and ImF ', has its singularity
structure determined by ImF, i.e., it has jump
discontinuities at the characteristic frequencies.

~t dv '&u'ImQ'(k, &o') =0,
Jp

(4.1)

d(u'(e' ImQ (%,(o') =--(o G„(k). (4.2)

These furnish us with two independent checks on
our calculations for ImQ . To verify (4.1) we cal-
culated the integral on the left-hand side and com-
pared it with the integral of the absolute value of
the same integrand. %e found that the former in-

ReQ is determined from ImQ by Hilbert trans-
formation and it is easily shown that the jump dis-
continuities in the latter at &o, give rise to loga-
rithmic singularities in ReQ at the same frequen-
cies. One can go further and deduce that the sign
of the singularity in ReQ' is the same as the sign
of the jump in ImQ at that point, while the strength
of the singularity is determined by the magnitude
of the jump. Thus, for example, for k&2 and
u = zk +k, ImQi has a negative jump and there-
fore the logarithmic singularity in ReQ' at this
point will approach minus infinity.

It should be pointed out at this stage that there
exist four independent checks on our calculations
for Re and ImQ: (1) and (2) by making a high-
frequency (&c -~) expansion of the right-hand side
of the dispersion relation (2.26) and comparing it
with Eq. (3.1) we obtain the two identities

50
3

0

E -50

-l00
0 0.5 I.O l.5

lO

0
E

—IO

0

5-
3

0
E

0 l.5 45

FIG. 2. Imaginary part of the self-energy contribution to proper polarizability. Its discontinuities at u~=
~ ak +k (

are indicated by circles. Wave number k is expressed in units of k&, frequency co in 2E+/k, here and on all other
figures.



49I8 HOLAS, I'; K. AHA VIND, AND K. S. SING%I

Qn g, -in+1 ) n+1
E +s ~ (4.3)

In order to see this we enumerate all factors con-
tributing to a typical graph: (1) -kP" from n in-
teraction potentials 4' /q, (2) -E~~'""-k~
from 2(n+ 1) free-particle Green's functions G- I/Ez, (3) -(Zzkz)"'~ -kz'"' ' from integration

tegral was less than 10 times the latter, which
can be regarded as an excellent numerical check
of the identity (4.1). Regarding (4.2), it was found
that the integral on the left-band side agreed with
the value of the right-hand side calculated through
(3.4) to within 1 part in 10 . (3) Our method of
calculating Re and ImQ' is valid for all frequen-
cies. On applying it to the case + = 0 we were
able to make contact with the work of Geldart and
Taylor. ' We found that our calculated values of
ReQ (k, 0) differed by less than 0.3% from the
values quoted by these authors. Further, the
agreement was found to become consistently bet-
ter as we increased the fineness of the mesh in-
volved in our numerical integration. (4) The last
check also concerns the quantity ReQ'(k, 0). Its
values for large k (eg. , k =5 and 10) were found
to agree extremely well with the two-term asymp-
totic formula derived by Geldart and Taylor. All
these checks, taken together, provide us with val-
uable confirmation of the overall correctness of
the analytical derivation and numerical procedure
leading to the final results for Re and ImQ .

We will now discuss the x, (density) dependence
of the various graphs in the perturbation series
for the dimensionless proper polarizability Q. We
note that Q", which is the sum of all irreducible
polarization graphs containing n interaction lines,
behaves like

over n+ 1 intermediate 4-momenta, (4} -kP from
the factor n(k) included in Q" to make it dimen-
sionless. The product of all these factors yields
(4.3}. Although the nth-order proper polarizability
Q" is seen to have a simple power dependence on
r„ the total Q does not simply form a power ser-
ies in x,.

The reason for this is the following. Some dia-
grams contributing to Q", n& 2, which contain
polarization insertions, are divergent (e.g. ,
second-order diagrams obtained from those in
Figs. 1(b} and 1(c) by replacement of the dashed
line by the dashed-bubble-dashed line. Neverthe-
less, the sum of an infinite number of such dia-
grams, equivalent to replacement of V, by V,/
e(q, &o), in finite. The same difficulties (and for
the same reason) are known in the case of the per-
turbation theory for the correlation energy. By
analyzing the series for Q in the small r, limit in
a manner analogous to the correlation energy, as
done by Gell-Marin and Bruckner, 3 ' one can es-
tablish that Q has the form of ln r, times a power
series in ~, plus another power series in r,. In
particular, the estimation

Q +Q + ' ' ' O(r~-ln r~, r~) (4.4)

justifies our neglect of these terms at high den-
sities. In addition, it should be mentioned here
that the perturbation expansion for Q(k, ~} may be
invalid at some particular arguments (k, &u) (see
Sec. V) for reasons unconnected with the infrared
divergence of the Coulomb potential.

An examination of Fig. 3 gives a feeling for the
relative magnitudes of the first-order polariza-
bility Q' and the zeroth-order Q . All curves are
plotted at x, =2 (which corresponds to the case of

C3

CL

Q

3O 5

C3

Q....

= 2.5

-0.5—
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FYG. 3. Proper polarizability at r~=2. ---Q. (k, co), '' ''Q (k, co), — —Qo(k, (d)+Q (k, co). Arrows point out charac-
teristic frequencies cd~.
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Al), but the simple relation (4.3) provides an easy
way of rescaling the figure to a different r, : Val-
ues of Q should be multiplied by r, /2, values of
Q by (r,/2) . At k =2.5 typical values of Q' are
approximately 10-15/0 of the typical values of Q
(both in real and imaginary parts). But for smal-
ler 0, e.g. , k =1, the percentage increases to the
range of 25-30%%ug. This is a general tendency
found for a series of k. We can conclude therefore
that the approximation of Q by Q +Q can be rea-
sonable even at r, =2, for larger k. For k =1 and
smaller, the contribution from higher-order terms
may become significant. Of course, when this
approximation is applied at smaller r„ the situa-
tion is always improved.

Regions close to characteristic frequencies ~„
marked by arrows, are deliberately omitted on
the figure for the reason explained in the following
section.

We notice that Fig. 3 also gives, directly, in-
formation about the dynamic dielectric function
e(k, v), because it is defined as

e(k, u) =1+Q(k, u&) .

FIG. 4. Some second- and third-order polarizability
diagrams involving self-energy insertions.

G"(P)=G'(p)/[1 —~'(P)G'(P)] ~

In terms of G", m
'" is given by

(5.2)

wish to consider the class of all diagrams of the
type shown in Fig. 4, with n and m included for
completeness. This general class, denoted by
m '", is represented by the basic bubble of Fig.
1(a}, but with the free-particle Green's function
G' replaced by the effective Green's function G"
defined through the Dyson equation (see F&g. 5):

G"(P) =G'(P)+G'(P) ~'(P)G "(p) (5 1}

where & (P) [see Eq. (2.6)] is the Hartree-Fock
self-energy insertion. Equation (5.1) can be solved
for G' to yield

V. SINGULARITIES OF THE FIRST-ORDER DIAGRAMS

AND THEIR REMOVAL

2 d4p
ir '"(0)= -— — 4. G "(P)G"(P+ k) .

(27I) i (5.3)

The jump discontinuities in ImF and logarith-
mic singularities in ReF at

~

up,
~

=
~

-,'k +k [,
presented in the previous section, may lead to
unphysical results for various quantities in the
neighborhood of ~&o, I. For example, the dielec-
tric function e(k, ~s) may have infinities and S(k, cu)

may have zeros or even negative portions near
These difficulties demonstrate that pertur-

bation theory is not adequate for all frequencies.
Any attempt at removing the singularities by the
inclusion of higher-order perturbative effects
leads to unmanageable complications. One is,
therefore, forced to seek a simpler solution. In
what follows we shall show that our approximation
to Q is a reasonable one almost everywhere ex-
cept in narrow ranges of frequency about the char-
acteristic frequencies.

It was mentioned in Sec. IV that the squared de-
nominator in expression (2.10} for E caused
ImE to be discontinuous at &,. On the other
hand, the similar expression (2.11) for E * in-
volved the product of two different denominators
and ImE 'was found to be perfectly continuous
everywhere. In terms of the diagrammatic repre-
sentation, the presence of two Green's functions
with the same arguments [as in v, Eq. (2.3),
Fig. 1(b)] is the source of the trouble. Higher-
order diagrams which contain repeated Green's
functions, such as those shown in Fig. 4, will also
display the same pathological features as I' . We

Thus w'e see that all the troublesome diagrams,
when summed up, give rise to a regular expres-
sion (5.3) containing no repeated Green's functions.

By making a fox'mal expansion of the denomin-
ator of G' (5.2) in powers of the interaction
[Z (p) -v, see (2.6)] we easily recover the lowest-
order diagrams:

v '"(k)=no(k)+v (k)+O(v2) ~ (5.4)

+ . i +
I

\

I
/

I1
)l +
o

I
I

ir

FIO. 5. Dysen's equation for effective Green's func-
tion Oo'~.

However, the expansion (5.4} does not converge
to the full expression (5.3) at &u =~, or converges
very slowly in the neighborhood of u, . This means
that at these particular frequencies the first-order
diagram Q cannot be separated out of the sum
(Q'+Q + ' ' '), which makes the first-order theory
invalid there. (This effect can also further com-
plicate the r, dependence of Q at + = &o„ in addition
to the logarithmic behavior discussed in Sec. IV.)

We can illustrate the foregoing remarks by means
of a simplified but analytically tractable model,
the so called effective mass approximation. Using
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the definition of G, Eq. (2.2}, the effective Green's
function (5.2} becomes

0.6
k=0.5

G"(P)=
po —&ug-iqsgn(k~ —Ip[)

'

where

(5.5) 03-

CO~ =(d& + Z (P) . (5.8)

The HF self-energy Z' can be calculated explicitly
and expressed in terms of a real and frequency-
independent function f~(Ip I

) [see Appendix A„Eq.
(A4)1 as

(5.V)

In (5.V) Z' has been expressed in units of 2E~/I
and

I p I
in units of k~. In the limit of small

p, Eq. (5.6) becomes

&.6

0.6

0.5

k=05

I

0.4

~~ =to~& =const+-,' p'+o(Ip I'},

where

m 4ny',=1+
sz+ 3n'

(5.8)

(5.9)

3
0

C3

E
-05

In the effective mass approximation all terms in
(5.8} higher than quadratic in the momentum are
neglected (the constant term drops out later when
the integration over frequencies is performed).
Within this approximation, the right-hand side of
(5.8) can be calculated analytically and one obtains

m""(k &u)+ n' k (um~ 'm (5.10)

which is simply a rescaled form of the I,indhard
function.

Figure 6 shows the results of our calculations at
r, =0.5 and 0 =0.5, illustrating the problem under
discussion. The full line represents the function
(Q'~" —Q'}, which, according to (5.4), contains
Qas plus all higher-order diagrams of the type
shown in Fig. 4. As expected, the imaginary part
of this function is continuous and the real part is
finite. The broken line corresponds to the QBE

contribution alone, which is discontinuous in its
imaginary part and infinite in its real part. Both
curves were calculated in the effective mass ap-
proximation. In order„to test the goodness of the
effective mass approximation we have also plotted
the exact Q~s, i.e. , calculated with the true self-
energy (5.V), by a dotted line in the figure. A com-
parison of the dotted and broken lines shows that
while the effective mass approximation is not too
accurate it is certainly good enough for our illus-
trative purposes. Returning to the functions
Q""—Q' and Qss (the full and broken lines in the
figure), we see that the agreement between them

-0.6 0.8

FIG, 6. Proper polarizability involving seU-energy
insertions at r~= 0.5. Q~"~ —Q, --- QSE—both
curves within effective mass approximation, Eq. (5.8),

~ Q~ with the true self-energy; Eqs. (3.3), (2.6).

is rather fair at all frequencies except in two nar-
row regions of width

~& =-2 m
m* )

(5.11)

about the characteristic frequencies &u, =
I

—,'0'+kI,
where the discrepancy suddenly becomes extreme-
ly pronounced. Thus we find, in the effective mass
approximation, that Q' ~" can be approximated
fairly well by Q'+Qas (to within small perturbative
corrections arising from second- and higher-order
diagrams) for all frequencies except those in the
neighborhood of v,.

It should be mentioned that in the small R limit
Qss becomes even more singular than discussed
above due to the merging together of the charac-
teristic frequencies

I
~k~ +k I. This case has been

investigated in detail. by Glick." In order to re-
move the very pathological singularities that are
present here he found it necessary to use a
screened Coulomb interaction (thereby eliminating
the infrared divergence of the bare potential} and
sum an infinite set of both bubble and ladder dia-
grams utilizing the renormalired Green's function
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VI. TBE DYNAMIC LOCAI. FIELD t"(k,u)

Hitherto, the quantity of basic interest has been
the proper polarizability m and we have evaluated
it explicitly to first ox'der in the potential v. We
shall now focus our attention on the dynamic local
field G(k, ~) which is defined formally through the
relation

Q'(k, &o}

v(K) I+Q'(K, td)[1-G(K, a&)]
' (6.1)

On comparing Eqs. (6.1) and (3.8) we find that

(6.2)

where Q =E o Q" is the dimensionless full proper
polarisability. Since in the present (pr) case
Q=Q'+Q', the local field becomes

1 1
GPI'

Q' Q'+Q' Q'(Q'+Q') (6.3)

In Eq. (6.3), and also subsequently, the arguments
of functions will often be omitted for brevity.

The right-hand side of Eq. (6.2) can be recast in
the form of a series in which successive terms in-
volve increaSing powers of the potential e. To do
this it is necessar y to assume that

(5.2). Our calculation, which is a finite k version
of Gbck's, is much simplex' to cax'ry out because
the singularities are far milder than in Glick's
case.

The method we have described above for elimi-
nating the singularities present in Q suffers from
two shortcoinings: (i) It is carried out in the
framework of the effective mass approximation,
shown to be rather rough, and (ii) only diagrams
of the type shown in Fig. 4 have been summed up.
In actual practice one kncnvs that there are large
cahcellations among diag'. ams of the same order
and so it is absolutely necessary to retain al/ dia-
grams in each order to obtain consistent results.
We shall not attempt to rectify these deficiencies
since we would then be faced with the impossible
problem of summing exactly the entire series for

However, the main aim of our discussion has
been not to eliminate the singularities, but rather
to determjrie the region of validity of perturbation
theory and this has been clearly established: We
know that the first-order perturbation theory (for
the present problem} is good at all frequencies
except at those close to ~,. Therefore we shall
remain with our present approximation for Q (=Q'
+Qem+Qs*) and merely exclude from consideration
the dangerous fx equency regions around ~, whex'e

we know the theory becomes irivalid.

Q +Q2+ ~ ~ ~

QO
(6.4)

(the vertical bars indicate the modulus of the com-
plex quantity within it). The right-hand side of
(6.2) can then be expanded out in a power series
and the terms regrouped to yield

G G'+G + ~ ~ ~

where

Q'
(QO)2

(6 5)

(6.6)

G2
Q' (Q')'
02 03-

This is seen, via (6.8), to be equivalent to our G'

(6.6). An expression is also obtained for M2 which
corresponds to our 0'(6.7). However, no attempt
has been made to evaluate M' or M' explicitly and
therefore the results of this work are somewhat
inconclusive. (In the light of the discussion pre-
sented in Sec. IV, expansion (6.5) is rather formal;
actually G as mell as I cannot be separated from
the sum with higher order terms, or, equivalently,
M' and G' should represent infinite sums of sub-
sets of diagrams, producing screening of the Cou-
lomb interactions in the leading term. }

Two other groups of authors have also obtained
Eq. (6.6) as the form of their total local field, but

by following methods quite different from the one
outlined above. We shall comment here brieQy on
their work:

(i) Brosens et al.22 perform an exchange decou-
pling of the equations of motion to obtain an inte-
gral equation for the one-particle Wigner function.
On solving this equation approximately by a varia-
tional method they are led to the expression (6.6)
for their local field, which is therefore equivalent
to the first-order approximation to the exact G

(6.5) or exact M (6.8). Although in a subsequent

are the terms of first and second order in v, re-
spectively.

The series (6.5) for G has been derived by
Dharma-wardana" by a very general method
which does not make use of the condition (6.4). In
Dharma-wardana's a,pproach the quantity of inter-
est is the mass operator M(%,&u) which is related
simply to the local field by

M(k, &o) =z(k)[1-G(k, (o)]. (6.8)

Using a Green's function formalism and develop-
ing a perturbation theory for the mass operator
he obtains, to lowest order,

(6.9)
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paper4' these authors realize that their G is re-
lated to the perturbational result of Geldart and
Taylor" (in the static limit), this did not prevent
them from considering their approach to be appli-
cable in the whole range of metallic densities.
From our point of view, it is valid only as long as
the effects of G'+ ~ ~ are negligible, which seems
to be questionable at x, =3, the density for which
they presented results. The values of the function
Q'(k, v) obtained by these authors were found to
agree well with our calculations. While the pres-
ence of singularities in Q' is noted, their role in
G(k, 0), S(k, ~), and the plasmon dispersion is con-
sidered significant rather than unphysical, as we
have shown in the previous section.

(ii) By writing the equations of motion for the
Green's functions, accounting for the effects of
potential to first order only, and using a decou-
pling procedure, Tripathi and Mandal" are also
led to a local fieM of the form (6.6). These au-
thors evaluate it only in the static limit and find
that it has a sharp peak for k in the neighborhood
of 2 (see Fig. 7, dash-dot line). In the light of our
discussion in the previous section we know that
this is a spurious effect since e =0, k= 2 is a
point at which the perturbation theory breaks down.
In later publications"~ "~"~4' these authors go on to
calculate the pair correlation function and various
other static properties in terms of G(k, 0). Be-
cause integration over frequencies is involved, this
procedure is justified only if G(k, w) is approximated
well for aQ frequencies by its static part and we
shall see later that this is definitely not the case.
Also, their claim that their theory conserves
frequency moments to infinite order does not ap-
pear valid in general, because all terms higher
than linear in potential are omitted. Their claim
merely amounts to the statement that the frequency

N 04

C3

~0.2

0

FIG. 7. Static part of the local field function
G(k 0)/k G~, Eq. (6.3), at x~=1.894; --- G, Eq.
(6.6); — — —G, Ref. 14, at x =1.894.

r

dependence is fully accounted for in the first-order
term.

We shall now show detailed results for the dy-
namic local fields G" and G'. G", Eq. (6.3), was
obtained by retaining first-order terms (in v) in
the perturbation expansion for the proper polar-
izability Q —= Q'+Q' and then using the general re-
lation (6.2). On the other hand, G' was obtained by
directly formulating a perturbation expansion for
M or for G, Eq. (6.5), and keeping only the first-
order term for them. Both G" and G' involve only
the low-order polarizabilities Q' and Q' but are
constructed out of them in different ways. While
G" depends on r„ the structure of G' makes it x,
independent. It is not clear a Priori which of these
forms is superior [i.e., leads to a, better approxi-
mation to G(k, v), X(k, &u), S (R, ar), etc.] and we
will therefore show results for both of them, re-
ferring to the future to each type of approximation
as G"A and G'A, respectively. Concerning the
properties already discussed in Sec. III in G"A,
we briefly summarize them in G'A. High-frequen-
cy expansion of X(k, &u) in G'A is exactly the same
as (3.11) [the difference is 0 (1/v')]. Therefore
G'.A theory satisfies the first moment exactly and
third moment approximately, 4' with the same ac-
curacy as G"A theory. Long wavelength plasmon
in G'A has the same dispersion" as in G~'A, Eq.
(3.20); the difference is O(k').

In Fig. 7 we show the static (&u =0) parts of G"
(continuous line) and G (dot-dash line), divided by
k', as a function of wave vector k. We also show
a static local field due to Geldart and Taylor, '4

G, which was obtained by including certain
higher-order correlation diagrams in addition to
the first-order diagrams and by using some re-
normalizations in order to obtain agreement with
the compressibility sum rule. Both G" and G
were calculated at x, =1.894. Qn examining Fig. 7
we see that both G" and G' exhibit a peaked struc-
ture a,round k =2, which is absent in G, thereby
indicating that this feature is an artifact of first-
order perturbation theory and is washed out by
higher-order correlation effects (this is in agree-
ment with our general view of the perturbation ex-
pansion close to (d„as was pointed out earlier in
this section"). By comparison of G"/k' and G'/k'
at k-0 with the limiting value of GoT/k' which is
so constructed that it gives the proper value of the
compressibility of the electron gas, we can con-
clude that G' is more consistent than G" with the
compressibility sum rule, though the magnitude of
their difference is of the second order in potential
only. At large k, G" and G' becomes pra, ctically
identical and lie lower than GOT.

In Fig. 8 we show the real and imaginary parts
of G" and G' plotted as functions of frequency. The
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PIG. 8. Dynamic local field G(k ~): — O'. ..G~ at r =0.5, ---G~ at r, =2.0.

three curves shown correspond to G" for the two

v, values 0.5 (dotted line) and 2.0 (dashed line),
and G' (continuous line). [Note from (6.3) that
G'=limr, -0 G"]. The arrows show the positions
of the characteristic frequencies ~, where, in ac-
cordance with the discussion of the previous sec-
tion, the curves cannot be trusted and for this rea-
son these portions have been deliberately left in-
complete. We see that G' and G" for x, =0.5 agree
closely at all frequencies for k =1 and are so close
for k =2.5 that they could not be drawn separately.
Function G" for r, =2.0 differs somewhat from the
two previous curves in the region below and be-
tween the frequencies ~„and agrees closely at
large frequencies. %'e see that both ReG' and
ReG~' rise from their static (&u =0) values to a
maximum located slightly below the upper charac-
teristic frequency ~. Thereafter they seem to
drop sharply and become negative before finally
approaching the (positive) asymptotic value of
Ga~vp(k) (=0.111 for k =1 and 0.2VS for k =2.5). Note
that both ReG' and ReG" tend to this asymptotic
value and this guarantees that both local fields sat-
isfy the third frequency moment sum rule to the
same degree of accuracy. Regarding ImG' and
ImG", the noteworthy feature seems to be the
large rise that occurs just before the cutoff at the
upper characteristic frequency co,. The absence of
a tail in ImG for large frequencies leads to the
plasman being undamped at long wavelengths in
the present approximation. An important conclu-
sion that can be drawn from these curves is that

the local field varies quite appreciably with fre-
quency: The real part varies by at least a factor
of 2 over its range and also changes sign, while
the imaginary part, although beginning from zero,
attains values even greater than the real part.
Therefore it seems quite unreasonable to approxi-
mate the entire dynamic local field by its static
part, as dane by Tripathy and Mandal ~ ' and by
Toigo and %'oodruff" in. their calculations of var-
ious metallic properties.

1n a recent paper Rao, Mandal, and Tripathy"
have calculated numerically the local field G'(R, u&)

as a function of co at A =kz, anddiscussed the prob-
lem of its singularities. Their claim that there
are no logarithmic singularities at ~, is, in our
view, incorrect for the reason that we- have dem-
onstrated unambiguously the existence of these
singularities using analytical methods (in this re-
spect we agree with the conclusions of Brosen
et al. '3). Also their plots of G(k, ~) vs &o are com-
pletely different from ours (Fig. 8, for k=1, solid
line) even in the regions away from the singulari-
ties. Since our results conform to several inde-
pendent internal checks, we feel that the numerical
procedure used by these authors is seriously in
error.

VII. DYNAMIC AND STATIC STRUCTURE FACTORS.
PAIR CORRELATIONS

The differential inelastic scattering cross sec-
tion for x rays and electrons is proportional to



A. HOLAS, P. K. ARAVIND, AND K. S. SING%I ' 20

\I
]

/

l

'I

I

I

I"
I

I

I

'. I

'. I

. I

.I
'll

0.08

Q.04-

0
2

k=2.5

FIG. 9. Energy-loss function Im[-1/e(k, co)] [proportional to S(k, cu)] at r~=2;
--- in RPA, 'for free-electron gas.

calculated in G~A, — — — in G~A. ,

k 1-6(k, ~)Q'(k, ~)
' (7.2)

In order to illustrate the effect of interaction in
the first-order perturbation theory, we have plot-
ted in Fig. 9 the function 1m[-1/e(k, ur)] in differ-
ent approximations. There are two important
points to note at k =1: (a) The shape of the dynam-
ic structure factor in the perturbation theory
G' A is more symmetrical than that in the RPA
and (b) the peak position in the former is shifted
to much lower energy than the latter. This be-
havior is in accord with the observation of Batson
et al. for Al, Fig. 10. Of course, the first-order
theory is unable to produce the tail in the high-

.frequency region which is due to multipair pro-

the dynamic structure factor

S(k, w)= ——tmk(k, e)= Im ), (7.1)3k -1
m ' 4nr, e(k, ~)

where k is in units of k~ and S in g/2E. . The di-
electric function (4.5) in terms of G is

duction. One should also note that the difference
between the results of the two approximations
G"A and O'A are significant here. The same func-
tion is plotted in Fig. 9 for k=2.5 also. As ex-
pected, for such large momentum transfer the ef-
fect of interaction is tiny.

In Fig. 11 we have plotted the peak positions of
S(k, &u) for a wide range of momentum transfers
for r, = 2 in various approximations. Because of
their considerable interest, we sha'll discuss these
curves in somewhat greater detail. A striking
feature to note is that the RPA dispersion curve
(for values of k &k,) lies much above that given by
G~'A, i.e., in this region of k values RPA is a

,——.0.8-
2—

3
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FIG. 10. Energy-loss function Im[-1/e(k, (d)] for Al
(at rk=2. 07) ~ k=2.0 ~ t=1.14 k~. calculated in G"A,
——in RPA. Experimental points from Batson (Ref. 19).

FIG. 11. Plasmon dispersion at r~= 2: —.~ ~ —undamped
plasmon (both in RPA and first-order theory); all other
curves indicate peak position of 8(k-, cu). calculated
in G~A, —~ —~ —in G A. , - — — with static part of G,
——in RPA, ——for free-electron gas.
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much poorer approximation than the first-order
perturbation theory. In the region around k =1,
the alternative first-order theory O'A differs
appreciably from G "A (curve corresponding to
O'A agrees well with that given by Devreese et
al.40). In order to investigate how important is
the (d dependence of the first-order terms, we
performed calculations using the static value of
Q' and obtained the dash-double-dot curve. This
curve is identical with the one obtained by Tripathy
et al. , ' from which we conclude that these authors
used the static value of their 6, although this
severe restriction is not mentioned in their paper.

In the small-k region (k & 0.5), the plasmon dis-
persion curve in G"A and O'A is practically the
same as in RPA. This is in accord with experi-
ment (see Sec. III).

The region around the critical wave vector k,
deserves special consideration. The plasmon fre-
quency ~„(k) in G "A is higher by 1.4%%uo for k = 0.6
and 3.1% for k=0.7 (3.5'quoin G'A} than in RPA.
Both the plasmon and the particle-hole continuum
contribute to the total intensity; at small k it is
predominantly the former, and closer to q, it is
the latter. For example at k =0.5, plasmon ac-
counts for 85% of the total intensity (RPA value is
92%%uo}, while at k =0.7 the corresponding contribu-
tion is 42% (in RPA 53/0). The intensity of the RPA
plasmon drops to zero as k approaches k, because
of the logarithmic behavior of BQ'/s~ Alth.ough
we are unable to determine here the plasmon fre-
quency in G "A because it lies around ~, (the sin-
gular region), we do find, however, that the in-
tensity corresponding to it goes rapidly to zero.
For k ~ 1 we find no "two-peak" structure" in our
S(k, &o).

Higher-order terms, not included in the present
theory, give rise to a finite width of the plasmon,
which is obviously much less than the width of the
particle-hole continuum. For a high- resolution
(both in k and ~) experiment, in the range 0.5
&k &0.7, it should be possible to observe two sep-
arate peaks: one very narrow and the other quite
broad, whose relative intensities change from be-
ing predominantly plasmon to predominantly par-
ticle-hole continuum. Actual experimental points
of Batson et al." in Al lie in between the two

peaks as can be seen in Fig. 12.
The purpose of the above detailed discussion of

the behavior of the plasmon and the particle-hole
continuum contributions in the region below and
close to q, has been, in particular, to clarify con-
fusing considerations made by Tripathy et al. ' on
this subject.

Because of the closeness of the theoretical dis-
persion curve with experiment, we are inclined
to believe that the first-order perturbation theory

FIG. 12. Plasmon dispersion for Al (at r~=2): --- un-
damped plasmon, — peak position of $(k, co) calculated
in 6~A. Experimental points from Batson (Ref. 19).

is quite satisfactory and the role of the higher-or-
der terms even at r, =2 is not very significant.
Nonetheless, the cont;ribution of the first-order
theory is very marked compared to that of the
HPA.

In the region 0.7 & k & 1.3, where' G"A and Q'A
differ slightly from each other, experiment is in
favor of the former (cf. Figs. 12 and 11).

The static structure factor S(k) is given by

S(k) = 3k' "
& -1

d+S(k, &u) =4 du&im~4nr, , (e k, v

(7.3)

[In all the approximations considered here, the in-
tegration range in (V.3) may be limited from above
by &o, =k+k'/2, but at k &k, plasmon contribution
must then be added separately. ] Singularities in
Q' at &u, lead to integrable singularities in S(k, &u),

therefore there was no need to exclude from inte-
gration the regions surrounding them, although
they are difficult to handle in numerical work.
The accuracy of numerical integration in (7.3) may
be estimated by checking the fulfillment of the f-
sum rule' [combine (3.14) and (7.1)]:

1= Jl dv&Im( ). (7.4)

S(k) =
2

k'+ O(k'),1
2&v~ r, (V.5)

Both integrands in (7.3) and (7.4) are very similar
and cause the same difficulties mentioned above.

In Fig. 13 we have plotted the calculated S(k) in

various approximations. The RPA result, although
exact in the small-k region' where it has the form
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FIG. 13. Static structure factor S(k) at r~=2. —-==cal-
culated in G~~A, ——in, BPA, ——for free-electron gas
I,Sap(k)], — — -with static part of G .

differs considerably from that of G "A (full line)
in the region at larger k. For large k, the struc-
ture factor has the following expansion4'.

S(k) =1+—,+0 —,i.k' k')

From Eqs. (7.6), (7.3), and (V.2) it follows that

Sk
C = limk4

„4@x,

Q'(k, u&)

)+[1—G(k, rr)]r) (k, )r))

(V.V)

Expanding the denominator and noting that the
leading term is canceled exactly with -1, one ob-
tains

3k
C =lim d+Im[- (1-G)(Q')'

g(r) =1+— d'k[S(k) —1)exp(ik r),
8w

(7.11)

where r is in units of 1/k~. Its value for r =0 is

which is in agreement with Brosens et al.4' The
first term in (7.10) corr'esponds to the first term
in (7.9), and therefore gives the value of C in
RPA, while the contribution from Q' diagrams
reduces the RPA C by half. It is interesting that
self-energy diagrams of Q' do not contribute to
C (this is similar to the fact that self-energy di-
agrams do not contribute to the second-order
correlation energy}.

Once more we should emphasize the importance
of the dynamical aspect of our calculations. If
S(k) is calculated with the static part of G' only
(dash-double-dotted line in Fig. 13) a large peak
appears at k= 2. This curve is the same as that
obtained by Tripathy et al. ,

"showing that their
calculations were restricted to the use of the static
part of their G. This peak becomes more pro-
nounced at higher ~,. Although we consider it un-
justifiable to apply the first-order theory to high-
er r„we repeated the calculation of S(k) at r, =6
using both the static and dynamic G' for the sake
of comparison with the result with static G' of
Ref. 3V. With static G' one obtains a peak in S(k)
as high as 1.3 at k=1.95, while dynamic 6' gives
a rather smooth curve with a maximum of 0.95 at
k =1.95. We give these details in order to clearly
demonstrate that all speculations of Tripathy et
al. ,"such as "incipient Bragg peak, " connected
with the above-mentioned peak, are spurious, and
are based on an unjustified replacement of the dy-
namic G'(k, ~) by its static value G'(k, 0).

We shall now consider the pair correlation func-
tion g(r) given by

(7.8) S(0) =)+-, fd k'[kS( ) —k1]. (7.12)

()n examining the k dependence, it can be shown
that only the first term in square brackets in (7.8)
contributes to t". In both G"A and O'A one gets
the same value of C:

~O

C = —limk' de Im(Q')'
4@x,

In Fig. 14 we show the r, dependence of g(0). One

+ limks de Im(Q'}
co 0

(V.9)

The above contributions can be easily calculated
using integral representations of Q' (2.3), (2.4)
and Q' (2.1), performing an integration over fre-
quencies first and taking the large-k limit. The
result is

-o.4-

3. (7.10)
FIG. 14. Pair correlation function at zero distance:

calculated in G~~A, ——in BPA, —~ -' ~ —in VS theory
gtef. 15).
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notices a marked improvement in the value of g(0)
due to Q' contributions as compared with the RPA
value. The initial part of the curve agrees well
with the exact expansion formula (for r, -O) given
Kimbal144.

g(0) =-,' —(m +61n2-3)r
5m

3 -
4 !r', Inr, + O(r', ) .

2v 4] (7.13)

=—lime [I- S(k)]]= ——C .~ 4

8 ~„8 (7.14)

This property, when combined with the following
exact relation due to Kimball" (valid for pa, rticles
interacting via Coulomb forces):

1
g'(o) =g (o)

Q+~
(7.15)

provides a new check of self-consistency for any
approximate S(k). The left-hand side of (7.15)
may be calculated from (7.14), and the right-hand
side from (7.12), and compared to see if they are
equal. Using (7.10) and (7.14), in the G "A (and
O'A as well) we obtain

For example, at r, =0.5 our g(0) is only 4% higher
than one calculated according to (7.12), and their
difference diminishes to zero with decreasing r, .
The results of O'A are very close to those of G"A,
only slightly lower at larger r, (e.g. , g(0) =-0.16
at r, = 2 in G'A, compared to -0.10 in G"A).

It is interesting that the knowledge of large-k
expansion for S(k) [Eq. (V.6)] allows one to calcu-
late from (7.11) the derivative of the pair correla-
tion function, as was shown by Kimball":

limO'"(k, 0) = limG'(k, 0) = -', ,
k

(7.18)

which gives for the right-hand side of (V.17) the
value, while the left-hand side is r, dependent
and is equal to —,

' only in the limit r, -0. Although
both Kimball's and Niklasson's relations are
satisfied only approximately, it so happens that
the left-hand side of (V.15) is equal to the right-
hand side of (7.17), which constitutes the actual
interpretation of the statement of Brosens et al."

According to definition (7.11), g(x) may in prin-
ciple be calculated for any argument r. Since we
are able to calculate S(k) only at a limited number
of points k and with finite accuracy, we need some
interpolating and smoothing procedure applied to
S(k) before the numerical integration can be ac-
compbshed. Details are given in Appendix C.
Results of the integration are shown in Fig. 15.
The 0"A results are given as a dash-dotted line
for r, =1 and a dashed line for r, =2. For com-
parison the RPA results for r, = 1 are shown as
a dotted line. It is interesting that, except for
g»(r), pair correlation function behaves almost
linearly, with the initial slope given by (7.14),
over a wide range of r values (up to =1.5), then
bends slightly to approach g»(r). For r &4, g(r)
is practically equal to 1, although when magnified,
Friedel oscillations can be seen (see insert Fig.
15).

In the paper of Mandal et al 36g(r) an. d related
quantities are calculated in the approximation
equivalent to G'A, but restricted to using the static
values of G'. As we mentioned earlier in connec-
tion with S(k), this restriction severely distorts

1
~ =1g'(o) =2,

S
(7.16) 0.8

1.010
which fulfills the identity (7.15) in the r, -0 limit
only. Such approximate fulfillment of the Kimball
relation is in accord with the approximate charac-
ter of the first-order theory. In view of the above
considerations we do not agree with the claim of
Brosens et al." that the Kimball relation is exact-
ly satisfied by their theory (O'A in our notation).
In making their claim they used the relation

0.6
=0.4—

/

0.2
/

0~'

\

I

)I .. I
I)'
Ig

I

II

4 6

—1.005

1.000

0.995
10

g(0) = 1 - ~ limG (k, 0), (7.17)
0 I 2 5 4

which was derived by Niklasson for an exact theo-
ry, but it may be satisfied only approximately in
G'A and G"A. Indeed, from high-k expansion
Q'(k, 0) -1/k', with coefficients determined by
Geldart and Taylor, "one immediately obtains

FIG. 15. Pair correlation function vs distance r
(in kz): for free-electron gas (gHz), —.— —calcu-
lated in 6~A at r~= 1, ~ ~ ~ ~ in RPA at r~=1, --- in G~ A
at r =2.
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the results of the calculations. Large oscillations
ing(r) calculated in Ref. 36 are again due to the
use of a static G' (e.g. , at x„=3 they observe a
maximum equal to 1.03, while using dynamic G'
we obtain 1.008 only). For higher values of r, the
value of the maximum in g(r) becomes quite
large." This is again due t.o the use of the first-
order perturbation theory in a region of densities
where it is not valid and due to the use of a static
G'. We therefore believe that the conclusions and
remaining results of Mandal et al."are invalid.

VIII. CONCLUSION

Our extensive investigation of the first-order
perturbation theory demonstrates that it is a sig-
nificant improvement over the RPA for a wide
variety of calculated properties. We have also
seen that it is very important to keep the + depen-
dence of the local field factor G(k, &v).

Although the perturbation theory is strictly valid
I

in the small x, region, our calculations neverthe-
less show that even for ~, as large as 2 the results
agree fairly well with experiment. This indicates
that the first-order perturbation theory has a
wider range of validity then one might have sup-
posed.

The first-order theory is unable to give either
the damping of the plasmon or the high-frequency
tail of the dynamical structure factor. Both these
effects are the result of multiparticle excitations,
a topic which will be dealt with in a subsequent
paper.
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APPENDIX A: EVALUATION OF Imk~

We wish to evaluate the imaginary part of the function

o o o,E(- ), f. . . 1 (n, - nE,E)(n;,- n;„~)
J (p'- p)' (&u+ i@+ (d- - (u- )' '

where

(A1)

(u;= 2q, n'; = 6(1 —q~) .
Expressing the squared denominator as a derivative (i.e., using the identity I/(&++) =-(s/s(d)[I/(&++)])
and applying the Dirac identity we have

Imp" ()r, rn) =-
&

—fd'p fd p (~,),
'(n''.,—n-', .n)(n'.,.—n.'.,) rr(rn+ rn.,—n, ,.) .

Introduce the function

0

f(d) = fd'p (-.

which depends only on the magnitude of q. This function is easliy calculated to be

1 2

t(n)=4nf (rr)=dna+ d
)n

4q 1 —q

Equation (A2) can now be written as

ImZEE =Im(FEE+F E+EEE+FEE),

(A2)

(A3)

(A4)

)mn, (rn, rn)= ——fd Png(P)n(md rn'. nrn. .n)

rmp,' (rr, rn)=p —fdpnp((pn)r()rr(rnnrn. nrn, .r).
It is'easily seen that

ImF,'E,(k, u)) = -ImZ', E,(k, —u)) .
Thus

(A5)

(A6)
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ImF s(k, (d) =Im[FSE(k, (d) - Fy(~(k, -(d)+Fyam(k, (d) —Fys(k, -(d)], (A7)

and we need calculate only ImE, and ImE, . These functions can be evaluated quite straightforwardly by
adopting the usual spherical polar coordinate system. We find that

4 3

ImESE(k, (d) =, v,8(l —v', )f~(v,), (AB)

3
ImE', s(k, (d) =, 8(1- v', )[v f (v )+kf (1+2(d)' '], (AS)

with

k
p ~+~~~

k 2
(A10)

On using (AB) and (AS) in (AI) we get

4 3 4 3

ImFBE(k, (d) =, 6(l —v', )[v,f~(v,)+ v f~(v )+kf~(1+2(d)'~y] —,8(l —v')[v, f~(v.)+v f~(v )+kf~(1 —2(d)' '].

If we define

(All�)

ass�(v,

k) = vs(v) —(k+ v)fi(k+ v)+kf~(k'+2k v+ 1)' '
I

and remember that v, =-(v +k), we see immediately that (All) goes over into the expression (2.13) given
in the text.

APPENDIX B: EVALUATION OF ImF~

The first-order exchange diagram leads to the integral

E„(- ), d'P d'P ' (n'; —nLg) (nyy. - ny„g)
(II- P ) ((+d17/ (+d —(d- g)((d+f'g+ (d n

—(d-, )()
~ ~

The imaginary part of this expression is
3 3

ImE "(k, (d) =y, ,), (ny —ny, ~)(n';, —ny, ,~)&P-P'

1
X —1(5((d+ (d- —(d (()P + +-,—

By interchanging the dummy variables p and p' in
so that

1
7(5((d+ (d-. —(d-. )()g+ QP (d

(82)

the second term one sees that it is identical to the first

ImE "(k, (d) =-7(, ,(n- -n-, q)(n-, —n-, ,))5((d+ (d- —(d-,))PEy — dpdp o o o o 1

(p pg y y y+ y' y'+ (g)+ (d, (d, g

Define the functions

(83)

nnn;"(n, n)= —n rd')n'.,n(tnntn. ,- n, ,) (y, ,n',p.
(84)

In terms of them (83) can be written compactly as

ImFs*(k, (d) =Im[E "(k, (d) —F *(k -(d)+Eys "(k, (d) —EyE*(k, -(d)].
In both ImE, " and ImE, " the integral over p' has the general form

(85)

n~
4,(a, k„ky) =

Jt d p, ,yP

%e can regard this integral as the real part of

(86)
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the complex function

0
gye(a k„k) — d p(~ ~)2( . ~ ),

q =0',

C, (a, k„k,) =ReC (a, k„k ) . (88)

As usual, we will first calculate ImC and then
obtain Re4 through Hilbert transformation. It is
evident that 4 depends only on the lengths of the
vectors k, and k, and the angle between them. The
dependence on k, may be further simplified:

m - a k, k2
4(ajkkjk2) — i jjkkj

2 2 2

where

(89)

(810)

Introduce a coordinate system with the z axis
along k, and x axis in the plane (k„k,). If c,
=k, k,/k, k, and s, =(1—c', )' ' then

k, =k, (0, 0, 1), k, =k, (s„0,c,),

p =p((1- t')"'cosy, (1 —t')' 'sing, t) .
t=cos8 and y specify the polar coordinates of p
with respect to the chosen set of axes. Equation
(89) now becomes

~
k, k, k, d , ' dt " d(I()

~ ~

k2 w o -k (+&'g —pt () p +kj —2k) pckt —2kgpsk(l —t ) cos(I()
(811}

The principal value has been introduced in order
to handle properly the singular but integrable Cou-
lomb potential. Now use the formula

W($, p. , y, )x= (x - x)' B+',

where

(816)

dy 2psgn n 8 n2—

J, n —P cos(y) (n' —P')" ' (812)
(817)

to evaluate the y integral in (811), where, in our
case, n =p'+k', —2pk, c,t, =I3p2k, s,(l —t')' '.
From the inequality (p-k, )'~ 0, which in terms
of above variables is n —P cos(y) ~ 0, it follows
that n ~

I p ~

~ G. Therefore the 6 and sgn functions
are always unity in this case. If we set pi= n2

—P' then (Bll) becomes

(818)

The integral in (815) can now be evaluated to yield

(819)

where

dt4= 2p dp MW((+&a-Pt)
(813)

N(g, )((,, y) =1—xo+ [(1-xo}2+B']' '
=1—r —2u(( u)+(W—($, u, r, 1))' '

(820)

Imc =-m 2p2gp Q —pt . (814)

The t integral is easily evaluated. In the p inte-
gral we switch variables to x =p' and obtain

(815)

&,($, u) = t'- x, + f(t'- x,)'+a']"'
= 2(t' —u)'.

It is evident that ¹0andA, ~ 0 in general.
ReC is given by the Hilbert transform

(821)

In the above integral we have to evaluate 5 with
p'=x and pt = (. Using the notation ((), =k, k, /k,
and y =0', and evaluating S' we obtain

Re4, (t, p, y)= 'P ™«t ~» t' d. (822)

On using (819), (822), (88), and (89) we obtain

w
" dt' N($', k, k,/k„k, )~

{a/k t)" +{
Equation (84) can be expressed in terms of (823) to give

jm(F, '+k ')= —tr f k jn-j(m- k —p'k)Z( , mkpj'k), ,

(823)

(824)

where
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E((d, km, P', p k) = 4, (&u — k', p, k) —4, (a&+ —,'k', p+ k, k) . (825)

To evaluate (824) we use polar coordinates with the axis along k. Switching variables from P to y =P'
and recalling that v. = ~/k ——,'k the integral becomes

1

Im(EE| "+E~s') =-—e(l —v', ) dy E((d, k', y, kv, )
P '

d$ N($, „)I
N((, v +k, y+k'+2kv }'~

v, +k- t A, (t, v, +k) )
w$

On changing the order of integration we get

k' ', v', -$ v+k —$ i' (826}

Introduce

X(t v +k y)~

~(,+a)

(828)

where

t~((.v..y)~T.(( v, )= ) dylnl

&(h, V, y) =A, (h, u) [y+A—.($, t()]

+([y+A.((,-~)]'+A.(&, i ))"', (835)

I

The remaining task is the evaluation of the func-
tions G, (v) and G, (x„x,).

Evaluation of G~(v). We will first obtain an ex-
plicit expression for the function L(y„), p) de-
fined in (829). Since the algebra is fairly straight-
forward we only show a few steps along the way

'before giving the final result.
Rewrite N (820} as

I (r., (, u) J"'~r»[~(=(, u, ~)) (829)

A, (t', V) =4($ —V)'(1 —t'), (838)

T((, V, 1 —v'.) =L(t('+(1 —v',), (, u}
—L(p', t', p, ) —(1,—v') in[A, ((, p,)].

(830)

Then

A.(h, t ) =2k(h —t ) —1;

L(y. , $, t() =-&(A,. A. , A. , y.}
fy0

dy in', —(y+A, )

(837)

T,($, v, ) = T($, v„ 1 —v', ) )

T~((, v„k) = T($, v + k, 1 —v', ) .
Further let

G(.)=-P "d]"' "'-"'

(831)

(832)

+ [(y+A, )'+A, ]' '].
Change the variable to y(y) =A, —(y+A, ) + [(y+A,)'
+A ])/2

y (y0) (ttljt„A„A„,)= d (-*-'-2, ' )}(
A,

*+RA
(y A ))~'

( ) =-'p d&
+1

(833)

ith these definitions (85) can finally be written
as where

+ —,'yo — ~ ln(yo —A, ),
1

(838)

imFs "(k, (u) =, &(1 —v', )[-G,(v,) +G,(v, + k, 1 —v',)]

4w'
, e(1- v') [-G,(v )

+G2(v +k, 1 —v )]. (834)

y, =A, —(y, +A, ) + [(y,+A, )'+A,]"'.
Using (838) we find that

L(v„(,v, ) =1 —2v, t'+ v',

—(1- t2) in[2(1 —$')],

(839)

(840)
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(1 t v ) =(1 v') Inl2(( v.)(s —v.) I+(t v.)(s —v,)- (1 t ) 1nl2($ v,)(s —t)
I

T, = T(t, v„1 —v'.) = L(l, $, v, ) —L(v'. , $, v, ) —(1 —v', ) In[2($ —v, )']

=(5- v,)s- 1+v,$+(-2+v', + t') lnl t- v, l+(1 —v',)»Is- v.
l

—(1 —$') ln (s —$ I
+ (1 —P) ln(1 —P) .

The notation s = sgn($ —v, ) has been used above.
Now we calculate G, (v) from (832):

(841)

(842)

where

$-v (843)

T„((,v) = ($ —v)s —1+v$, T ((, v) = (-2+ v'+ $') ln
I $ —v I,

Tc($, v) = (1 —v') (ln
I
s —v

I

—ln
I
s —t I ), Ts($, v) = (1 —v') ln(1 —$'), (844)

Ts((, v) =(t' —v')[ln Is —( I- ln(1- t')].
In performing the Hilbert transform (843) we do not expect trouble from Ts, T„, and Ts, but Tc and TD
are dangerous at t -+1 where they become logarithmically divergent. However, the divergences arising
from Tc and TD cancel each other and the sum is finite. In order to handle this problem we introduce
"safety" epsilons at the integration limits $ -+1, add the contributions from Tc and TD, and finally pass to
the limit of the epsilons tending to zero. In this way we obtain the following results for the different con-
tributions to (843):

G»(v) =--,P d$ =-—,(v —1) lnj. TA — 1 2 1-v
1A 4 ( v 1+v

G,.(v) =-'(1 - ")[(Inl1 - v I)'- (Inl 1+ v I)']+ —, —2[(1 —v)» ll —v I+ (1+v)»
I
1+

v I]
—-'[(1 —v)'»

I

l —v
I

—(1+v)'» ll+ v I]

(845)

(846)

G, (v) = —,'(1 —v') ln —-', (1+v)' ln
I
1 + v

I
+ —,

'
(1 —v)' ln

I
1 —v

I
+»n2 ——,v,

(j.-v)/ Q.+v) yt.",~(v)+o„(v) =--',{)—r ') (()n() —v ()' —on ~) +
~
I)*+ —» I) +~1 ) ~

Q+p)/ (1, -p) i
And finally,

G~(v) =G&g(v)+Ggs(v)+Grec(v)+G&s(v)+G&@(v)
&i-.~/ ( +.i ~„—'lnll+x

I

--"[(I- v»nil - v I+(I+v»l1+ v
I

- 2»2] ~

4 4+v&/ Q. -v& 2

(848)

(849)

(850)

g(a) = —;(lna)'+2 —lnl 1+x
I
.

Q
X

(851)

The function g(a) can be evaluated numerically to
very high precision since the integral occurring

Note that G, (-v) =-G, (v) so that it is only neces-
sary to evaluate G, (v) for positive v. To simplify
the integral in (849), introduce the function

~' dx
jl

—lnl 1+x I, for 0 &a -1
( ) (&

x

-g(1/a), for a~1.
g(a) is never needed at negative arguments since
the 8 functions in (834) require that I v I

~ 1 and
hence that (1 —v)/(1+ v) is always positive. It is
easily seen that

l

in it is well behaved and causes no problems. On
using (850) in (849) we see that the expression
for G, (v) goes over to that given in Eq. (2.15) of
the text.

Evaluation of G,(x»x,).

G, ( „,)=--,'P jl
-1 Xg

T(g, x, &x,) =L(x, +x2& $,x, ) —L(x'„$,x, )

-x, ln[&, (g, x,)].

(852)

(853)

Qn using (838) to evaluate the right-hand side of
the above expression we end up exactly with Eq.
(2.23) of the text. Equation (852) is now reduced
to a principal value integral which has to be eval-
uated numerically. A detailed examination of Eq.
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(2.23) for T shows that it is well behaved and fi-
nite everywhere except on the line $ = v+k, where
it is logarithmically divergent. Nevertheless, the
integral (B52) is finite and thus as long as the in-
tegration knots a.re chosen off the line t' = v+k,
there is no problem with numerical work and G,
can be computed to good accuracy.

APPENDIX C: NUMERICAL REPRESENTATION

Function S(k) is expressed in terms of another
function E(x) defined by

S(k) =1 —(1 —x)'E(x), (C1)

x =k /(ko+k') (C2)

with a parameter ko chosen from the range [1,1.5j.

By introducing a new variable x (C2), an infinite
range of k is reduced to [0, 1j range of x. The
definition (Cl) of E(x) allows us easily to satisfy
the small-k (7.5} and large-k (7.6) asymptotic
properties of S(k}. They lead to the following re-
strictions on E(x):

E(0) =1,
E'(0) = 2- k',/2(o„

E(1)=-C/ko.

(C3)

(C4)

(C5)

Function E(x) is approximated by a cubic spline
on the range [0,1j, whose coefficients are fitted
by means of least squares to the set of (k, , S(k,.))
points, with boundary conditions (C3)-(C5). Gen-
erated in this way the, numerical procedure allows
us to obtain an interpolated value of S(k) at arbi-
trary k, as a continuous and smooth function.
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