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Extended x-ray absorption fine structure determination of thermal disorder in Cu:
Comparison of theory and experiment

R. B. Greegor and F. W. Lytle
The Boeing Company, Seattle, Washington 98124

(Received 9 March 1979)

The extended x-ray absorption fine structure (EXAFS) of Cu at temperatures from 10 to 683K has been
used to evaluate the EXAFS disorder term and compare it with theory. The change in disorder for different
temperatures was extracted from the slopes of in', /lf, ) plots and by using a least-squares curve-fitting
program. The values of the disorder parameter vs temperature are compared to a pure Debye model
without correlation, a Debye model with correlation, and a model incorporating the measured phonon
spectrum of Cu. The pure Debye model predicts too large an efFect, whereas there is good agreement
between the experimental data and either of the other two theories. This indicates that models which
account for the correlated motion of the absorbing and scattering atom can give cr values which are in good
agreement with those determined experimentally.

INTRODUCTION

The extended x-ray absorption fine structure
(EXAFS) has recently become a relatively well-
understood and widely used technique for deter-
mining many structural parameters associated
with the local environment surrounding a specific
atomic species. The primary information ob-
tained from EXAPS is the number, kind, and
distance of atoms-surrounding a given atom. In
addition, the disorder due to thermal a.nd static
variations can be obtained. In spite of the wide
and increasing use of EXAFS, little attention has
been given to the study of this parameter. '

It is the purpose of this paper to discuss methods
for determining the disorder using EXAFS data
and then to compare the values obtained with mod-
els which predict the disorder as a function of
temperature. The height and width of the peaks of
the Fourier transform were examined and found
to be unreliably related to the disorder parameter.
Good agreement with theoretical values of the dis-
order was found when experimental data were
analyzed with a least-squares fitting routine and a
ln(Z, /Zs) vs k' technique developed previously. '
Copper was used in this study, since it has been
previously applied to test theories of EXAFS and
because its vibrational properties are well known.

The x-ray absorption data for a 5- p,m Cu foil
were measured at the Stanford Synchrotron Radia-
tion Laboratory (SSRL) at four temperatures,
10+ 1, Vv + 1, 295 + 2, and 683 + 5 K. The nor-
malized EXAFS spectra, are shown at the specified
temperatures in Fig. 1.
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y(k) =
k g —,E&(k)sin[2kr& + ili&(k)]e s~j' .

Here k is the wave vector of the ejected photoelec-
tron, the sum is over shells containing +& atoms
at distance r& from the absorbing atom, Fq(k) is
the backscattering amplitude which depends on the
kind of neighboring atom, a& is the mean-squared
relative displacement of the atoms arising from
both static and dynamic disorder, and (& is the k-
dependent phase shift containing contributions
from both the absorbing and scattering atoms.
The quantity 0' characterizes the vibrational mo-
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The equation for the EXAFS function, assuming
no multiple scattering, is given by

FIG. 1. EXAFS data and least-squares fits to in-
verse Fourier transforms at four temperatures for Cu.

20 49(}2 1979The American Physical Society



20 EXTENDED X-RAY ABSORPTION FINE STRUCTURE. . .

tion of the atoms and is a. function of temperature.
This quantity can be extracted from the EXAFS
data, by a variety of methods discussed below, all
of which assume a Gaussian disorder distribution.
Some analyses assume other forms for the dis-
order', these forms will be discussed later. As a
first step in the analysis, y(k) is Fourier trans-
formed as

LLI

I—

CO

3.0

2.0

p(r) =
& J

ky(k)e"'" dk. (2)
&mgn

The resulting transform, whose ma, gnitude is
shown in Fig. 1, is proportional to the convolution
of the Fourier transforms of the sine term, the
scattering amplitude, and the Debye-Wailer term
in r space. Pendry has extra, cted o using the
Fourier transform by selecting the shells one at a,

time, and for each shell separately subtracting
the calculated contribution of that shell from the
measured spectrum. The peak in the Fourier
transform wa, s used only as a monitor of the ef-
ficiency of subtraction. An indication of the de-
pendence of the magnitude of the transform on the
disorder parameter can be seen by taking the
Fourier transform (k= 0 to k) of the Debye-Wailer
term, which gives'

y'" r)= exp[-(r rg)' -2o']
erf 2 ok+i

8o oj

+erf ok -i
o'

where erf is the error function. The magnitude of
the transform at the peak is then

erf(&ok)
Dw(r

The erf has a maximum value at an argument of
approximately 1.7 which corresponds to a value
of o=0.06 A. for a k of 20 A '. For values of
o &0.06 the magnitude of the peak has approxi-
mately a 1/o dependence, and for o (0.06 the erf
limits the 1/cr dependence. Figure 2 shows the
magnitude (plotted on an arbitrary scale) of the
transform of the Debye-Wailer term as a function
of o. Note that, when a numerical Fourier trans-
form is made of the full X equation for a single
shell with a form like that of Cu, the dependence
for o & 0.06 A is more like 1/o'~'. This is due to
the convolution of the other terms in the X equa-
tion, as was mentioned previously. This o depen-
dence varies with the. form of the scattering ampli-
tude. Since different elements have different
forms of I', the o dependence will not be the
same. Thus, making a ratio of the magnitude of
the Fourier transform peaks is not a reliable
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FIG. 2. Dependence of the magnitude of the Fourier
transform. (for Cu) on the disorder parameter.

then for two temperatures with constant zo,

Figure 3 shows the results of a numerical trans-
form of a g test function similar to Cu. The
widths of the peaks were measured at e ' for dif-
ferent known input o's. As can be seen the dif-
ference in widths does not accurately predict the
difference in o's. This is because the additional
width se is not a constant and is dependent on o,
i.e., so and o are correlated with each other.

The value of o' can be a,scertained more ac-
curately by methods which begin by isolating one
of the transform peaks and performing an inverse
transform (Fourier filtering). This effectively de-

method of determining o (or &) unless the precise
o. dependence is known.

Information about o is also conta, ined in the width

of the transform peaks. For a, single peak in the
Fourier transform, the radial distribution function
can be written a.s

p(r) = P(r&)exp[-(r —r&P/2(o&+sv)'],

where Q(r~) is the magnitude of the transform at
r =r& and se is the broadening of the transform due
to the back-scattering function, the phase depen-
dence, and the transform window function. As-
suming the width ~r of the transform at e ' is re-
lated to o andu by

i
=2(o+I)',&&rl*
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FIG.. 4. Plots of theo the ln X (10K)/ X(T) vs k~ for Cu at T=6=683, 295 and, aIl 77 K.
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TABLE I. Disorder values for various models and data extraction techniques.

Temp.
T

(K)

Debye Beni-Platzmanna Rehr Fit"
a.(T) o'(T) 0 (T) o'(T), r(T) 0(T) (r(T) 0(T)
(L) c(10K) g) c'(10K) (A) c'(10K) (}t) o(10K)

Ratio 'g
~(T) ~(T)
(k) c (10K)

10 0.060
77 0.071

295 0.119
683 0.180

1.00
1.18
1.98
3.00

0.056
0.060
0.095
0.141

1.00 0.054
1.07 0.057
1.70 0.087
2.52 0.131

1.00 0.055 1.00
1.06 0.060 I.09
1.61 0.092 1.67
2.43 0.139 2.53

0.054 1.00
0.057 1.06
0.088 1.63
0.135 2.50

~ |I')= 315K.
sEo=0.0 ev; r= 2,556 a 0.005 A. Amplitude function used was the actual calculated values

(B,ef. 7)-parametrized functions not used. Mean free path contained in amplituae function.
Phase parameters fitted at 10K and transferred to higher temperature. cr, y only fitted
parameters at high temperatures.

~ dc determined from slope of ratio in[)((k, 10K)/)t(k, T)]. At 10K it was assumed that o
= 0.054 k.

mates. The procedure was then repeated with the
new estimates P&, and so on until the new solution
differed from the last by less than 1/o. For the
results reported here the calculated tabular val-
ues of F(k) from Teo and Lee' were used and not
the pa, rametrized values. Thiy gave a better fit
to the data at low k values. An overall amplitude
A multiplier of F(k) was free to vary, and the best
fit was obtained when A =-0.60. The necessity for
this term has been discussed. ' Also a mean-free-
path value was not explicitly incorporated into the
solution, since this term is implicit in the F(k)
values used. The parametrized values for the
phase shift t[L were used as an initial estimate and
varied to give the best fit to the data at 10 K using
the known value of A=2. 556 L. The expression
for g was

q@)=p, +p,k+p, k'+p'/k'.

Sigma was also free to vary and converged on a
value of Q. 055 L at 10K. As discussed later, this
value is in good agreement with theory. The phase
shift and A parameters obtained were then trans-
ferred to the higher-temperature data where only
o and x were allowed to vary. The value of x re-
mained essentially constant at a value of 2.556
+0.005 A. The reason for small, negative changes
in r with increasing o' ha, s been discussed by
Eisenberger and Brown. " The least-square val-
ues of o and o(T)/o(10K) obtained are listed in
Table I and are shown plotted in Fig. 5.

It should be noted that care must be exercised
in using the least-square -fitting techniques. For
example, if the parametrized amplitude functions
are used rather than the tabular calculated values, '
differences in the resultant fitted o may va, ry by
20% and lead to different apparent temperature
dependences.
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FIG. 5, Comparison af experimentally determined
values of the disorder parameter with theoretical values.

COMPARISON OF EXPERIMENT AND THEORY

The values of o( T)/o(10K) plotted a.s a function
of temperature for the o's extracted from the in-
verse transforms using the ratio technique and
the least-square technique are shown in Fig. 5
compared to calculated values from a pure Debye
model with no correlation, the Debye model with
correlation of Beni and Platzmann, ' and the theory
of Rehr et al." Tabularized values are given in
Table I.

The pure Debye values indicate a. greater tem-
perature dependence than that measured by the
EXAFS disorder parameter. This occurs because
the EXAFS o is a measurement of mean relative
displacement between two atoms along x& whose
motions are pa, rtia, lly correlated, whereas the
Debye theory predicts the total mean displacement
of an atom along r&. The expression used to cal-
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cula, te the Debye mean-squared displacement was

68 1 T't2
&' =2(v'. ) = —+

m(u~ .4 e~)

where

(i4)

8L)kg
(dg) =

In the above +L) and 0L) are the Debye frequency
and tempera, ture, respectively, while k~ is
Boltzmann's constant and T is the temperature.
A temperature-independent value of 0& ——315K was
used in the analysis of the data reported here.

The calculation of Beni and Platzmann' accounts
for the correlated motion of the central absorbing
atom and surrounding scattering atoms. As seen
in Fig. 5, this calculation gives a, good agreement
with the experimentally extra, cted EXAFS va, lues.
The Beni-Platzmann calculation for the mean-
squared relative displacement is expressed as

68 i ~TI' " 6h i —cos(q~x&) T ' i ~( T ' ] T(n,'&= -+I —
I D, — + — & ——

I q r — D, +—
q&r& —D—

m(oo 4 (8~) '
m(og) g(q~y ) 8~ ' 3.' ( ep ' 6! eg

(i6)

In this expression q~ (= &o~/V) is the Debye wave
vector. The first term on the right is simply
twice the mean-squared displacement, and the
second is twice the displacement correlation func-
tion.

The result of the calculation of Rehr et al."is
also shown in Fig. 5. This calculation accounts
for correlated motion of the absorbing and scat-
tering atoms as does the Beni-Platzmann calcula-
tion. However, the actual phonon spectrum from
neutron-diffraction measurements was used rather
than the Debye spectrum. Disorder due to colinear
atoms for first and second neighbors was ac-
counted for, while contributions due to atoms lying
perpendicular to the colinear atoms were ignored.

DISCUSSION AND SUMMARY

As stated previously, all of the above-discussed
techniques of ascertaining the disorder assume a.

Gaussian form, which results in acceptable agree-
ment with our estimate of 0 from theory. Al-
though no a.ctual disorder function is purely Gaus-
sian, this approximation is adequate for isotropic
materials within a, useful range of o. Evidence
of an asymmetric pair-distribution function is
given by an apparent reduction in r (as deter-
mined by EXAFS) with increasing disorder. An

0
accuracy of 0.01 & in r can be maintained in iso-
tropic systems if v'/R and v'/L (0.Oi A, where
L is the electron mean free path. " For cases
affected by anharmonicity, the Gaussian form for
disorder can be replaced by a more accurate pair-
distribution function p(r). Techniques have been
discussed which extract the pair-distribution
function from EXAFS.

In a. technique presented by Hayes, '
a, function

constructed to reproduce P(r) is convolved in x
space with- a, peak function derived from a model
system. The resultant complex function is com-
pared with the Fourier transform of the mea. sured
EXAFS, and the constructed P(x) is varied for
best fit. This method requires knowledge of the
EXAFS over a. broad range of k. Information
about the leading edge of P(r) is contained at high
k values while the trailing features are contained
at l.ow k, since k and r can be thought of as re-
ciprocal variables. The difficulty of imprecise
EXAFS at low k due to edge effects leads to an in-
herent uncertainty in P(x) at large r

The disorder term for anharmonic systems
could also be constructed in k space by comparing
a g having the constructed disorder function with
the experimental X. This technique would not re-
quire comparing forms which had been convolved
in r space.

The mean-squared relative displacements for
Cu obtained from EXAFS measurements assuming
Gaussian disorder agree well with values pre-
dicted by models which account for the correlated
motion of the central absorbing and scattering
atoms. Even at low temperatures in Cu there is
an a,ppreciable degree of correlated motion be-
tween neighboring atoms. At higher temperatures
the amount of correlated motion increases.
Either the Beni-Platzmann' theory, which uses a,

Debye phonon spectrum, or the theory of Rehr
et al. ,

' which uses an actual measured phonon
spectrum, can satisfactorily a,ecount for the ex-
perimental data. The results shown here are for
the first coordination shell. The second and high-
er shells have larger disorder values, since the
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correlated motion is reduced. ln fact we would
expect the disorder to approach the uncorrelated
mean-square displacement as higher coordination
shells are analyzed.

Care must be used in the extraction of disorder
values from EXAFS data. The height and width
of peaks in the Fourier transform lead to o values
which are not accurate unless a precise o depen-
dence is known. The use of Fourier filtering to
isolate single-shell data for making a ratio or for
least-squares-fitting techniques does give c val-

ues which are in good agreement with those pre-
dicted by theories which account, for the corre-
lated motion of the absorbing and -scattering
atoms.
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