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The orbital magnetic susceptibility (x5,) of graphite intercalation compounds is calculated for ﬁ]]é using
a tight-binding model for the m-electron energy bands and the compact expression for x5, derived by
Fukuyama, which includes both intraband and interband terms. The results are presented as an approximate
analytic expression for x5, as a function of Fermi level p (0 <3 eV) and temperature. For u/kz T €1 the
susceptibility is large and diamagnetic (due to interband transitions), while for kT € pnS3 eV, x5, is
paramagnetic (mainly due to intraband transitions) in contrast to the usual Landau-Peierls diamagnetism of
conduction electrons in parabolic bands. Furthermore, x¢, is shown to be a sensitive function of u and hence
of the conduction-electron charge distribution in each graphite layer. We show that this theory accounts for
the main features of the experimental data (stage and temperature dependence of x5 and suggest that
measurements of the stage dependence of x; can be used to estimate the c-axis screening length in graphite

intercalation compounds.

I. INTRODUCTION

Graphite intercalation compounds (GIC) are
characterized by high basal-plane conductivities
and by an ordered sequence of #n carbon and one
intercalant layer, with n defining the stage of the
material.! The c-axis charge distribution of the
carriers donated to the carbon by the intercalant
is a problem of current experimental®:? and the-
oretical® interest. While early studies® assumed
a uniform distribution of charge in all the graphite
layers, recent theoretical® and experimental®:3
evidence indicates that the screening of the inter-
calant layer should result in a localization of the.
charge near the carbon layers which bound the in-
tercalate. In this paper we calculate the magnetic
susceptibility of a single graphite layer for a wide
range of Fermi energies and show how our re-
sults can be used to interpret the susceptibility
measurements in GIC (Refs. 6-~8) to yield infor-
mation about the charge distribution along the ¢
axis.

Although the susceptibility of intrinsic graphite
is large and diamagnetic,®!° recent experiments,”®
in alkali GIC have shown that the susceptibility x°
for the magnetic field parallel to the crystalline
¢ axis (ﬁllc") is paramagnetic. Furthermore, the
ratio of x° to the (estimated) Pauli (spin-only)
contribution to the susceptibility (x ), increases
rapidly as a function of stage, varying from =2
in stage 1 to 17 in stage 4. Since the anisotropy
in the susceptibility also increases with stage,
the observed enhancement of xX° over X, cannot be
attributed to Coulomb enhancement'! of x , which
should be isotropic. The calculations presented
here indicate that the large paramagnetic values
observed for x° in GIC arise from a paramagnetic
orbital susceptibility. In addition, the stage and
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temperature dependence of the experimental data
can be understood in the light of our calculations
which use the formula for the orbital susceptibility
(xS,) derived by Fukuyama.'? This formalism has
been used by Sharma et al.® to calculate the mag-
netic susceptibility of intrinsic graphite. How-
ever, the calculations of Ref. 9 use the Slonczew-
ski-Weiss (SW) model'® which was developed to
treat the band structure for the small (~0.024 eV)
values of the Fermi energies and carrier concen-
tration (~10™ per carbon atom) appropriate to
pure graphite. Since the Fermi energy in GIC
can be as large as 1-2 eV (corresponding to ~10™
carriers per carbon atom), a more general calcu-
lation is necessary for the understanding of the
magnetic susceptibility of these materials.

In Sec. II we review the single-layer, tight-bind-
ing model' for the electronic energy-band struc-
ture of graphite which will be used in the calcula-
tions of xS, in Secs. II-IV. In order to simplify
our calculations, we transform Fukuyama’s for-
mula using some manipulations suggested in Ref.
9. In Sec. III we calculate x¢,. analytically for
very small and very large values of the Fermi
energy. Our results reduce to those previously
obtained in Ref. 15 for small values of the Fermi
energy. In the limit of both high temperatures
and small values of the Fermi energy, our results
reduce to those obtained in Ref. 9 where the
(three-dimensional) SW model was used.

Section IV contains the most significant result
of our calculation—an (approximate) analytic form
for x¢. as a function of both temperature and Fermi
level p for 0< u <3 eV. For pu <RkgT we show that
x¢, is diamagnetic (x5, <0), while for u > 4k;T xS,
is paramagnetic (xS:;>0). For large values of u
~3 eV, the paramagnetism of x. is due to the
negative value of one component of the effective-
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mass tensor near the saddle point in the density
of states. This is in contrast to the usual result
X5 <0 (Landau diamagnetism®®) for parabolic
bands near an energy minimum or maximum.

The results of the single-layer model for xS, are
applied to the case of GIC in Sec. V, where the
interpretation of the experimental results and the
limitations of the theory are also discussed. (For
the details of the experiments and their interpre-
tation see the preceding paper.®)

II. TIGHT-BINDING MODEL AND FUKUYAMA FORMULA

In this section, we rewrite Fukuyama’s formula
for xS, in a form convenient for calculations in the
tight-binding model. The tight-binding model for
graphite is reviewed, and an explicit form for the
orbital and Pauli susceptibilities is given in terms
of E-space integrals.

The general formula for x$. derived by Fuku-
yama'? for HIE is

R e\ 1 -
xor=(%) kaT%}EnE f dkTrlngnernens). (1)

In Eq. (1) X$r is dimensionless and the spin degen-
eracy has been included; g is the Matsubara
Green’s function!”

g=(,-%)", 2

where e, = (2n+ 1)riky T + 1, 3¢ is the Hamiltonian
matrix, and p is the Fermi energy. The matrix
y; (i=x, y) is the product of the matrix representa-
tion of the momentum operator and the factor 7/m,
while the integral is over the first Brillouin zone
and 7 runs from —« to ©. Equation (1) is valid in
any basis where JC is diagonal in K but not neces-
sarily inthe band indices. This expression for x¢.
has the following interpretation.!’®* An electron
is given an impulse in the x direction (y,), propa- "
gates (g), is given an impulse in the y direction
(v,), propagates (g), etc., until it is back where
it started from. Thus the electron orbit is a
closed path which represents a magnetic moment.
In order to calculate x¢,. for a large range of
Fermi energies, we use the tight-binding repre-
sentation for the graphite energy bands,'* which
yields an expression for the energy E(K) which is
periodic in K space. Furthermore, since the
details of the c-axis interactions and charge dis-
tributions are presently unknown in GIC for n>1,
we use a two-dimensional model for the 7 bands
of each graphite layer. The Fermi energy can .
then be written

“=#i+V{’ (3)

where ¢ is an index specifying the graphite layer,
t; represents the contribution to the Fermi level

from the carriers in that layer, and V; is the po-
tential at layer ¢ due to the screened intercalant
layer. Our treatment is thus a first approxima-
tion to the complete band structure of GIC, since
we assume that the intercalate potential provides
a constant shift of the two-dimensional graphite
bands of each layer. The electron charge density
in each layer is thus an adjustable parameter in
our theory. The advantage of this approach is its
tractability in a calculation of xS, and the presence
of only one adjustable parameter (u,) which is of
direct physical significance. In Secs. II-IV we
shall deal with the properties of a single graphite
layer, so we replace {; by i, which will be termed
the Fermi level in these sections.

In a tight-binding model which treats only the 7
band of graphite, a nearest-neighbor approxima-
tion yields*

0 HE)
x= H*(E) 0 s (4)
where .
H(l?):y(,(e”r“ 349 coskﬁzﬁe'*k’f“ /2’3). (5)

Here a is the in-plane graphite lattice constant,
while recent estimates® of y, indicate y,=3.11 eV.
Since the matrix g™ is now finite, it can be in-
verted to yield

€, H(K)

N 1
g=5=7 ) (6)
DD\ €n
where
D= - E?, (7a)
E*=H[RH*[) . (Tb)

By symmetry, matrix elements of the momen-
tum operator (p°%) between two 7 orbitals centered
at nearest-neighbor sites separated by ﬁi are pro-
portional to ﬁ,. From the tight-binding expression
for H(K) it can be seen that

y=aV,H(K), (8).

where « is a proportionality constant. From a
K- P expansion of the Hamiltonian near the K point
in Brillouin zone where H(K)=0,*5 one can show
that in our units o =1. )

In Appendix A we show that the suscéptibility
can be rewritten

eV 1 .1
Xﬁrz(';%) _8_1?§kBTZ fdkﬁ(XI'*‘Xn'*Xux"‘XIv)
n
(9)

where X;, Xi1» X and X;y are given by



X1 =3 (D - D,D,,) - Tr(y,Nv,N,,), (10a)
X1 =— 3 Dy, Tr(QN) — 3 D, Tr(QN,), (10b)
XIII=-%Dy Tr(Q,N), (10c)
Xrv=-— Tr(wNy,N,) - Tr(y,NwN,). (104)

In Egs. (10), © and w are matrices defined by
Z;" and w= é-k—"‘, ' (10e)

while the subscripts (x, y) on N and D indicate
differentiation with respect to (&,, %,), respec-
tively. This form for y{, is valid for any Hamil-
tonian matrix where Eq. (8) applies and H(K) is
periodic in K space. This is in contrast to Eq.
(2.17) of Ref. 9 which is an approximation designed
to treat only the linear terms in an expansion of
H(K). The advantage of Eq. (9) over the original
formula for x¢&; [Eq. (1)] is that the dependence on
the index # is contained only in the factor 1/D? in
our case. Furthermore, if H(K) is now expanded
to order %%, X;;; =0, while if only the linear terms
in H(K) are kept, only ¥; is nonzero.

We now perform the sum over the index n. For
the 2X2 Hamiltonian matrix of Eq. (4) the factor
D2 can be rewritten as

1 1 9 1

DF=3E 3ED’ (11)

where we have used Eq. (7). Furthermore we
can write

1 1 1 1
D73 _,,-E—e_,,+E)' (12)

Using the fact that'®

kpT D (e, - EY* =f(E - 1), (13)

where f(E - u) is the Fermi factor, we find that
kaTE fE-p)-f(-E - u))_ (14)

T3 8E< 2E
The orbital susceptibility as a function of ¢,
= u/y, can be rewritten using Eq. (14) so that

XEe(€o) =X fo ”deh(e)[%e-_a?_
x(f(e—eo)—zef(—e—eo)ﬂ' (15)

The integral over e in Eq. (15) is for ¢ >0 only.
The existence of two bands with energies +E(K) is
accounted for in the 1/D factors and by the two
Fermi functions in Eq. (15). The constant x, is
given by
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en\? 1
=] w— ~ 2 X =6
Xo (mc) 2y, 2x107, (16)
and Q,=3v3 a? ¢, is the volume of a primitive unit

cell’ of a smgle layer (c,=3.35 A). In Eq. (15)
all energies are scaled by v, so that

0 =(328) () 35 S aRe- e@r /e, @1

where
2, .
%:Y&g-zﬂzz.s (18)

is an average effective mass and

X1 =% (D% =Dy,D.), (19a)
——2Re(H,,H*H "), (19b)
Xs=-— Dy, Re(H,H*), (19¢)
Xs=—D,Re(H,H}), (19d)
Xs =—D,Re(H,, H*), (19¢)
Xe¢=— 4Re(H H, H*H}). (19£)
In Eq. (19)
while
H{J—})_Z‘i BZ H(k)

The Fermi level and temperature dependence of
XS are determined by the factor in square brack-
ets in Eq. (15), which contains both interband and
intraband terms, while k(e) depends on the curva-
ture of the bands. We note that while k(e) can be
either positive or negative, its magnitude is pro-
portional to (m/m*)2. For future reference we
give the standard expression for the Pauli contri-
bution to ¢,

\

xp(60)=xo—8%%f dko(e, - e®)). (20)

IIIl. ANALYTIC APPROXIMATIONS

In this section, we use Egs. (15)-(20) to evalu-
ate the susceptibility analytically near the band
minimum (E =0) and the saddle point (E =v,) in
the density of states. The general features of x¢,.
derived from these calculations—diamagnetism
for small u and paramagnetism for large p—are
corroborated by the more detailed calculations of
Sec. IV.

For small values of the Fermi energy, we can
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expand H(K) in K near the energy minimum (and
degeneracy point) at K= (27/V 3a, 27/3a,0). Keep-
ing only the linear terms in this expansion, we
find that x, =0 (:=2,...,6), while x,/(y,a)*=~3.
Thus %(e) is proportional to the density of states
and

o) [ acl (flemmzteca))

Here, X is a constant (independent of ¢,) which is
due to the neglect of higher order terms in the ex-
panison as well as the extension of the upper limit
of integration to . Finally, we find

¢ __ _e_E)Z__l_ Ln_>2_1, 2 -
Xor = (mc 8mc,a® \m* kBTSech (M/ZkBT)-'-x,

(21)

which agrees® with the calculation of McClure'®
who derived an expression for x{. by summing
over the Landau levels obtained in a two-dimen-
sional band model, for u/y,<«1. In addition, for
high temperatures, our results agree within 1%
with the analytic expression for xS, derived in
Ref. 9 using a three-dimensional SW band struc-
ture.

While x¢. is large and diamagnetic for ¢, <1 (due
to interband transitions'®), near the saddle point
in the density of states (¢,~1), we find that

e =—5(2) o0, (22)

where p(e) is the density of states, normalized so
that %f‘;’ ple)de=1. Using Eq. (22) in Eq. (15) for
e>~1, we find

2

Xgr:)(o[%(;h{n;) p(50)+§ ]’ (23)
where p is an interband contribution to x$. which
is small for ¢,~ 1. The orbital susceptibility is
thus-large and paramagnetic near the saddle point
in the density of states. The first term of Eq. (23)
can also be derived from a calculation of the
Landau-Peierls susceptibility (x¢ p) which yields!®

Xip == ).('(m:;m;.;)-lp(eo) ) (24)

where m}, is the effective-mass tensor and ¥ is
a positive constant. Since m}m¥ <0 near the
saddle point, the susceptibility is paramagnetic
for ¢,~1. This is in contrast to the sign of the
orbital susceptibility for ¢, near a band minimum
or maximum where mimy}, >0 and x$, <0 for
parabolic bands. A comparison of Eqs. (23) and
(20) (neglecting p) indicates that the ratio »=y¢,/
x%=1.5 near the saddle point.

Thus the Fukuyama formula, which includes
both interband transitions which dominate for ¢,

«1 and intraband transitions (Landau-Peierls)
which dominate for ¢,~ 1, yields both diamagnet-
ism and paramagnetism for x5.. The enhancement
of the orbital susceptibility over the Pauli con-
tribution for ¢,~ 1 as evidenced by the ratio »~1.5
is in general agreement with the susceptibility
measurements discussed above.”® In order to
derive an expression for xg. valid for the range

0 <¢, <1, we must evaluate () [Eq. (17)] numer-
ically. The results of this calculation are dis-
cussed in the following section.

IV. FERMI LEVEL AND TEMPERATURE DEPENDENCE
OF x¢,

The section contains the main result of our cal-
culations—an expression for xS, as a function of
and T for 0< 1 <3 eV. We present the results of
a numerical calculation of the band curvature fac-
tor 2(¢). These results are fitted to an analytic
function of € (e =E/y,) and the integration of Eq.
(15) is performed analytically.

We divide the region of integration (0<e <3) in
Eq. (15) into two parts: region a for 0 <e¢ <1 and
region b for 1<e¢ <3, so thatx5.=x, +x,- We
compute x, numerically from a T =0 approxima-
tion for the Fermi function in Eq. (15). Since we
consider ¢,<1, x, consists of a paramagnetic con-
tribution due to interband transitions, which is
independent of temperature and Fermi level for
1-¢,>7 (r=ksT/y,<0.01). We thus find that x,
=~0.3 ¥, The Fermi level and temperature de-
pendence of x5, for ¢, <1 is thus contained in y,.

In order to carefully treat the singular 1/¢? fac-
tors in Eq. (15) we fit the results of a numerical
integration of Z(e) to the form (0 <e <1):

h(e) =—[Ae + B2 + Ce2In(1 —¢)]. (25)

This fit is motivated by the analytic results of
Sec. III, which show that for e~0 and e~ 1, k() is

o 0.5 10
€

FIG. 1. Plot of the band curvature factor %(e) defined
in Eq. (17). The solid line is the result of a numerical
integration of Eq. (17) while the open squares are the fit
to this curve calculated from Eq. (25).
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0. 1
G4

FIG. 2. Fermi-level dependence of xS, for 0< p/ys1
for kg T/v,= 0.0083 (T ~300 K). The heavy solid line is
Xér while the dashed, solid, and dot-dashed lines show
the contributions to XS, from A (€,), B(,), and C (€;),
respectively [see Eq. (26)]. X, is defined in Eq. (16).

proportional to the density of states which is linear
in ¢ near ¢ =0 and has a logarithmic singularity at
e=1. Figure 1 shows our numerical results for
h(e) as well as a plot of k() calculated from Eq.
(25) with the values A=3.47, B=-4.09, and C
=-0.79.

Appendix B contains the details of the integra-
tions of Eq. (15). The result, valid for 0 <g,
<l-7,is

Xe =52[A(e) + Bley) +Cleo)], (26)
Ale,) =A(1 ——211;seCh2(eo/21')>, (27a)
B(e,)=Blnt, ¢/7<1 (27b)
B(e,)=B(1 - 7/e,+1ng;), €,/721 (27¢c)
Clep) =C{In(1 —¢,) + [7(1) - 7(e,) T}, (27d)

=3 5. (27e)

In Fig. 2 we plot the various contributions to x¢.
as defined in Eq. (26) for k3T /y,=0.0083 (T
=~300 K). For u/ksT <1, x¢, is dominated by
A(e,) and the susceptibility is large and diamag-
netic. However, for p/kgT =1 this term, which
originates from the linear term in an expansion
of E(K) near the K point in the Brillouin zone,
approaches a constant paramagnetic value. The
peak in x¢, at =8 k,T arises from B (¢,) which
has its origin in the higher-order terms in the
expansion of E(K). Finally, for u ~y, the Fermi
level dependence of x5, is determined by C(eo)
which has a singularity at u =7, due to the loga-
rithmic singularity in the density of states at the

5.0

———kg T/yg =0.001 (30K)
Ir\ —— kg T/y0 =0.0083 (300K)
FloA —-— kg T/yp =0.02 (750K)

/%o

c
xOI’

) Y] 0.2
F‘/Yo
FIG. 3. Temperature dependence of x. as a function
of the Fermi level (u/y;). Curves are shown for temper-
atures T= 30, 300, and 750 K. For the Fermi-level
dependence x5 and X, for 0< u/y,<1 see Figs. 2 and 3
of the preceding paper (Ref. 8). ¥, is defined in Eq. (16).

saddle point. On the other hand, the strong
Fermi-level dependence of A(e,) and Bi,) for ¢,
«1 arises from the 1/¢? factors in Eq. (15), as-
sociated with interband transitions. The tempera-
ture dependence of xS, near the peak is shown in
Fig. 3 where we plot x¢./x, as a function of /v,
for 0 <pu/y, <0.2 for T=30, 300, and 750 K. As
indicated in Eq. (27), the peak in xS, moves to
lower values of j/y, while the peak height in-
creases as the temperature is lowered. The or-
bital susceptibility of a single layer of graphite
is thus a sensitive function of the Fermi level for
0<u <y,.

V. DISCUSSION

A detailed comparison of the theory presented
here with the experimental data is given in the
preceding paper.® Here we note that although
there are quantitative (factor of 2) differences
between our theory and the measured values for
X$r in the low stage compounds, the simple model
presented here is still valuable for the interpreta-
tion of the susceptibility experiments, since it
correctly predicts the most important features
of the data. :

(1) The paramagnetism of X, for high stage
compounds is shown to derive from the presence
of the saddle point in the density of states.

(2) The stage dependence of x¢. and the increase
in x5./x p from ~1.4 (n=1) to 16 (r=4) is shown
to arise from the contributions of the interior
graphite layers with u near the peak in xS, as
shown in Fig. 2. This demonstrates that while
X p and the specific heat coefficient are sensitive
to the charge distribution in the bounding layer
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(which contributes the most to the density of
states), x¢, is a sensitive function of the charge
distribution in the interior graphite layers. Thus
the stage dependence of x$. can be used to analyze
the c-axis screening length in graphite intercala-
tion compounds.

(3) The observed temperature dependence of x5,
in stage 4 correlates with a value for y; of the
order of 0.15 eV for the interior layer, indicating
the presence of c-axis screenmg (u; for the bound-
ing layer ~1.5 eV).

Within the context of our simple model, the
agreement between theory and experiment could
be improved if one could calculate the contribu-
tion to x¢,. from the following:

(i) Van Vleck (interband) coupling between the
graphite and intercalant conduction bands.

(ii) Electron-electron enhancement of ¥ , for the
case of the dilute electron gas found in GIC.
Larger values for x , would result in smaller
values for x$, in agreement with the theoretical
predictions.

(iii) Effects of higher-order interactions in the
tight-binding model. To minimize the number of
adjustable parameters and to enable us to proceed
with a complete calculation using Fukuyama’s for-
mula, we have considered only nearest-neighbor
graphite-graphite interactions. All interlayer
couplings and zone folding due to the intercalate
potential were neglected.

Although more realistic band-structure calcula-
tions are clearly needed to study the c-axis charge
distribution in the higher stage compounds, our
single-layer model allows for an interpretation of
the experimental results on a layer-by-layer basis
as described above and in the preceding paper. -
This model treats the charge density (and Fermi
level) in each level as an adjustable parameter.

It is doubtful that a realistic Hamiltonian which
contains the interactions of all 6z + 1 atoms in the
unit cell (for stage-x Li, for example) could be used
in the complete calculation of xS.. However, the
predictions of realistic calculations of the c-axis
charge distribution can be tested against further
experimental measurements of ¥° in high stage
compounds as interpreted by our single-layer
model.

Note added in proof. A summary of this work
and of the preceeding paper can be found in Pro-
ceedings of International Conference on Layered
Materials and Intercalates (Nijmegen, Nether-
lands, 1979) to be published in Physica.
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APPENDIX A

In this Appendix we derive Eq. (9) for x¢; from
Fukuyama’s formula [Eq. (1)]. The manipula-
tions of Eq. (1) used here follow closely those of
Ref. 9, except that our results are valid through-
out the Brillouin zone. We begin by noting the
relation discussed in Sec. III:

Y=V,3. (A1)
Since gg ™' =I (I is the unit matrix) we can use
Eq. (A1) to write

V,.8=878. (A2)

Thus we have

o _2)2 &Y [ akre(n X ag)
Xof‘(ﬁc ks T gy Z Ak Tr\Ye g, ok, or,) - A%)
In a basis where the Hamiltonian is a finite matrix
(e.g., k- p or tight binding) we write g=(¢,-5C)™
=N/D where these quantities are defined in Sec.
II. Writing

% 10N 1 aD

R (a4)

and substituting Eq. (A4) in Eq. (A3), we find that

x§;=({;>2 kBTa—;s XX, (A5)
where '

'—fdk ———Tr(yxak )2 (A6a)

X"= f dk Bz(a_k;> Tr(y,NF. (A6c)

We now manipulate x” and y” so that they are
functions of D™ and derivatives of D only.
Using Eq. (A2) we rewrite x"” as

/de2<Bk ) Tr(—a%;(wxg)—ﬂg>; (A7)

where Q=29y,/dk,. However, as shown in Ref. 9
and as can be verified explicitly in our model

5= Tr0e), (48)
so that
f dk———D2< —%g*—Tr(Qg)), (A9)
where
D,=r--2D.

ok, ok,
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We now perform (two) partial integrations of Eq.
(A9) using the fact that the surface integral of a
periodic function vanishes. The result is

x"=- [ akZ (b 4(D,.D,, - D3,) + D Tr(0g)].  (A10)

Another integration by parts of the last term of
Eq. (A10) together with an integration by parts of
x” yields Eqs. (9) and (10) of Sec. II.

APPENDIX B

In this Appendix we discuss the approximations
leading to Eq. (26). Using Eqgs. (15) and (25),
we rewrite y, as

Xa=Xofld€(XA +X8 tXc)» (B1)
Xa=Ap), ’ (B2a)
X5 =Beple), , (B2b)
Xc =Cep(e) In(1-e), (B2¢)

._1 3 (fl=e—e)) —fle —€p)
b =3 o(fe=td=Se-al) (B2a)
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Xa can be integrated directly (see Sec. III). Since
Xc is proportional to € for ¢ <1 and to In(1 ~¢) for
e=~1, we evaluate its contribution in the T=0
limit for p(e), since we are interested in values
of ¢, where 0<e¢,<1-7. The results of the in-
tegrations of x, and x5 are given in Eqs. (27a)
and (27d), respectively. We perform a partial
integration on the term containing x5 to obtain

leﬂtk=%<1_J;lf(_e—eo)e-jf(é—eo)dé>- (B3)

We approximate

tanh(e/7), €>¢, (B4a)
fl=e =€) = fle —¢,) = /)
sinh(e/7

-Ea-s—ﬁm , €<€g-. (B4b)

Furthermore, we approximate the right-hand side
of Eq. (B4a) as 1fore>7and ¢/7 fore<7. With
these approximations, we obtain Eq. (27b) and -
(27¢) for the integral of xz. A numerical check
of these approximations shows an error of <4%
in the region where the contribution of this term
is significant.
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