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Hydrodynamic model of linear response for a jellium surface: Nonretarded limit
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The response of a jellium surface to an external longitudinal perturbation is obtained using a

hydrodynamic model to describe the bounded electron gas. The general irreducible response
function, which describes the response of the system to the local self-consistent field, is written

down. The reducible density-density and density-potential response functions are obtained by

solving the response equations for several simple models of the electron density at the surface,
The collective modes of the surface are investigated by examining the poles of the response
functions. It is shown that the nonlocal effects associated with hydrodynamic dispersion give
rise to new structure in the imaginary part of the response functions for the case of nonabrupt
surfaces. This structure is then related to the "higher-multipole" modes which may exist in addi-

tion to the regular surface plasmon for a sufficiently diffuse surface. The dynamic structure fac-

tor is investigated and related to experiments on the energy loss of fast electrons. The effect on
these experiments of the existence of "higher-multipole" surface modes is discussed.

I. INTRODUCTION

The response of a metal surface to an external
electromagnetic perturbation is of considerable
theoretical and'experimental interest. In the study of
a number phenomena, as for example the Schottky
effect, ' chemisorption, ' low-energy scattering, ' field
emission, field desorption, ' field evaporation, '
etc. , it is important to understand the surface
response to a static external charge. In contrast with

these phenomena, the dynamical response is of fun-
damental importance in the study of surface collec-
tive oscillations, fast-electron energy loss, and opti-
cal reflectivity and absorption. '0

The formalism developed by Hohenberg, Kohn,
and Sham"'2 (HKS) for the ground state of an inho-
mogeneous electron gas has been used successfully in

problems involving the response of a metal surface to
a static external charge. '3 Qualitative and in some
cases even quantitative understanding of experimen-
tal results has been obtained. Other calculations'"'"
based on a self-consistent-field approach give qualita-
tive results in the static response case.

Unfortunately, there has not been equal success in

dealing with the problem of dynamic response of
metal surfaces. Several authors' ' ' have applied
the random-phase approximation (RPA) to the prob-
lem of surface collective oscillations. With the RPA,
one usually has to do a high-frequency expansion or
to resort to numerical methods very early in the cal-
culation. The problem with high-frequency expan-
sion is that if only the lowest-order terms are re-
tained, all nonlocal effects are lost and the theory
essentially becomes a local one. Use of numerical
methods right from the beginning of the calculation
tends to hide the essential physics of the dynamic
problem. In view of the fact that one is forced to use

some kind of a simplified model for the metal sur-
face, it would be of considerable value to obtain
closed-form expressions for surface response func-
tions which indicate their qualitative nature.

An alternative way of treating the dynamic surface
response is to use the hydrodynamic model for an
electron gas. Several authors' ' have applied the
hydrodynamic theory to the surface collective excita-
tion problem. The great advantage of the hydro-
dynamic theory over RPA is that one can do a rea-
sonable amount of analytical work giving one a quali-
tative feel about the nature of the calculation. Ying"
first wrote down a generalization of the HKS theory
for the dynamic case which became equivalent to a
generalized hydrodynamic theory for inhomogeneous
electron gas. This becomes equivalent to convention-
al hydrodynamics' when one uses the Thomas-
Fermi form" for the exchange-correlation functional.
Throughout our work we employ this particular hy-
drodynamic model to obtain the response functions
of a metal surface. In this sense our work is a gen-
eralization of the work done by Eguiluz et a/. ' for
the problem of surface collective excitations. Hein-
rich '2 took a different hydrodynamic approach to
the problem of surface response. We believe that his
use of bulk hydrodynamic dielectric function in deal-
ing with the surface problem is somewhat ad hoc and
some nonlocal effects may be lost through his consti-
tutive equations.

We shall restrict ourselves to the problem of linear
response of the surface to an external dynamic per-
turbation in the nonretarded (c oo) limit. As
such, we shall be dealing primarily with the longitudi-
nal response to a self-consistent field. In the future
we shall generalize our work to include the effects of
retardation. We believe that even in the nonretarded
limit, our work is the first one dealing with the
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response of a diffuse surface to an external dynamic
perturbation which includes the nonlocal hydro-
dynamic dispersion effects in a comprehensive
fashion.

The plan of the paper is the following. In Sec. II,
we write down the fundamental hydrodynamic equa-
tions governing the response of the system to an
external perturbation. We combine the hydrodynam-
ic equations with the nonlocal consitutive equation
for the surface response to obtain the general con-
ductivity tensor (for the total self-consistent field) of
the system. Taking the nonretarted (c ~) limit,
we. then write down the response equations for densi-
ty fluctuation in presence of an external longitudinal
perturbation.

In Sec. III we explicitly solve for the response
functions by invoking the hydrodynamical boundary
conditions. We investigate two different simple
models for the surface, the single-step and two-step
models. In the single-step model the electron density
drops abruptly from its bulk value to zero at the sur-
face. In the two-step model the electron density goes
to zero in two steps, the distance between the steps
being a measure of the diffusivity of the surface. We
discuss the pole structure of the response functions
and show for the first time that the surface response
functions indeed have poles at the "higher-multipole"
modes 0 3 in addition to the poles associated with the
regular surface plasmon modes. In Sec. IV, we write
down the dynamic structure factor of the surface and
relate it to fast-electron energy loss experiments. We
conclude in Sec. V with a discussion of some prob-
lems remaining to be studied. These are inclusion of
retardation effects (finite velocity of light) so that a
theory of optical properties of metal surface contain-
ing nonlocal hydrodynamic dispersion effects can be
developed, and extension of the surface density
models considered to more realistic smooth electron
density profiles.

II. THEORY

A. Basic equations

The basic hydrodynamic equations are the equation
of continuity and Euler equation. The latter can be
obtained by a generalization of HKS theory to an in-
homogeneous electron gas capable of self-oscillations
about a ground state. ' Here we simply write down
both equations for linearized quantities using a
Thomas-Fermi ansatz for the hydrodynamic pressure
term

where n ( r, t) and T( r, r) are the linearized local
electron density (not charge density) and particle
current density fluctuations, respectively. na(r ) is
the static electron density contour for the surface,
and. E( r, r), the linear electric fieid fluctuation, is the
total local, self-consistent field containing both the
external field and the internal field due to the in-
duced density fluctuation. The term (1/r) J ( r, t) is
the frictional term with 1/r a phenomenological
damping parameter. Finally P2 in Eq. (2), the coeffi-
cient of the hydrodynamic pressure term, is taken to
be

5 uF (where vF is the Fermi velocity of electrons

deep inside the metal) so that the bulk plasma disper-
sion relation given by RPA agrees with that in hydro-
dynamics. Note that throughout this paper wc use
atomic units in which ~e~ =A'=rn, =l. A few points
are worth noting here. The electron density contour
no( r ) is itself determined self-consistently from the
equation E —V vb«k+ '7 (SG/Sno) =0 where the
subscript 0 denotes that these are zeroth order or
equilibrium values. vb„k is the background ionic po-
tential and G = G (n, ( r ) j is the exchange-correlation
functional. "' Lang and Kohn" have solved this
equation in a different but equivalent version to com-
pute the self-consistent electron density contours in
the ground state of the metal-vacuum systems. We
should point out that instead of solving self-
consistently for no( r ) (which would be very difficult
in the dynamic response ease) we use models for
no( r ), thus assuming 'Ub«k(z) to have the particular
form which yields the desired electron density con-
tour no(r). Second, the magnetic field does not enter
Eq. (2) because of the absence of an external static
magnetic field in the problem. The total self-
consistent field in Eq. (2) is given by

0 E(r, r) =4np(r, t)

0 E (r, t) =4m p (r, t)

V E;„,= 4m n( r,r)—

(4a)

(4b)

(4c)

We can also introduce. electrostatic potentials defined
by

't7'@( r, r) = 4mp( r, t)—

V'y;„,( r, t) = 4n n ( r, t).
'7'@ ( r, r) = 4n p ( r, r)—

4(r. r) =4;"+4

E(r, r) =E (r, t) +E;„,(r, r)

The applied field E ( r, t) and the induced field
E;„d( r, r) are in turn related to the external charge
density p ( r, t) and the induced charge density fluc-
tuation n(r, t) respe—ctively, through Maxwell's
equations. For longitudinal response there is just one
Maxwell equation (Gauss law) relating them

(r, t) + V J (r, r) =0
i

J( r, t) = —no( r )E—( r, t) PO n ( r, t) r' J (—r, t), —

(5a)

(Sb)

(Sc)

(Sd)
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Equations (I)—(5) are the basic equations of our
theory. They are combined with various constitutive
relations to obtain response functions either to the
self-consistent field or to the external field.

In our subsequent discussions, we shall find it con-
venient to proceed in the Fourier space which is easi-
ly done by taking (k, ip) Fourier transforms of the
equations.

B. Conductivity tensor

The conductivity terisor o- is defined through the
constitutive relation

J(r, t) = d'r'dt'a, (r, r', t t') —E,(r', t')

The corresponding constitutive relation [Eq. (7)]
becomes

fa+oo

J;(q, tp;z) = dz' o,/(q, pi;z, z') E/(q, pi;z')

where E(q, pi;z) is a Fourier transform in two dimen-
sions (x-y plane) and in time of E(r, t). The com-
ponents of tr/(q, pi;z, z ) are easily obtained by taking
Eq. (8) back to (z, z ) space. Without any loss of
generality we choose our x,y axes such that q lies en-
tirely along x axis. Then the Fourier transform of
Eq. (8) is

I ~2o. = ——n p(z') 5(z —z')—
CiO 2' 0!

i 2 i

where sum over repeated dummy suffix j is under-
stood. In Fourier space Eq. (6) reads x np(z~) eialz r'Ie Il—z z'I-— (12)

J(k pi) = ' o/(k, —k, pi)Ei( k, pi) . (7)
(2rr)3

Taking Fourier transforms of Eqs. (1) and (2) and
combining them with Eq. (7) it is easy to obtain

~I l ~I
o.;/(k, —k, cu) = ——np(k —k )

ip2 np(k —k ) k;k/

Qi pi —p k

where
2 2 I Cd

1'd = M +

I I

n (z )eialz z le —Il—z —z
l

arr =——' np(z')S(z —z')
0)

a =ir =— sgn(z —z')
2M

I I
x n (z')eialz-z le Ilz z l-—

~xy = ~yx = ~ys = ~zy =O

(13)

(14)

(15)

(16)

In general pi » 1/r and hence the imaginary part in
Eq. (9) is very small. We should point out that o,/ as
defined by Eq. (7) is an irreducible response func-
tion, i.e., the response function to the total, local
self-consistent field rather than the external electric
field.

To discuss the physical properties of cr,& we go back
to real space, by taking the inverse Fourier transform
of Eq. (8). In doing that we use the fact that our
model for surface electron density profile is such that
translational invariance is broken only in the direc-
tion normal to the surface. We take that to be z
direction. Thus,

np(k —k)=J dre' " " ~np(r)'
d3r e i( k —k ) r np(z)-

=(2m)28(q —q')np(k k'), (10)

where k —= (q, k, ) and q is the wave vector in the
plane of the surface; With Eq. (10) in Eq. (8), we
find that in addition to co, q is another conserved
quantity.

( ~2 pzq2)1/2 (17)

2P ( 2 p2 2)1/2 (18)

The exact value of g (or r) is not important for our
purpose since we are not interested in the static
(tp 0) limit in this work. We may remark that
these damping parameters should be small however.
With these remarks we shall from now on suppress

I

e ~~' '
~ and assume a to contain a small positive im-

aginary part instead. Equations (12)—(15) are valid
for z only within the metal because the hydrodynamic
equations themselves are valid only within the metal.
The important features of the conductivity tensor are
the following'.

(i) It leads to the bulk value well inside the solid
[deep inside the solid np(z ) np where np is the
constant bulk electron density and the conductivity
becomes completely translationally invariant].

(ii) It vanishes when it connects points z and z'

very far from each other. Typically for
~z —z'~ && I/g, conductivity is zero. Within our
theory this is done by the introduction of a
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phenomenological hydrodynamic damping term.
(iii) For q ~0, conductivity tensor becomes diago-

nal and all components except 0. take on their local
values

cr (q 0) =cr~(q 0) = ——'
nQ(z)5(z —z')

To discuss the screened response function X, we as-
sume the electron gas to occupy the half space z & 0
with no as the uniform bulk electron density for z
large and negative. The surface is assumed to be in
the vicinity of the plane z =0. We can ~rite

no(z) = nuf (z) = no —np&(z) (23)

Nonlocal effects are preserved in z direction, a
result of hydrodynamic dispersion.

%e point out that 0- is the response to the self-
consistent field and in this sense it is not a true
response function as defined in standard texts. ' The
relationship between the corresponding reducible
response function (which is the response to the
external field) and o, the irreducible response func-
tion can be obtained from Eq. (3) and Maxwell's
equation which relates J and E;„d. The relationship
is a rather complicated integral equation and since
our primary interest in this paper is density response
(whereas o is the current response function), we
shall not discuss this point any further.

with

X(q, kc, —kc, cu) = Xs + Xs

and

no(q'+ k,')
2 2

cu —P q —P k,
(25)

Xs =—
z [q (cu P k, ) +—k, k, (cuz +Pzqz)]

(26)

where f(z) =I —F(z) 0 as z 0 and f(z) I as
z —oo. Using Eq. (23), we can write Eq. (22)

C. Dielectric response

The dielectric tensor 7 is defined through the con-
stitutive relation

D, ( r, t) =„d r dt ac~ ( r, r; r —r ) E&( r, t ) (19)

By taking the Fourier transform of Eq. (19) and us-
ing equation of continuity&and Maxwell's'equations it
is easy to show that

as(k, —k, cu) = (2e) 5s5(k —k )

4m+ o.,j(k, —k, cu)

Equation (20) is the generalization of the conven-
tional relationship between the conductivity and
dielectric tensors. Following Newns' we now de-
fine a longitudinal response function X to the self-
consistent or the screened potential by defining the
constitutive relation

(20)

n(q, k„cu) = — dk, X(q,k„—k„cu) $(q, k,', cu)

(21)

n, (k, —k,')
X

2 (nc2u2Pcu2q2 P2k 2 )

where the negative sign is to convert n to charge den-
sity fluctuation. In Eq. (21), X is the density
response function to the total, self-consistent poten-
tial Q. Within hydrodynamics, it is possible to get a
closed form expression for the screened response
function X(q,k„—k,', cu). By taking Fourier
transform of Eq. (7), we can obtain

X(q, k, k, cu) [q2(cu2 P2kz) + k k (cu2 +Pzqz) ]

X~ is translationally invariant and can be unambigu-
ously indentified as the hydrodynamic screened
density-response function for the bulk metal. For
F =—0, X = Xg. All the surface effects are in Xg. Go-
ing over to z space, one can easily show that deep in-
side the metal Xg vanishes. We note that it is a con-
sequence only of the hydrodynamic approximation
employed here that the surface effects enter into the
response function in a sufficiently simple fashion as
given by Eq. (26). With a more complicated expres-
sion for the hydrodynamic pressure term in Euler
equation [Eq. (2)], it will not be possible to obtain a
simple form like Eq. (26) for the screened response
function.

Using Q = $;„u+@ in Eq. (21) along with
Poisson's equation, it is easy to demonstrate the
self-consistency of the screened response equation
and we get

—4m X(q, k —k„cu)
g

(28)

To find the true response function (response to an
external field, rather than the self-consistent field),
one has to invert Eq. (27).

We find that the inversion of Eq. (27) is more
easily done in the coordinate space. This is because

J dkc X(q, k ~
—k„cu)$;„u(k,')

Jf dk, 'X(q, k„—k,', cu) $ (k, )

(27)

vrhere

X(q, k —k„cu) = (q +k, ) 5(k —k, )
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one has to use hydrodynamic boundary conditions in
inverting Eq. (21) which are formulated in the z

space.

D. Response to external longitudinal field

We begin by defining the density-density response
function R(z,z ) in the coordinate space by introduc-
ing the constitutive relation

p+oo

(29)

P' n(z) + [co' —P'q' —«),'(z) ]n(z)
ez2

n(z) =g dz R(z, z )y (z )

where n(z) is the induced electron density due to an
external charge-density perturbation p (z'). All
quantities in Eq. (29) are Fourier transforms in q-co

space, i.e., we have used the translational invariance
parallel to the surface and the homogeneity in time to
go over to the corresponding Fourier space. From
now on for the sake of brevity, the explicit (q, «p)

dependence of our functions will be omitted.
Taking Fourier transforms parallel to the surface

and in time of Eqs. (1) and (2) and using Eqs.
(3)—(5), one can show that

that the normal component of the current, J,(z),
vanishes at the surface which we always take to be
the plane z =0 with the metal occupying the half
space z & 0. The other boundary condition is ob-
tained by demanding that n(z) goes to zero deep in-
side the metal (z —~). This restricts us to discus-
sion of surface excitations only. Finally, we remark
that Eqs. (30) and (31) are valid only inside the met-
al, i.e., for z & 0. For z & 0, n(z) =0 since np(z) =0
for z )0 in our model.

Using Eqs. (29) and (32) in Eq. (30) we can write
down an integro-differential equation for the
response function R(z, z ) which is to be solved in
conjunction with the hydrodynamic boundary condi-
tion. It is easy to see from Eqs. (30)—(32) that the
response equations are model dependent and we need
to make some specific choice for np(z) in order to
solve for R(z, z ).

In Sec. III we solve for the. response function
R(z, z ) for two different models of the surface elec-
tron density contour np(z).

III. DENSITY-DENSITY RESPONSE FUNCTION
FOR MODEL SURFACES

and

i coJ, (z) = n, (z)E, (z) +13' n(z)—8
QZ

(31)

+E,(z)—np(z)+«p, '(z) p (z) =0,
Qz

(30)

A. Single-step density model

np(z) = npO( —z) (33)

This is the most widely used model in the study of
surface response. The static electron density contour
is assumed to have the form

where ««~2(z) =4mnp(z) and E,(z) is the z component
of the total, local self-consistent electric field. It is
given by

0 r

E,(z) =(—2m) J dz'e ~~' '
~ sgn(z —z')n(z')

where O(z) is the unit step function. With this
model, Eq. (30) becomes

P', n (z) + ( «p' P'q' «pp') n (—z—)
gz

ra+oo

+2m„'
I

dz'e '* *
~ sgn(z —z') p,„(z') = —««~2p (z), z & 0, (34)

(32)

where sgn (a) is the sign function being positive for
a & 0 and negative for a & 0. Equations (30) and
(32) define the set of integro-differential equations
that must be solved with a specific model for np(z),
the equilibrium electron density profile to obtain the
response function R(z, z') in Eq. (29). We may note
that Eq. (31) provides the boundary conditions need-
ed to solve the differential equation (30). Hydro-
dynamic boundary condition consists of demanding

where a&~z = (4rrn«) '~z is the bulk plasma frequency of
the metal. It should be noted that the integro-
differential response equation [Eq. (30)) becomes a
pure differential equation for the step-density model
since the term with E, (z) in Eq. (30) drops out by
virtue of the fact that np(z) is constant right up to
the surface of the metal z =0 where it abruptly falls
to zero in a single step. The general solution to the
inhomogeneous differential equation (34) can be
written

f~S +0
He~*+Be ~'+Ce "'Jl dz'f+(z') +Cer'& dz'f (z'), z &0,

n(z) ='0
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where

2

(~2 +p2q2 ~2)1/2OJp

2yP' '
/3

(36)

f+(z') = e+-"' p (z') (37)

The unknown constants A and B are independent of z

and are determined by the application of boundary

conditions.
From the condition that n(z) be bounded as

z —~ we get, 8 =0 in Eq. (35). The other un-
known constant A is obtained by applying the hydro-
dynamic boundary condition that J,(z =0 ) =0. It is
straightforward, but rather tedious to obtain A from
this boundary condition in conjunction with Eqs.
(35), (32), and (31). We get

Ct)p
n(z) =de&'+, dz'e "~' *~p (z')

,
2y/3', " " (38)

where

with

e+y 2 le+oo 2 rIp

dz'F(z')+ ' dz'e~ p (z')
a)q/2+P q +P qy —0P 2 4 4 —oo

09)

F(z') =—
I I

e~' —e~' e~' I

+ 8(—z') +e~* 8(-z') —e ~* 8(z') p (z')
, 2yP', q —y q+y,

(40)

One can combine Eqs. (38)—(40) with the response equation (29) to obtain the response function as

(q + y) o)~2 I Qj
R(z, z') =—. . . , , 8(—z) e '~* ~sgn( —z') — ', 0(—z')

01~/2+p q +i3 qy —co 2 2yp

1

+ 0(—z) 8(—z') e "~*

e~' —e~' e~'
+ +8(—z') e"'

q —y q+y

(41)

where we have used the fact that R (z,z ) is defined
only for z (0 (inside the metal) to introduce 8(—z)
in Eq. (41).

We may note that R(z,z') is a true surface
response function going rapidly to zero as either z or
z' goes very deep inside the bulk. The response
function of a single-step surface has only one pole
given by

au~~/2+Pzq +P qy —02 =0 (42)

It is easy to see that this implies the usual surface
plasmon dispersion relation,

1+ + 0(q') +
2 a1p

(43)

At this frequency, the induced density fluctuation in

the system could be nonzero even in the absence of
any external perturbation since the response function
is infinite implying a collective excitation of the sur-

face. The abrupt surface (single-step model) thus

can have only one kind of normal mode excitation,
that given by Eq. (41) which is referred to as the reg-

ular surface plasmon.

8. Two-step density model

In this model the electron density goes to zero
from its uniform bulk value in two steps and no(z)
can be'written

no(z) =n08( z —a) +/2LO( —z)O(z—+a) . (44)

n(z) =de"' +
2ytP' "

~+ -v l~-~'I
dz' e

&& cu,', (z') p (z')

for z & —a (45)

In Eq. (44), no is the bulk, uniform electron density
deep inside the metal (in this model for z (—a) and

n~ is the electron density in a surface layer of thick-
ness a. The two-step model is more realistic than the
single-step abrupt surface since in reality the electron
density goes from the bulk value to zero in a smooth
fashion over a small region near the surface.

The solution of the basic response equation [Eq.
(30)] for this model can be written



4878 S. DASSARMA AND J. J. QUINN 20

We should note that co~ (z ) =4mnoO( z——a) in the

two-step model. For —a & z (0, we can write the
density fluctuation as

and
+y~a

Cy=
q +y)

+ a

+
y&a

q+y~

n (z) = Be ' + Ce "' +
2m~ p'

xp (z), for —a &z &0 . (46)

Here

z (z') =4mni. 8( z')—O(z'+a)
Pp

In Eqs. (45) and (46), y~, yz are given by the same
equations as in Sec. III A with the electron densities
no and n~ respectively.

To obtain Eq, (45), we have already used the
boundary condition that n(z) W ~ as z —~. There
are three unknown constants A, B,C in the general
solution for the induced density which are to be ob-
tained by using boundary conditions. One of the
constants can be elimated by using the hydrodynamic
boundary condition J, (z =0 ) =0 whereas the other
two are obtained by demanding that the normal com-
ponent of current density J,(z) and the density fluc-
tuation n (z) be continuous across the step at z = —a.
Continuity of n(z) at z = a immediately gives

&la

2 2

d(q, o)) =0 (53)

Since h(q, ~) is a complicated function of q and co,
we shall investigate the limiting cases qa (& 1 and
qa )&1.

(i) qa « l. In this limit, the dispersion relation
given by Eq. (53) simplifies to

t

O)p

2
(ytsinyza+jzcosjqa) =0 (54)

where yq = —i yq. Thus, in addition to the regular
surface plasmon mode (which is given by ru = ca~, /J2
in the q 0 limit ) we may have an additional
branch of collective excitation given by,

2
(+y~+yt)e ' . (52)

2,Cup Cl)p

D~ and D~ are rather long and complicated expres-
sions involving integrals over p (z) and we shall not
show them here (Appendix A).

Using Eqs. (47)—(49) in Eqs. (45) and (46), we
get n(z) completely in terms of p (z) and
co~, co~, yt, yz, P, and a. This in turn immediately

yields an expression for R (z, z ) on comparison with
Eq. (29) (Appendix B).

We note that the response function R (z,z ) of this
system will have poles at frequencies determined by

y] slnyp. a -+ yp cosypa =0 (55)
a),', (z')

t-v l~ +al
1

o),', (z') p (z') (47)

The evaluation of the two constants B and C using
the other two boundary conditions viz. J,(z =0 ) =0
and J,(z = a+) =J, (z = a ), is straightforward but
extremely tedious. The final result can be expressed
as,

This is the "higher-multipole" mode of the two-step
surface. %'e may note that the mode vanishes if
a =0 and thus an abrupt surface cannot support such
a mode of collective excitation. %e have shown here
that the higher multipole mode exists as a genuine
pole in the response function of our diffuse surface.

(ii) qa &) 1. This is the limit of a very long step:
a )& 1/q. Since we are still interested in the long-
wavelength limit we shall first put qa ~ in Eq.
(53).and then take q 0 limit in the resulting disper-
sion relation. Doing so gives

C~D) —C Dp8=
b Dp —b~D)C= (49)

1»P'
+ yp Q)p

1 1

q +y& q +yg

where,

h=b C~ —bpC (50)

2(y +~)p'
OJ —

COP) Pp

=0 . (56)

and b+, b, C+, C are given by

b = -++ + 2q+y1 q +y2 p~

(51) (57)

Equation (56) implies two kinds of collective excita-
tions with dispersion relations given by,

1 2yzP'

q+y2 Np2
2
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and

1 1

q+y~ q+y2
2(y~+yz) p'

M —OJ

Equation (57) can be simplified into

co~ /2+p q +p2y2q —«« =0

(58)

(59)

In Eq. (61), A is the total area of the surface and
k —= (q, k, ) is the three-dimensional wave vector as-
sociated with the probe. One has to consider the im-
aginary part of the retarded response function in Eq.
(61).

The response function R can be obtained very sim-
ply from R through the following relation:

This is the dispersion relation of a regular surface
plasmon [cf. Eq. (42)1 localized at the surface of the
metal and with surface plasmon frequency
ra = co~,/v2+ O(q) corresponding to the electron den-

sity n~ in the surface layer of thickness a. Ordinary
surface plasmon, however, has a frequency that al-

ways corresponds to the density in the bulk metal, in-

dependent of surface electron density profile. '

The fact that the surface plasmon in the case of a
very long step (qa » 1) corresponds to the electron
density in the surface layer is simply due to the sur-
face at z =0 in this case being very far away from the
bulk metal essentially has no "memory" of the bulk
electron density. The other mode in this case is
given by Eq. (58) which can be simpliefied to'9

R (z,z') = q' —,R(z,z')
4~ az' (63)

One of the great advantages of the hydrodynamic ap-
proximation is that the imaginary part of the response
function is known in closed form so that the double,
integral Eq. (61) can be performed and an analytical
expression for the dynamic structure factor can be
written down.

e shall illustrate the procedure by an explicit
evaluation of the dynamic structure factor of a sharp
metal surface. The calculation is straightforward but
rather tedious and the result for general (q, c«) is

' 1/2
Qlp + 6)p

(60)

A(q+y)a),'
4( ~2 ~2 +P2k2)

This is the well-known interface excitation at a bimet-
allic junction. Thus, the response function for a
two-step model has poles at collective excitations
which are a regular surface plasmon and higher multi-
pole modes in the case of qa « 1 and a regular
surface plasmon corresponding to the layer electron
density and an interface plasmon in the case of
qa &) 1.

IV. DYNAMIC STRUCTURE FACTOR
OF SURFACES

The dynamic structure factor ' contains the max-
imum information one can deduce from an inelastic
scattering experiment. For the surface geometry em-
ployed in this paper, we can write down the dynamic
structure factor for the surface as

x, —ru'+ 8(ap —cosz(q)), (64)

where &as(q) is the regular surface plasmon frequen-
cy as defined by Eq. (42) and Eq. (43). In the case
of a two-step model surface, the dynamic structure
factor will have 5-function peaks at the regular sur-
face plasma frequency and at the higher-multipole
modes. The peaks in the dynamic structure factor
are 8-function-like only because we have neglected
any lifetime effects. If we assume co' to contain the
damping term so that we replace ««' by «2+i co/r,
then the S-function peaks broaden out into Lorentzi-
ans.

The dynamic structure factor provides direct infor-
mation about fast-electron energy loss experiment.
Within the Born approximation, the differential cross
section for inelastic electron scattering is given by the
Van Hove expression,

S(k, cs) =2A „ dz J dz'e * ImR(zz ) 3
—Vz(k) S(k, o))

dQdE 2rr ' k,
(65)

(61)

l+OO

n(z) = dz'R (z,z') $ (z') (62)

where R is the density-potential response function
defined by

where eo and k = kf —k, are, respectively, the energy
and momentum transferred to the solid by the exter-
nal cha'rg'e and V(k) =4m/k2. Thus in a fast-electron
energy loss experiment one expects to see structure
around the surface plasma frequency as well as at the
higher-multipole frequency.
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V. CONCLUSION

In this paper we apply the hydrodynamic model of
a bounded electron gas to describe the response of a
metal surface to external dynamic perturbation. We
write down the general conductivity tensor o (z,z )
within the hydrodynamic approximation and show
that it has the desired physical features of a nonlocal
conductivity tensor —it heals to the bulk value deep
inside the solid and vanishes when ~z

—z
~

is large.
Finally, we obtain explicit expressions for the induced
density fluctuation in the system in the presence of
an external charge density fluctuation by solving the
longitudinal response equations for two different sur-
face models. We show that the nonlocal effects asso-
ciated with hydrodynamic dispersion may give rise to
new structure in response functions of metal sur-
faces. These structures should show up in the fast-
electron energy loss experiments as peaks in scatter-
ing cross sections at energies corresponding to
higher-multipole modes. We have restricted our-
selves only to localized excitations in this paper ig-
noring the propagating bulk plasma modes completely.

The main advantage of the hydrodynamic theory is
that one can write down analytic forms for response
functions rather simply. On the other hand, micro-
scopic theories like RPA become very complicated
when applied to deal with surface response and even
for a sharp surface, it is not possible to write down
the response functions explicitly. In the past there
has been controversy regarding the validity of hydro-
dynamic model in surface collective oscillation prob-
lem. ' We believe that the simplicity of the ap-
proximation makes hydrodynamic theory a particular-
ly appealing alternative to detailed microscopic
theories like RPA, the validity of which in the sur-
face region is also questionable. Hydrodynamic
theory when applied to a smooth surface electron
density profile shows that the slope of the surface
plasmon dispersion curve could be negative for suffi-
ciently diffuse profiles, as has been observed experi-
mentally. Recently Inglesfield and Wikborg"
developed an RPA theory to investigate the higher-

multipole modes. ' ' They found that these modes
could exist for a two-step model within RPA. This
encourages us to believe that the higher-multipole
modes are physical features of a diffuse surface and
are not peculiar to hydrodynamic model itself. In the
final analysis, experiments have to decide whether
these modes exist or not. Our work in this paper in-
dicates that inelastic electron scattering experiments
on suitable two-step surfaces (like sodium on alumi-
num) could be one of such experiments looking for
these additional poles in the surface response func-
tion.

Extension of our theory into the retarded limit
remains to be an interesting problem for the future.
It is difficult due to the fact that the integrodifferen-
tial equations in the presence of a general external
electromagnetic field are not explicity soluble even in
the hydrodynamic approximation. One can use the
general conductivity tensor derived in Sec. II of this
paper as a starting point to obtain the surface
response to external electromagnetic perturbation.
Bagchi'6 has recently given the general RPA theory
for the transverse dielectric response function in a
bounded electron gas. The hydrodynamic conductivi-
ty satisfies the general features outlined in his work.

Calculation of the reflectivity of a two-step surface
for p-polarized light would be of great interest since
one(can compare it with the results for a one-step
model and find out the new features introduced due
to the existence of higher-multipole modes. As has
been argued by Eguiluz and Quinn, "hydrodynamic
dispersion remains important in the retarded region.
Recent work of Feibelman' indicates that calcula-
tion of surface reflectivity including the nonlocal ef-
fects in the theory, is a difficult problem. We hope
that the simplicity of the hydrodynamic conductivity
tensor will enable us to extend the work into the re-
tarded region in the near future.

ACKNOWLEDGMENTS

This work was supported in part by NSF and by the
Materials Research Program at Brown University
funded through the NSF.

APPENDIX A

Here, we write down the expressions for D~ and Dz which enter the response equations [Eqs. (4g) and (49)] of
the two-step model. They are given by

p+oo

D, = Jl dz'R, (z') p (z'), (Al)

where

Qlp (z ) -qa
Rt(z ) = sgn(z')e z —(1~+I2) + I' —sgn(z )e ~~* ~

6)p tg ++~
(A2)
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and
re+oo

D2 = dz' Rz(z') p~(z') (A3)

where

R, (z') =
t

sgn(z'+ a) «3~3, (z') e " —sgn(z'+ a) «3~3, (z')

-q Iz+aI ' ' F I

xe ' —2y P'F + e "I e)—al) + —sgn(z'+ a) e '~* +'~
q +pi

I), 1$ 13~ and Fin Eqs. (A2) and (A4) are given by

(A4)

«33 (Z') y)(a +a)-aa

2'y)P 0 'y) q + 'v)
(AS)

I, = 1,(z') =—

)

&gz (z ) gaza
' ' -)»(a +a)-qa

P2 e -eq' eq' -e+
273P q+y2

(A6)

I I

«3p', (Z ) q,
' VZa

I, = 1(z') =-
27 P' q+y2

I
-y2(z +a)+qa

e qZ

+
P2

(A7)

I
-yglz +aI

F =—F(z') = 1 e
2P'

where

«3~, (z') =4m n()O(z' —a)

I
-y2Iz +a I

«3~3, (z')—
y2

(aaz, (z') (AS)

(A9)

aaa, (z') =4mnLO( —z') O(z'+ a) (A10)

We point out that I), 13, 13 defined by Eqs. (AS) —(A7) contain no singularity at q =p) or y& since in each
case the numerator vanishes faster than the denominator at q

APPENDIX B

We shall write down the response function for a two-step model in this appendix. We define,

n(z) = dz R(z, z ) p (z')

where
y) (z+a)

&&,+.)a
R(z, z ) =—C~R) —b+R2 e + b R3 —c R) e e +

2P2

-v2Iz +a I

e

y2

-v(lz +aI

«3~3,(z')—

(B1)

«3,', (z')

,', (.')
+

2
e ', fOrz& —a

2y) P'
(B2)

I
y2z y2z

e e(C~R) —b+Rz)+ (b Rz —C R)) + e, for —a ( z (0
2V3P'

=0 for z &0

(B3)

(B4)

R) and R3 are defined in Appendix A whereas I= b C+ —C b+ and b+, C+ are defined in Eqs. (SO) —(52) in
the main text of the paper. Equation (B4) follows from the fact that n(z) =0 outside the metal, i.e., for z )0.
One can directly show that in the limit of a 0 and/or co~ co~, the response function for the two-step model

given by Eqs. (Bl)—(B4) reduce to that for the one-step case [Eq. (41)].
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