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Perturbative approach to the calculation of the electric field near a metal surface
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A systematic perturbational procedure is developed for the calculation of the electric field near a metal

surface when electromagnetic radiation is incident upon it. The method is worked out in detail for a
particularly simple choice of the "unperturbed model" for the metal. Asymptotic forms of the expression for
the electric-field components are used to obtain corrections to the Fresnel formulas for the reflectivity for
both s- and p-polarized light. Surface corrections to ellipsometric parameters are also derived. Connection
is made between these results and those of previous theories. The procedure is applied to a metal surface
with chemisorbed impurities, and is shown to lead to a new and useful expression for the differential

reflectance in the case of p-polarized light. The result is discussed in terms of its utility in studying
experimental data on surface-reflectance spectroscopy.

I. INTRODUCTION

Photoemission and optical reflectance have
emerged in recent years as two of the most useful
techniques for the investigation of metal surfaces
with or without chemisorbed impurities. In both
of these methods, a quantity of central interest is
the variation of the electric field near the metal
surface as radiation is incident upon the system
and is reflected and refracted by it. The total
electric field in the surface region enters the ma-
trix element of photoemission from, e.g., a sur-
face state, while the asymptotic form of the elec-
tric field far from the surface can be used to ex-
tract the expression for the reflection coefficient.
The electric field near the surface of a metal has
been studied by a number of authors' "using dif-
ferent models of the surface. In a series of pa-
pers, ' ~Kliewer, Fuchs, and co-workers studied
the surface impedance and reflection coefficient
from a semi-infinite metal, bounded by a sharp
surface, whose dielectric response function is
nonlocal. They considered obliquely incident light
of both g and p polarization, and the limiting
boundary conditions of electrons being scattered
either specularly" or diffusely'4 by the surface.
For the case of p polarization, the problem of
finding the electric field in the vicinity of the sur-
face has been set up' and solved numerically~ with-
in the so-called semiclassical infinite-barrier
model. Feibelman, on the other hand, has tried
to determine the electromagnetic field at a jellium-
vacuum interface" by first obtaining the full quan-
tum-mechanical conductivity tensor of the system

within the random-phase approximation (RPAj, and
then using it to solve numerically an integral equation
for the relevant vector potential. The integral
equation is derived from Maxwell's equations and
is exact in the long-wavelength limit. The conduc-
tivity tensor in this method is also nonlocal, but it
does not vanish at a sharp surface separating the
metal from vacuum. Making use of the asymptotic
form of the solutions for the electric fieM compon-
ents away from the metal surface, Feibelman has
also derived a useful expression for the reflection
coefficient of s-polarized light, and a rather less
transparent formula in the case of p polarization
which involves the derivative of an electric field
component which has to be determined numerical-
ly. An entirely different approach to the deter-
mination of the surface electric field is the hydro-
dynamic approach of Sauter' and Forstmann. "

his has proved very successful in the study of the
photoexcitation of bulk plasmons by p polarized
light &2 &3

In this paper, we present an alternate, perturba-
tive approach to the calculation of the electric
field near the surface of a metal when either s- or
p-polarized radiation is incident upon it. The
method is based on the postulate that there exist
approximate, yet sensible, models of the metal
dielectric response for which the surface electric
field is exactly soluble. One obvious example of
such a model is the usual Fresnel problem'4 of a
semi-infinite metal bounded by a sharp surface
and described by a local dielectric function. We
suppose that while we may not be able to find ex-
act, i.e., closed-form, expressions for the elec-
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tric field components in the neighborhood of the
surface for the actual prob&em of a semi-infinite
metal with its associated nonlocal dielectric func-
tion, we can nevertheless isolate a "nearby, " sol-
uble problem with a very similar dielectric func-
tion. 'The latter problem we consider as our un-
perturbed or background problem, and its solution
for the field as the unperturbed solution. The dif-
ference between the actual and the assumed or sol-
uble dielectric function we regard as a perturba-
tion, in terms of which the true electric field com-
ponents are to be expanded once the unperturbed
solutions are subtracted out. Of course we mould
need the Green's function of the background prob-
lem in order to make such a perturbational expan-
sion. The procedure outlined above has a number
of advantages. First, it is physically appealing as
being the correction to an unperturbed problem
which, to begin with, should have a sensible,
physical interpretation. Second, the method is
systematic, and one knows from the order of the
perturbation theory to what precise accuracy the
correction terms are being treated. Third, it
leads to a new and potentially useful expression for
the change in the reflection coefficient of p-polar-
ized light from the standard Fresnel result, '4

caused by the nonlocal dielectric response of the
surface. As we shall show below, this formula
with a simple modification can be used to study
differential reflectance of p-polarized light: from a
metal surface covered with chemisorbed impurit-
ies. We can also derive formulas that should be
useful in ellipsometric studies. Finally, the pro-
cedure enables us to determine the exact way in
which a metal surface responds to electric field
components parallel and normal to the surface.
This is very important in terms of providing an in-
tuitive understanding of the response process. We
should mention that a perturbative approach to de-
termine theelectric field components at the sur-
face was developed earlier by Brodskii and
Urbakh" in their study of ellipsometric effects at
the metal-electrolyte interface. The Green's-
function technique we develop in this paper for p
polarized radiation is, however, completely differ-
ent from their scheme. Our method is also close
in spirit to the theoretical studies of light reflec-
tion from surface states" and metal-oxide-semi-
conductor field-effect transistor (MOSFET} sys-
tems, ". "although the separability property of the
conductivity tensor, which provides an essential
ingredient in these studies, is not ultilized explic-
itly in this paper. The separability property, of
course, can be exploited here, but the problem
becomes more complicated because of the presence
of a continuum of states normal to the surface, '
rather than a handful of discrete states.

One interesting result to emerge from our work
(and reported later in this paper) is that although
the dielectric response of a metallic system is
certainly nonlocal, the change in optical reflectiv-
ity'brought about by the physical surface differing
from the Fresnel model can be expressed, in the
long-wavelength limit and the first Born approxi-
mation, entirely in terms of local functions which
are appropriate averages of the corresponding
nonlocal quantities. This is useful for purposes of
modeling the surface dielectric response in optical
studies, and brings up the question of how import-
ant the nonlocality of metallic response really is in
understanding its optical properties. That question
will be addressed in a later paper using simple
models to describe a semi-infinite metal. The
present paper is concerned exclusively with the
theory behind our perturbative approach and its
various consequences. Certain formulas of this
paper on differential reflectance have already been
reported, '0 as also numerical calculations based
on these formulas for differential reflectance from
ordered chemisorbed monolayers. 4'

The organization of the paper is as follows. The
theoretical formalism involved in subtracting out a
soluble, background problem from the actual
problem, and expressing the result for the electric
field as an integral over a Green's function, is
presented in Sec. II. The formal solution serves
as the starting point of an iterative scheme for ob-
taining the true solution as a perturbation series.
We discuss separately the cases of s and p polariz-
ations with obliquely incident light. In Sec. IG, we
choose the Fresnel problem as the background
problem, and work out explicitly the Green's func-
tions appropriate to it for both polarizations. The
actual solutions for the various electric-field com-
ponents are discussed in Sec. IV. We introduce the
Born approximation and indicate ways of improving
on it. The solutions in the Born approximation are
studied to obtain optical reflectance and ellipso-
metric parameters in Sec. V. Our conclusions are
contained in Sec. VI with suggestions for further
research. Certain algebraic details concerning the
Green's-function elements are presented as an
Appendix.

II.. THEORETICAL FORMALISM

Here we discuss the formal technique of solving
for the electric field in reflection at a metal sur-
face by first choosing and isolating a soluble,
background problem, then subtracting it from the
problem at hand and treating the difference as a
perturbation. - The metal exists in the half-space
z &0 with its surface parallel to the x-y plane. It
will not be possible, in general, to identify a fixed
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plane separating the metal from vacuum. Rather
we imagine the interface to consist of a, narrow
surface region in the neighborhood of the z =0
plane. We further assume, for simplicity, that the
metal is translationally invariant parallel to the
x-y plane. Consider light to be incident on the sur-
face in the g-z plane at an angle of 9,. to the surface
normal. The electric and magnetic fields obey
Maxwell's equations which can be recast in the
form

82
v&&(V~E)=v(V E)-V'E=-, , D, (2.»)c' et2

where, writing p=z, x+jy, we get

(2.1b)

Making use of translational invariance, all field
components can be written in the form

E„(r, t)=Eq(z)e" '(' "g'=x, y, orz, (2.2)

where Q =i(&/c) sing, The dielectric tensor has a
similar Fourier transform and in it we make the
long-wavelength approximation which is justified"
since q«k~, the Fermi momentum of the metal.
The resultant dielectric tensor c(Q-0, &o;z, z') is
known to be diagonal. ' Note that for t) polarized
light, we have E = (E„,0, E,), and for s polarized
light, we have E =(O, E„O). We proceed to treat
the two cases separately.

A. p polarization

Equations (2.1) lead here to the coupled integro-
diffe rential equations

d d, E,—iq E,+, dz'e, .(0, ~;z, z')E.(z')
dz dz c

= 0, (2.3a)

M„,(z, z")=-fq6(z-z") „„,dz

(2.6a)

(2.6b)

M (z, z")=-fq6(z-z")
dz

(2.6c)

M„(z, z")=-q'6(z —z")+(~'/c')~;, (0, ~;z, z") .

(2.6d)

Equations (2.3) can then be written in a compact
matrix notation a,s

i-q „E.—q'E, +, Cz'e.,(0, ~;z, z')E, (z')

= 0. (2.3b)

We now subtract from the dielectric tensor under
consideration a hypothetical dielectric tensor which
corresponds to a problem having a sharp surface
at z zp separating vacuum from the metal. In
other words, we subtract the dielectric tensor

~0(0, ~;z, z') = e(z, —z)e(z, -z')6(z —z')Y

+ e(z —z,)e(z'- z, )e '(o, ~;z —z'),
(2.4)

where I is the unit tensor and e ~ is the fully trans-
lationally invariant dielectric tensor for the bulk
of the metal. We assume that the hypothetical
problem with e' as the dielectric tensor can be
solved exactly for the fields. 'The choice of z, as
the plane at which the background metal terminates
is made for the sake of complete generality. We
presume that this plane lies somewhere in the sur-
face region of the metal, but do not specify it any
further. Of course no physical result can depend
on z„as will be shown later on. The dielectric
"perturbation" is defined by

ae„„(z,z') =e„„(0,(();z,z')- e'„„(0,(o;z, z'). (2.5)

Let us also introduce the following notations:

„t' M( , z)zM„,(z, z") i fE„(z")) ~' "„,(be„,(z, z')E (z'))
(M, (z, z") M„(z, z") ] I, E,(z") ] " (Ae„(z,z')E ( ') j

The unperturbed or background problem is recovered by setting the right hand side of Eq. (2.7) to zero.
This problem is assumed to be soluble, and we imagine the solutions for the fieldcomponents to be written
E,(z) = U, (z) and E,(z) = U, (z), when light is incident on the surface from the left, i.e. , the vacuum side. We
now try to solve Eq. (2.7) formally by introducing the matrix Green's function for the unperturbed problem,
which obeys the equation

G*(z-,z') G„,(z",z') )- 6, /1 01

(z, z") M„(z, z") / ( G,„(z",z') G„(z",z')f
(2.8)

%'e shall assume that the Green's matrix for the background problem can be constructed by virtue of our
knowledge of the solutions for the fields. ln terms of this matrix Green's function, we "solve" Eq. (2.'l)
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formally by turning it from coupled integro-differential equations to a pair of coupled integral equations,
Vlz ~,

E (z)=U (z) —
)

dz"G„(z z") fdz'zz„(z", z')E (z')+f dz"G„(z z") f dz'zz„(z", z )E (* )),X ' X

(2.9a)
(dE (z)=U (z) — dz G, (zz ') fdz dz (z",z )E (z')+ fdz" G (zz) fdz dz (z', z')E(z')) .
C

(2.9b)

'These integral equations describe the electric field components of p polarized light as it is incident from
vacuum on the true metal surface. They serve as the starting point of our systematic, iterative procedure
of solving for the fields. To be useful, of course, such a perturbation theory ought to be rapidly conver-
gent T.his is likely because the background dielectric tensor for subtraction, P'(0, ar;z, z'), has been so
chosen that he&&(z, z') of Eq. (2.5) is finite only over a narrow spatial range around z, z'=0, and it. vanishes
both as z, z'-~ and as z, z'--~. The integral of pc~(z, z') is therefore bounded and finite. We shall dis-
cuss the question of convergence more fully when we explicitly introduce the perturbation series. In Sec.
III, we take up a particularly simple, special form of c E [cf. Eq. (2.4)] which corresponds to subtracting
out the well-known Fresnel problem as the background problem.

B. s polarization

Equations (2.1) yield in this case the following equation for E„:
d 2

—Q E„+ f dz'z, ,(O, z;z, z')E, (z')=0. (2.10)

Subtracting the same dielectric tensor as in Eq. (2.4) to describe the background metal, we arrive at the
integro-differential equation

d' GP (d

d, —Q'iE„+, dz'e'„, (0, (o;z, z'}E„(z'}= , dz—'be„„(z,z')E„(z'). (2.11)

We imagine that the unperturbed or homogeneous problem, obtained by setting to zero the right-hand side
of the above equation, has a known solution E„(z)= U„(z) for light being incident from the vacuum side. We
further imagine that the Green's function for the unperturbed problem is known, and it obeys the equation

( 2

i&d,
—Q iG„,(z, z')+, dz" e„„(0,(o;z, z")G„„(z",z') =5(z —z'). (2.12)

With the help of this Green's function, we "solve'* Eq. (2.11) formally by converting it into an integral
equation

(d
E,(z ) = U„(z ) — , f dz G (z z ")f'"dz '

„d, z„,,(z ",z ')E ,(z ') . (2.13)

his equation describes the electric field distribution as 8 polarized light is incident on the metal from
vacuum. We now proceed to set up an iterative solution for E„(z) after making a specific choice for the
bulk dielectric function of Eq. (2.4).

III. FRESNEL PROBLEM AS UNPERTURBED PROBLEM

In order to make further progress at this stage,
we make a specific choice of the function
F (0, +;z —z') of Eq. (2.4), which describes the
dielectric response of the metal in the bulk. We
assume that it is a local function, thus converting
the unperturbed problem into the standard Fresnel
problem of reflection and refraction at a sharp
surface separating vacuum from a local dielectric
medium. '~ Calling g =8 —go, we choose

e'{0,~;z, z') =Y~ {z)5(z-z'),
and e (z) is the step function

~„(z)= e(-z) + e(z)e, ((u) .

(3.2a)

(3.2b)

a'(0, ~;z, z') =I e,(~)5(z-z'),
where e,(u) stands for the usual, frequency-depen-
dent complex dielectric constant of the metal. The
dielectric response tensor of the background prob-
lem is then
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The Fresnel or local model is admittedly not a
good description for the bulk of a metal where non-
locality of response is often important, as for ex-
ample in plasmon dispersion. A superior starting
point wouM be to use for g ~ the nonlocal dielectric
response of the fully homogeneous medium —a
choice similar in spirit to what has been made in
some studies" "on bounded semiconductors.
Nevertheless, the use of the Fresnel model for
subtraction purposes has a number of advantages.
First, experiments on reflectance from metal sur-
faces are commonly analyzed on the basis of this
model, where the Kramers-Kronig relationship is
utilized to determine the real and imaginary parts
of e,(&o) introduced in (3.1). The use of this as the
background problem enables us to find out to what
degree reflectance from a metal is affected by the
nonlocality of response associated with the sur-
face.'9 Second, the simplicity of the model allows
us tp obtain closed-form expressions for the
Green's function, thus permitting us to obtain ex-
pressions for the reflectance change that are read-
ily interpretable. Third, by using the same un-
perturbed problem first with a clean and then an
adsorbate-covered metal surface, we are able to
find new formulas for the change of ref lectivity on
chemisorption —especially for p polarized light—
which should serve as the basis for data analysis.
Previous attempts at analyzing the p polarized
data have been hampered by the absence of a con-
venient formula. We turn now to the construction
of the elements of the matrix Green's function,
once more treating the two independent cases of
linear polarization separately.

A. p polarization

The unperturbed problem is given by Eqs. (2.3},
with q, and g„replaced by e „and e, , respective-

ly. The form of the functions in Eq .(3.2a) shows
that we are now left with only coupled differential
equations. Let us call their two linearly indepen-
dent solutions E(z) =(U,(z), 0, U,(z)) and E(z)
=(V„(z),0, V,(z)), respectively, for light being in-
cident on the surface from the vacuum side (left)
and the metal side (right). The solutions can be
written by simple inspec tion as (z =z —z, )

e"+-~',e '+', z &0,
U„(z) =

(1 —r )e' ' z»'
(1+ra)e " ', z (0,

V.(.) =
e-fk g+ oej& z™ &P.Xp &

~ Z

(3.3)

(3.4)

Eg, g —Q 8ln2 gg —sln2 g„
&, q, + k, sin2(9,.+ sin20„ (3.7)

Note that we have suppressed the frequency depen-
dence of &, in the above two equations for ease of
writing.

In a similar manner, the matrix equation obeyed
by the Green's function is simplified on substitut-
ing Eqs. (3.2} in Eqs. (2.6) and (2.7). We obtain

U (z) iQ d U (z)

( )
(~'/c')e (z)-Q' dz

( )

'

Here we have introduced the quantities q, and k, as
the wave-vector components of light along the sur-
face normal in vacuum and the metal, respectively.
They are related to the angle of incidence 0& and
the angle of refraction ~„by the formulas

tg~
= (4&/c) cosa(z kg = e~ (M/c) cosg„z (3.6)

where':the complex angle of refraction must be ob-
tained from sing&/sing„= [e,(&o)]' '. Finally ro& is
the reflection amplitude of the unperturbed prob-
lem, i.e.,

QP
+ --;e (z)

dz (G„(z;z') G„(z,z')), () 0 )

I
G„(z,z') G.,(z, z')]

2 &)G(z)
C

(3.8)

The solution for the Green's-function elements is sketched in the Appendix. We find

G,gz, z') = a[e(z- z')U, (z)V„(z')+ e(z'- z)V, (z)U (z')],
a..(z, z') = n[e(z- z')U. (z)V„(z')+ e(z'- z)V.(z)U,(z')],
G,gz, z'}= —~[e(z —z ') U„(z)V.(z')+ e(z'- z)V.(z)U.(z')],
G,.(z, z') = -~$ [e(z- z')U. (z)V,(z')+ e(z'- z) V.(z)U.(z )] —[1/e. (z)] (c'/n~')6(z - z')j,

where

o = i(c,q, + k,)/(-4e, ~'/c') .

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.9e)
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A similar Green's function was first derived by an
independent technique by Eguiluz and Maradudin. '
Vfe comment in the Appendix on the connection be-
tween our Green's functions and those obtained by
previous authors. ' "

e" »+He "»', z &0,
U„(.) =

(1+r')e" ' z )0.
(1-r')e '"' z & 0,

&„(z)=
ikdd roe(A d Z )() .

s

(3.10)

(3.11)

and r', is the Fresnel reflection amplitude of 8 pol-
arized light, i.e.,

r', = ((f,—k, )/(((), + 0,) . (3.12)

B. s polarization

This time we start with' Eq. (2.10) and, for the
unperturbed problem, substitute eo» of Eq. (3.2a)
for q„„. The two independent solutions for light
being incident on the surface from the vacuum side
and the metal side are U„(z) and V„(z), respective-
ly, where

'The corresponding unperturbed Green's function
obeys [cf. Eq. (2.11)]

~ ~

CO—9'+ 2 &~(z) G»(z, z') =5(z —z'). (3.13)
C

The solution is

G„„(z,z ') = [1/2ik, (1+v,) ][8(z —z') U, (z)P„(z ')

+8(z'-z)V„(z)U (z')]. (3.14)

IV. SOLUTION FOR FIELDS: BORN APPROXIMATION

%'e now try to solve for the electric field com-
ponents of light iteratively by making use of the
Green's functions derived in Sec. III. The starting
points are Eqs. (2.9) for the case of p polariza-
tion, and Eq. (2.13) for s polarization.

A. p polarization

We begin by recasting Eq. (2.9a) into a more
convenient form by observing the fact that on sub-
stituting Eq. (3.2a) in Eq. (2.5), we have

(4.1)

We have introduced here, in a formal manner, the inverse of the nonlocal dielectric tensor, which is also
known to be a response function. From Eq. (2.9a), we obtain

(0
U(z) U(z) , , =dz"-G (z, z") fez'eee„(z", z')&, (z')

C

+ Cz Gg» z f z D» z EQp z Cz E Oy +g z y z D z
)

Next we rewrite Eq. (3.9d) as

G (z, z')=G (z, z')+ [1/~ (z)](c'/~')&(z-z'),

(4.2)

(4.3)

in preparation for writing an integral equation for D,(z). The advantage of this function is that, unlike
E,(z), it is continuous across the surface in the Fresnel problem. Substitution of Eqs. (4.1) and (4.3) in
Eq. (2.9b) yields, after a little algebra,

47D(z)=e (z)U, (z) —, , e (z) dz'G (s, z") f dz Ze(z", z)E', (z')
C

+ Cz" G»» z, z" D, z" —e~ z" Ch'c, » 0, +;z",z' D» z' (4.4)

Note here that G„(z,z') is the part of Eq. (3.9d)
which does not have a delta function.

Equations (4.2) and (4.4) are still exact integral
equations, which can be solved iteratively by writ-
ing down infinite series for E„and D,. It is more
convenient to introduce at this point two approxi-
mations that greatly simplify the problem. First
is the long-wavelength limit where we note that the

I

wavelength of light used in typical experiments on
photoemission or optical reflectance is much
larger than the range of nonlocality of either
d, e (z, z ') or e,,'(0, a); z, z'). Accordingly, we re-
move the functions E„(z') and D,(z') occurring in-
side the z' integrals in these equations to outside
by setting z'=z". Furthermore, as a result of the
long-wavelength approximation, the nonlocal fea-
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tures of the response functions are integrated
over, and the remaining dependence on z" is con-
centrated in the neighborhood of the surface. 'The

integrand for z" integration falls off quickly to
zero on either side of the nominal surface of the
Fresnel problem, thus making it sufficient to eval-

I

uate Z, (z") and D,(z") at z"=0 or z" =zG. We can
similarly evaluate the continuous functions
G,„(z,z"), e (z)G (z, z"), G„(z,z")e (z"), and
e (z)G„(z,z "}e (z"), also at z"=zo and remove
them from integrations. These approximations
lead finally to the following equations:

Qp
2

E,(z) =U (z) — —,E,(z, )G„(z,z, ) fdz" fdz'sa„(z", z')aD, (z, ) [G„(z,z")a (z )]z. , f a(a"

Z — dZ 6 O, + Z, Z

D,(z) =a„(z)U,(z) ——E,(z )a„(z)G„(z,z ) fdfad. Oa (z z )„",'
0

(4 5)

+D,(z )a„(z)[G, (z, z")6 (a")]( „ fdz" (a '(z") —fdz'a, ,'(O, a;z",z')) . (4.6)

From the above equations, the field components
may be obtained as perturbation or Born series by
iteratively substituting for E (z, ) and D,(z,}, start-
ing with their values for the unperturbed problem.
We now make the second approximation by termin-
ating the Born series after the first term, which
involves setting E,(z, ) = U, (z, ) and D,(z, )
= Ie (z)U, (z)j, . It is worth noting, in fact, that
in this long-wavelength limit, writing down a per-
turbational series is not strictly necessary. It
can be summed exactly because, evaluating Eqs.
(4.5) and (4.6) at z =z„one obtains a pair of cou-
pled algebraic equations which can be solved in
principle for E,(z, ) and D,(z, ). Such a procedure,
however, would be inconsistent with the order of
perturbation implicit in the long-wavelength ap-

proximation. Hence, we confine ourselves to the
first Born term. It should be adequate for fields
computed to first order in R/X, where R is a typ-
ical range of the surface region and g is the wave-
length of light. Let us define

(a (z))=f dz'a (,0 a;z,z z),
oo

(4.Va)

(4.7c)

(a,.'(z)) = f dz'a, ,'(6, aa z, z'), (4.7b)
(

so that, with Eq. (3.2a) used in Eq. (2,5),

dz'ae„(z, z') = {e„.(z)) —e (z).

The fieM components in the first Born approxima-
tion, therefore, are

COE,(z)=U (z) —,U (z )G„(z, z ) f dz-[(a„(z-)) a (z )]+ [a,(—z, )„U ("a,)],

a [G„(z,z)a (z,)]., fd, [a (z ) (a (z ))])

D(z)=a (z)U (z) —,6 (*)(G,.(z, z)U(z) fdz" [(a..(z"))- a (6")]

[G,.(z, z, )~ (s,)]. , [a (z, )U,(z,)],,~f dz "[a,'(z ") —(a,',(z "))]),

(4.8)

(4.9)

Coupled with the Green. 's functions of Sec. III,
these equations describe the fields associated with
the reflection of p polarized light at the metal sur-
face, within the specified approximations.

It is possible to make a number of physical points
about the results of- Eqs. (4.8) and (4.9). Even
though the dielectric response of the metal is act-
ually nonlocal, we find that in the long-wavelength
limit, the electric fields of interest are expressed

in terms of two effectively local response func-
tions, {e„,(z)) and {e,,'(z)). We also find that the
response of the semi-infinite metal to an electric
field parallel to the surface is transverse, occur-
ring as &„„, while that to the field-component nor-
mal to the surface is essentially longitudinal, oc-
curring as q,,'. Finally, we may evaluate the fields
in the asymptotic region far from the metal and ob-
tain a formula for the relectance of p polarized
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light entirely in terms of the properties of the sys-
tem. The reflection amplitude y&, which differs
from the Fresnel result g~ due to corrections aris-
ing from the detailed nature of the surface, can be
obtained from either of the two limiting forms

Z, (z) ~ e"a'-r~e "a',

D (z) ~ esca a+r e $a

(4.10a)

(4.10b)

Let us introduce two complex frequency-dependent
quantities having the dimension of length

A.(~)= J[ dz[(e„(z))- e (z)],

A. (~) f &[(a',.'(z)) —a' '(g)].
W

(4.11a)

(4.11b)

These functions may be interpreted as the integrals
of the difference of certain response functions of
the original system and the background problem.
They are therefore in the nature of being response

functions themselves. Also as z --~, we can use
the formulas of Sec. III to derive the following re-
sults:

V,(z, ) =1-r;,
[e (z)U.(z)].„~=-(Q/q. )(l+r', ),
G,„(z,z, ) =(].(I+r', )e " '(1 —r,),
[G„,(z, z, )e„(z,)],

=-u(1+ro~)e " 'a( Q/-q)(1+r a),

e (z)G (z, z, )

= u(g/q, ) (1+r', )e ""(1 —r', ),
e (z)[C„(z,z, )e„(z,)],

c((Q/—q,)(I + r]))e ".'(- g/q, )(1 +H],),

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

(4.12f)

where r~ and (], are given in Eqs. (3.7) and (3.9e),
respectively. Substitution of the relevant forms in
Eq. (4.8) yields, after a little algebra,

P

i(e, q.+k.) Q' (1+r', )'
( )&~

[O'.A.(~)+e', Q'A. (~)] ] (4.13)

Use has been made here of the result that proximation as in the previous case. We obtain

e a q a
—0 a

= (fg
—I )(e() q a

—Q ) ~ (4.14)

Equation (4.13) allows us to identify the reflection
amplitude of p polarized light as [cf. Eq. (4.10a)]

(() 2 [k A (v)+a' a A (w)]) (4 )~)P P ] q (1 )(q2 '2)

&„(z)= U„(z)—,E„(z,)G„„(z,z, )
C

QZ QZ 66~„Z Z ~

Exactly as in Eqs. (4.V), we can write)

(4.16)

The same formula can also be obtained by combin-
ing Eqs. (4.9) and (4.12) after taking the limit z
--~, and making use of the definition of Eq.
(4.10b}. It shouM be noted that the apparent singu-
larity of the correction term at Q= e',~'q, (for real
e,) is not a cause for concern, since this is the
Brewster condition when r~ vanishes. The apparent
singularity arises because we have expressed the
correction to the reflection amplitude as a factor
multiplying r~. A detailed discussion of the useful-
ness of this formula is given in the next section
(Sec. V).

B. s pohrization

The analysis in this case closely parallels that
for p polarization. We start now with the integral
equation (2.13), and make the long-wavelength ap-

DCl

~J
d d Ae (z z'}= d "dz'

yy

x[e„„(0,~; z",z')

—e (z")6(z"—z'}]

4Z E'~y Z —E'~ Z

-=A„(u ),
(4.17a)

(4.1Vb)

the last relation being just a definition of A„(&u).
Equation (4.16) now reads

E„(z)= V„(z)—(~'/e')&„(z, )&„„(z,z, )A„(~),

(4.18)
and one can easily solve for E„(zo) as

(
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E„(z,) = U„(z,)[1+(~'/c')G„, (z„z,)A„(&)] '

(4.19)

This limit is readily worked out when one notes
that from Eqs. (3.10), (3.12), and (3.14),

U„(z,) = (1+r', ) =2q,/(q, + k,),
C,„(z,z, ), =-[i/(q. +&.)]e *'&

~

(4.21a)

(4.21b)

Accordingly', in the first Born approximation,

E„(z) ~ e"P +e "~'ro(1 + [2iq,/(1 —e,)]A„(a)),
(4.22)

since

q', —a', = (~'/c') [1—e, (&u)] . (4.23)

This implies that the reflection amplitude for g
polarized light is related to the corresponding
Fresnel formula by

r, =r', (1+ [2iq,/(1 —e,)]A„(~)] . (4.24)

V. OPTICAL REFLECTANCE AND ELLIPSOMETRY

A. Differential reflectance with chemisorbed overlayers

Optical reflectance or reflectivity is defined as
the square of the modulus of the reflection ampli-
tude. Calling R~ (R, ) the reflectivity of p (s}
polarized light, we have

R = fr& f', R, = fr, f'.
If Ro~ and Ro are the optical reflectances of the
corresponding Fresnel problem of reflection at a
sharp dielectric discontinuity at the surface, the
differential reflectance of p polarized light is de-
fined through

(5.1)

(5.2)

A similar definition obtains for the differential re-
flectance of s polarized light. Using Eqs (4.15).
and (4.24), we find

AR, /8', = 4q, lm [A„((u)/(e, —1)] .
Equations (5.3) and (5.4) are two of the major

results of our formalism. They express the change

(5.4)

to obtain a complete solution for the electric field.
For a consistent perturbation theory, however, we
must restrict ourselves to the first Born approxi-
mation where one sets E,(z, ) = U„(zo). The reflec-
tion amplitude is again obtained by taking the limit
g --~ and using the definition

(4.20)

in ref lectivity from the classical Fresnel result,
to first order in q„entirely in terms of three
complex system-dependent parameters, A„A„
and A„which are functions of the frequency ~
[cf. Eqs. (4.11) and (4.17)]. The reflectance change
is brought about, in the first place, by the response
of the metal surface not being describable within
the simple Fresnel theory. That the parameters
A„(~) [p, = x, y, or z] are characteristic of the
surface of the system becomes clear when we note
that their definitions involve integrals whose main
contributions come from the surface region. Fin-
ally let us stress that, as mentioned in the previous
section Eq. (5.3) does not have a real singularity at
Q= e', 'q, where Ro~ itself vanishes, so that the first
nonvanishing contribution to ~~ at this angle is of
order q', .

Our results, furthermore, can be readily adapt-
ed to the situation of surface reflectance spectro-
scopy (SRS}, where one studies the change in re-
flectance from a metal surface upon chemisorp-
tion. 888 has developed in recent years into a
powerful tool, complementary to photoemission,
for the investigation of metal surfaces covered with
chemisorbed impurities. '4 " The method has been
handicapped, however, by the absence of a conven-
ient theoretical formula to analyze the experiment-
al data on differential reflectance using p polarized
light. %hat is needed is a theoretical formula which
depends only on the dielectric response of the sys-
tern, and incorporates in a simple, parametric way
such well-known microscopic features of it as non-
locality and surface-induced anisotropy. Lacking
that, experimental efforts have been concentrated
largely on interpreting the data for s polariza-
tion, ~ where the classical McIntyre-Aspnes
formula" for a local dielectric model has been ex-
tended and justified by the nonlocal theory of
Feibelman. ' The latter theory, unfortunately,
gives a less useful expression for differential re-
flectance in the p polarized case. Experimental
data for p polarization" have, therefore, been
compared with either the corresponding data for s
polarization or the results of a classical model, '
representing the adsorbates by a local but aniso-
t~opic dielectric layer, whose microscopic validity
has not been investigated. From Eq. (5.3), we can
obtain a new microscopic expression for the differ-
ential reflectance of p polarized light on adsorp-
tion, which should greatly help the analysis of SRS
data and thus enable the technique to realize its
full potential. The result, correct to first order
in q„ is

where
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Sr(,(zr)= f r(z[&z'"(z)) —(s (s))] (5.5a)

Sn, (rz) = I Sz [&z,."s(z)& —(s,,'(z)&] . (5.5b)

Here quantities labeled by the superscript (or sub-
script) a refer to the case when adsorbed impur-
ities are present on the surface, while the corres-
ponding objects without any superscript refer to
the clean metal.

The chief merit of Eq. (5.5) lies in the. fact that
it expresses the differential reflectance in terms
of two complex system-dependent parameters
which represent, in a succinct way, the change in
surface response in the presence of adsorbates.
It is clear from their definition that 5A„and 5A,

do not depend on any special feature of the back-
ground metal introduced for purposes of subtrac-
tion in Sec. II. In particular they are independent
of the choice of zo [cf. Eq. (2.4)] as the plane at
which the background metal terminates. This point
will become clear in Sec. V B, where we show ex-
plicitly how Eq. (5.5) reduces to all previously re-
ported results for changes in p-polarized reflection
brought about by diffuse metal surfaces which are,
however, describable by local dielectric functions.
In addition, Feibelman's result for the differential
reflectance of p-polarized light can be reduced to
Eq. (5.3) after solving for the electric field formal-
ly in terms of & and carrying out a delicate inte-
gration by parts Th.e utility of Eq. (5.5) becomes
even more apparent on rewriting it in terms of the
angle of incidence g, . We find

nR, )
S

rz [z,(rz) —sinn, ]SA,(rz)+z', (rz)sinn, zr(.(rz))
~

~=4 —cosa, Im
[I —e,(&u)] [sin'8,.—g,(~)coA, ]

(5.6)

4 (5.7)

where

6A, (&d) =
I dz[(e(„'„]](z))-(~ (z))] ~

~ OO

(5.7a)

This formula has already been studied experiment-
ally to deduce values for the real and imaginary
parts of 6A, (&d)

28" Since the model we have been
studying in this paper ignores effects of crystallin-

'This equation enables us to determine the real and

imaginary parts of 6A and 5A, by performing mea-
surements at four different values of L9, , provided
that we assume e,(&d) to be known already from in-
dependent measurements of reflectance on the bulk
metal. Useful control on the results is possible
when we note that 5A, (&(&) and 6A, (&(&), being differ-
ences of response functions, must have their real
and imaginary parts connected by appropriate
Kramers-Kronig relations. The latter may be used
either to test the results for consistency, or to ex-
tract information from fewer than four measure-
ments by relying on some physically motivated ex-
trapolation procedure. Such an extrapolation
scheme has already been used successfully' '3' to
study SHS data for g polarization.

For s-polarized light, our result of Eq. (5.4) for
differential reflectance can be shown to be equival-
ent to those of previous theories'~ once we ex-
press A„(&()) as a function of conductivities instead
of dielectric functions. When an adsorbed layer is
present, the differential reflectance assumes the
form

ity of the surface, clearly M, „=QA„, and the equal-
ity should be good in actual cubic systems for long-
wavelength light waves, to the order of accuracy
promised by our formulas. 'Thus the analysis of
SHS data for p polarization, when carried out in
conjunction with the analysis for s polarized data,
may permit us to determine 6A, (&u) in Eq. (5.6)
completely from measurements at only two angles
of incidence. Further simplifications may result
from a proper exploitation of the Kramers-Kronig
relations. Numerical calculations for differential
reflectance based on using Eq. (5.6) and a model
adsorbate layer on isotropic substrates are cur-
rently in progress and will be reported elsewhere. "

so that [cf.Eqs. (4.7)]

(5.8a)

B. Comparison with previous results

This subsection is devoted to the comparison of
our result for the differential reflectance of p pol-
arized light, in the appropriate limits, to the
formulas derived by previous authors on models
based on a local dielectric response. The first
model we consider is the one studied by Drude, "
who improved on the Fresnel model by imagining
an extended surface region rather than a sharp
surface. The dielectric response is local and iso-
tropic, but depends on g in the surface region
which is believed to have a length $. In other
words, we assume

e,)0, &d;z, z') = e„„(0,w;z, z') = (e„(z))6(z —z'),
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{e,,'(z)) = 1/{e, (z)), (5.8b) Ak((d) = (f —l/Ek+ z() (1 —E(,)/Ek E (5.9b)

where {e,„(z))=1 for z & 0, {e,„(z))= c(z)—a func-
tion of z—for 0 & z & f, and {e, (z)) = ek for z &l.
Substitute this function in Eqs. (4.11) and recall the
definition of e (z) given in Eq. (3.2b). We find

where we have defined (following Drude)

dz{e(z)); q= dz/{e(z)).
0

(5.9c)

A, (~) =P- e,f z-, (1 —e,), (5.9a)
I

Use of these results in Eq. (5.3) yields

(Ek'—E,)(k ,EQ )+ EE', () —E,(1 —E,)(k', —E,()')) (5.10)

But since

kg- C, Q' = E, (f k- Q'
1 (5.11)

and zo is real, Eq. (5.10) is evidently independent
of zo, supporting our earlier assertion of Sec. II
that physical results like fractional reflectance
change ought to be independent of zo. Finally, re-
expressing all quantities in terms of the angles of
incidence and refraction, 8, and g„, we arrive at
Drude's result"

t

ate layer of a definite thickness d on the metal, but
is otherwise similar to Drude's model in the sense
that the dielectric response is still local and iso-
tropic. Equations (5.8) are still valid, but this
time we write

{e(;)(z))=e, , (e„(z))=1, -d&z &0, (5.13a)

{e(,"(z))={a (z)), z&-d and z &0. (5.13b)

Accordingly, from Eqs. (5.5a) and (5.5b), we ob-
tain

pcos 9„—1 Eg, +tgE'lks8n„5)
(5 12)

e, cos'8, —cos'e„) ' 5A„(~)= d(e. —1),

5A, (~) = (f(1 —c,)/e. .
(5.14a)

(5.14b)
apart from a trivial difference in sign attributable
to the different way in which Drude defines his
plane waves.

The McIntyre-Aspnes model2 places an adsorb-

We substitute these in Eq. (5.5) and add and sub-
tract suitable factors of q~. With a little manipu-
lation, we derive the McIntyre-Aspnes formula'"

kk k (E —E ) —E Q (E —E )/E + (E —1)(k —E„() ))

(E —E ) E & / E —() [) E EE E„)
)(1 —Ek) Q —Ek (f k

(5.15)

'The most interesting aspect of the result of Eq.
(5.3), however, is that because of the twin proper-
ties of nonlocality and surface-induced anisotropy
of the dielectric response function of a semi-infin-
ite medium, one finds, in general, that (e,,'(z))
4]/(e, (z)). This implies that for reflectance pur-
poses, the surface response may be approximated
by an effective local but anisotxopic response func-
tion. The anisotropy should be even more import-
ant when a chemisorbed layer is present, as has
been noted in thin-film studies with ellipso-
metry. ~" Thus, for purposes of analyzing the p
polarized SRS data, the simplest model must as-
sume a uniform, anisotropic dielectric layer to
represent the adsorbate on top of an isotropic sub-
strate, and this gives a zeroth-order microscopic
justification tothe model of Dignam, Moskovits,
and Stobie. ' Their result may be derived from
Eqs. (5.5) if we assume

and

{~"'(z))-{~(z))= " ' "' ' (5 18)
0, otherwise,

)( )) ( k( ))
1/e )1Ed& z & 0

0, otherwise, (5.17)

with g3 g q~. 'This implies that the adsorbate layer
is being treated as a uniaxial medium with the axis
of symmetry pointing along the surface normal, z.
Substitution in Eqs. (5.5) and straightforward alge-
bra lead to the result

Here g, is the angle of incidence, 8, the angle of
refraction in the ad-layer and 8„ the angle of re-
fraction in the substrate. They are related to each
other throg, gh
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sing& =n sing, = e~ sing„, (5;19)

where the angle-dependent effective refractive in-
dex n of the ad-layer is given by'

change in the state of polarization of polarized light
upon reflection at a surface. This change is com-
monly described by two angles g and 6, defined
through"

nm/~, =1+(e, ' —e, ') sin'e, . (5.20) r,/r, = tangle&. (5.21)
Note that in the limit when the adsorbate layer is
isotropic, e, =e,~nm=e, and Eq. (5.18) goes over
to the McIntyre-Aspnes formula.

C. EHipsometry

So far in this section, we have been concerned
only with the moduli of the reflection amplitudes r~
and g, . Their phases, however, are important in
ellipsometric studies where one determines the

Let g and 6 refer to the angles for a clean metal,

p, and A, the corresponding angles for the back-
ground Fresnel problem, and g, and A, the angles
when chemisrobed impurities are present on the
surface T.he differences (6 —A ) and (g —&()0) are,
of course, very small. They are caused, in the
long-wavelength limit, by the surface response of
the metal being different from the Fresnel model.
From Eqs. (4.15) and (4.24) we have, to O(q, ),

tang' tant e' -=n t — " ' ' ' " ' '- +a (n))
e& &fs

(5.22)

(5.23a)

The change in p is related directly to reflectance changes discussed earlier in this section The. change in
~ is given, to lowest order in q„by

O'. A.((u)+ e', q'A. (~)+ (q' —e, q'.)A„(~)&)

In our model, A (v) =A„(&u), and since km+@'
= e,&t)'/c', the above equation may be rewritten
compactly as

R )& e, Q'[A. (~)+ ~,A.(~)]

(5.23b)

lt is important to note that the change in ~ depends
on thoro complex parameters, so that if the surface
of a clean material is to be represented by a tran-
sition layer, as has been done" on Si (ill), one
should take into account the anisotropic nature of
its dielectric response.

Ellipsometry measurements with physisorbed
and chemisorbed objects down to submonolayer
coverages have been reported by a number of in-
vestigators using semiconductor"' as well as
metal~' surfaces. Use of our formalism leads to
the result

ie, Q'[6A. (&d)+ ~,5A.(~)]

(5.24)

where 5A, and 5A, are given by Eqs. (5.5). An in-
spection of Eqs. (5.6) and (5.V) clearly shows that
the ability to do ellipsometry simultaneously with
differential reflectance measurements for both s
and p polarizations would enable one to determine
the real and imaginary parts of 5A„and 5A, from

I

experiments done at a single angle of incidence
(but using many frequencies). Note that Eq (5.22).
goes over to Eq. (13) of Bootsma and Meyer'8 under
the assumption that the chemisorbed layer is of
thickness d, and isotropic in its dielectric proper-
ties, so that (e,,'&"(z)) = I/(e& (z)). It is more sens-
ible, though, to treat the adsorbate as an aniso-
tropic dielectric layer, as has already been rec-
ognized in the literature. '0

VI. CONCLUSION

In this paper we hope to convey hvo major re-
sults. First, we have developed a perturbative
method of considerable generality to determine the
electric field distribution in space in the problem
of the reflection and refraction of light by an arbi-
trary metal surface. The method is based on iso-
lating a background or unperturbed problem close
to the actual problem, for which the electric fieM
distribution can be solved exactly. The deviation
of the actual solution for the electric field from the
unperturbed solution is then expressed as an inte-
gration over the dielectric "perturbation, " and can
be written down as a perturbation series in inverse
powers of the wavelength of light. We have chosen
to apply the technique in this paper to the case
where the background problem is the classical
Presnel problem of a local dielectric description
of the metal with a sharp surface. Since the un-
perturbed solution in that case is exactly known,
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considerable progress can be made in terms of
setting up the perturbation theory. Our method can
be applied, however, to a wide variety of situations
and models. For example, it is possible to choose
as our unperturbed problem a metal with a sharp
surface having a nonlocal dielectric function,
which can be either translationally invariant in the
bu1k,""or can be generalized to include specular
reflection of electrons at the surface' as in the
semi-classical. infinite barrier model. %'hat is
necessary in either case i~ knowledge of the inde-
pendent solutions and the Green's functions for the
background problem. Our technique would then en-
able one to find out corrections to the electric field
brought about by surface diffuseness or the pres-
ence ot adsorbed objects. It will be of interest to
study these more realistic background models to
see what new light they may shed on the problem
at hand.

The second result of the paper is that, by doing
the first Born approximation and utilizing the long-
wavelength nature of light waves, we have derived
an expression for the change of reflectance of p

- polarized light brought about by chemisorbed im-
purities on a metal surface. Our formula depends
only on the dielectric response functions of the
clean- and the adsorbate-covered system, and it
does not depend on the choice of a specific back-
ground problem used in the perturbation theory. As
such, it should greatly facilitate the analysis and
interpretation of experimental data in surface re-
flectance spectroscopy. In addition, we apply our
formalism in this paper to study the change in re-
flectance of 8 polarized light caused by adsorption,
and to problems of ellipsometry.

In the future we plan to carry forward the ap-
proach presented here in two directions. We are
using the formulas developed here to estimate nu-
merically the differential reflectance of both s-
and p-polarized light from a metal substrate (as-
sumed isotropic) covered with a monolayer of light
gases. Electronic states in the chemisorbed layer
form two-dimensional bands, and electronic tran-
sitions between them mainly contribute to the
(anisotropic) dielectric response of the overlayer.
Preliminary conclusions based on this study have
already been reported. ~' W'e are also interested
in finding out how importantly the nonlocality of
the dielectric response of a metal affects its opti-
cal reflectance. Numerical calculations based on
simple, yet physical, models for a semi-infinite
metal are now in progress to elucidate this point.

tions on every aspect of this work. This research
was supported in part by the National Science
Foundation under Grant No. DMR 76-82128.

APPENDIX

Here we sketch the derivation of the e1ements of
the matrix Green's function, which were written
in Eqs. (3.9), for the Fresnel problem with p po-
larized light. W'e begin with the matrix equation
(3.8) written in pairs. The first pair of equations,
coupling t"„„and t", is

—fQ —G,(«, «') = v(« —«'), (Ala)

+ 8(«' «)v„(«)~„(«-')],

c„(«,«') = n[e(« —«') U.(«)v„(«')

+ g(«'- «)v.(«)v,(«')],

(A2a)

where e is a constant coefficient which has to be
determined, and e is the usual step function. Note
that the outgoing-wave boundary condition has been
imposed on the Green's function. Substituting these
equations in Eq. (Ala), we obtain

e(-w(v„v, ) —fQ[v, («)v.(«) —v.(«)v„(«)]}=1,
(A3)

with W(f, g) =fg'- gf' denoting the Wronskian of the
two functions f and g. By direct substitution of
Eqs. (3.3)-(3.5), we find

Similarly,

v.(«)v, («) —v.(«)v.(«)

(A1b)

Since the Green's functions obey homogeneous
equations for g gg', they can be expressed in terms
of the solutions of the latter as given in Eqs. (3.3)-
(3.5), i.e.,

G„.(«, «') = ~[8(« «')&,(«)v„—(«')
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The use of these results in Eq. (A3) shows that the
combination within curly brackets is z independent,
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thus yielding the value of e as

e~q +k
4i~,(~'/c') ' (A6)

Next we substitute Eqs. (A8) in Eq (.A7b). After
straightforward algebra, we find

-iqP(U, V, —V,U,) +[(««« /c )e (z)- q']Py(z) =1.
Equations (A2) are easily seen to satisfy Eq. (A1b}
as mell.

The second pair of equations following from Eq.
(3.8) couples G„and G„, and has the form

d2 «««2+, ~.(z) G,.(z, z')- iq —G..(z, z') =0,
(d c'

Making use of Eqs. (A9) and (A10), we obtain

(&'/c')e (z)(U V, —V U, )p =i@.

(A12)

(A13)

Finally, a simple calcul. ation with the help of Eq.
(A5) leads to the result

i(e, q +k )
4e&(&'/c')

(A14)

+ e(z'- z)V„(z)U.(z')],

G..(z, z') =P [e(z —z')U. (z)V.(z')

+ e(z'- z)V.(z)U.(z')]

+py(z)&(z —z'),

(A8a)

(A8b)

where p is a constant and y(z) is a function, both
of which are unknown and to be determined. Sub-
stitute these formulas in Eq. (A7a). Consistency
demands that

5(*- ')( * v, — .*rr,)
+ „[6(z-z')(U„V.—V.U.)]dz

«Q [y(z)~(z —z')] =0 ~ (A9)
d

Now the definition of Eq. (3.5) ensures that

dU„dV
dZ dZ

Therefore, using Eqs. (A5) and (A6), we get

(A10)

1 4ie„ 1
e (z) e, q, +)'«, e (z)u(~'/c') '

(A11)

&& G„(z,z ') = 5(z —z ') . (A7b)

These functions obey homogeneous equations for
z ««z'. Furthermore, Eq. (A7b) does not impose
any continuity requirement on G„(z,z') at z = z',
i.e., it may have a 5-function part. Recognizing
this, we try the very general Agsatz

G,.(z, z') =P[e(z z')U, —(z)V.(z')

These results are concisely reproduced in Eqs.
(3.9a)- (3.9e).

The Green's functions we derived in this paper
are valM over all space. They reduce to Green's
functions derived by previous authors ' in ap-
propriate regions of space. For s polarized light,
for example, Eqs. (3.10)-(3.14) show that when

z, z') o, we get

G (z zs) &A~[z-s (
I

2@

+ z -~x &fk(g+ g )
i'y —q
Ik, + q,

(A15}

and this agrees with the result quoted in the Ap-
pendix of Bef. 17. In the p-polarized case, on the
other hand, Eq. (3.9d) yields after appropriate
substitutions (Z, Z' &0}

le

~bqa ~
(

««, (z+z~)

6g Qz+ kg j

(A16)

Comparison with Eq. (822) of Ref. 18 shows that
the Green's function is 'the same as that of Eguiluz
and Maradudin except for the fact that the term
exp[i@,(z+z )] is multiplied by unity in their case
instead of r~ as above. The difference arises from
a different choice of the boundary condition at the
nominal surface, where Eguiluz and Maradudin in-
sist on the vanishing of Green's functions of the
type Q and Q,. The factor of z& multiplying the
last exponential of Eq. (A16) appears, however, in
the work of Dahl and Sham. "
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