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A simple nonloca1 hard-core model pseudopotential which reproduces Hartree-Fock energies and wave

functions is proposed for the hydrogenic ions of the Li, Na, K, and Cu isoelectronic series. These l-
dependent model pseudopotentials are used to obtain improved orbital radii and new structural coordinates
for A "B' N octet compounds. A successful classification of the crystal structures is obtained for this family
of materials. The relationship between our orbital radii and those previously suggested by Simons, 81och, St.
John, Chelikowsky and Phillips, and Zunger and Cohen is discussed.

I. INTRODUCTION

For many years both experimentalists and
theorists have used pseudopotentials to describe
the electronic properties of solids. In early
work" the form of the pseudopotential V~(r) was
chosen to give rapid damping of the Fourier trans-
form V~(q) for large q ~ 2k~. This choice empha-
sized the nearly free-electron nature of the BIoch
energy bands E„(k},which is a characteristic
property of metals and semiconductors formed
from nontransition elements. Moreover, this
choice of soft-core pseudopotentials was sug-
gested by the similarity of the approach to the
Herring orthogonalized-plane-wave method for
solving rigorously the wave equation in so1,ids. '
In fact, in a famous paper describing the cancel-
lation of valence and kinetic energies in the core
region, Cohen and Heine argued that suitably
chosen soft-core pseudopotentials could give bet-
ter Bloch energy bands, in a truncated basis set
of 100 plane waves or fewer that could the rig-
orous, orthogonalized-plane-wave (OPW) parent.
This argument won support as much for its
suitability to the computational state of the art
at, that time as for its persuasive formal analogies.

The primary interest for the last 50 years in
quantum studies of solids has been one-electron
levels. The structural properties of solids, which
invol. ve the total electronic energy, have largely
been treated empirically, e.g. , by Mooser and
Pearson (MP) for intermetallic compounds' or
Phillips and Van Vechten (PVV) for more than
80A B binary semiconductors and insulators'

with eight s-P valence electrons per atom pair.
However, Simons, Bloch, and St. John have re-
cently discovered' ' that it is possible to use
pseudopotential core radii, derived only from
hydrogenic-ion-term values, to construct struc-
tural maps for elemental metals and A."B' "
compounds. Their work has been extended"" to
more than 50 metallic compounds composed of
nontransition elements; the results are, in gen-
eral, significantly more successful than the
empirical. structural maps, which is quite sur-
prising considering the atomistic origin of the
ps eudopotential parameters.

There are two characteristics of the Simons-
Bloch (SB) pseudopotentials, as utilized to form
structural maps, which differentiate them from
the pseudopotentials used in energy-band studies.
The latter have soft cores, and V~(r} is weak for
r- 0, whereas the SB pseudopotentials have hard
cores, with V~(r)- const/2 as x- 0. In retro-
spect, this should not be surprising, for even
metallic compounds formed from nontransition
elements exhibit complex crystal structures xo

With soft-core pseudopotentials one can utilize
perturbation methods"' which predict, in general,
a marked tendency toward simple structures
(close-packed, body-centered-cubic, etc.). Thus
hard-core effects must be substantial if we are
to be able to explain the common occurrence of
complex crystal. structures even with nontran-
sition elements.

The second distinguishing characteristic of
SB pseudopotentials is that they are explicitly
l dependent. In studies of one-electron energy
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levels near E=E~ (the Fermi energy) in metals
or in semiconductors, it has generally been found
to be sufficient to use an effective local pseudo-
potential form factor V~(q}, describing the scat-
tering between states lt and k+q such that ~k[
= ~k+q) =k~ (on-Fermi-surface scattering}, which
involves averaging over s and P (and, to a lesser
extent for nontransition elements, d) pseudopoten-
tials. (Exceptions where nonlocal corrections are
important arise when the experimental data war-
rant 1% accuracy in one-electron energy differ-
ences, e.g. , in Ge and GaAs. '~) Of course, com-
plex coordination configurations imply significant
covalent bonding, even in metallic compounds,
and the degree of hybridization among s, P, and
(for transition metals) d states determines the
nature of covalent bonds. Thus we are not sur-
prised to learn that l-dependent coordinates are
needed to derive structural maps. What is sur-
prising is that the structural coordinates derived
from SB pseudopotentials combine l-dependent
radii in a linear way, so that the algebraic basis
(and physical interpretation) of the structural
maps becomes almost too obvious.

Certainly the very difficult problem of differen-
tiating complex crystal structures should not
be solved by a linear algebra based on free-ion-
term values, but the empirical success of the
structure maps is far too great to be accidental.
A serious weakness in the SB pseudopotentials
was evident to Baldereschi and Meloni, who
noted" that, because the const/r' term extended
to large r as well as small r, the SB pseudopo-
tential is too repulsive at large r, which has the
effect of compressing the wave functions. For
the SB procedure to have physical meaning, one
should demand that both the energy and the max-
imum of the valence-electron pseudowave func-
tion match the energy and outer maximum of the
Hartree-Fock atomic wave function; in this way
the model includes enough information to make
meaningful orbital (l-dependent) structural pre-
dictions.

As is often the case with very successful, over-
simplified theories, when these improvements
were made in SB pseudopotentials, large changes
in the radial orbital parameters were found. "
Although spectacular two-parameter fits to the HF
atomic wave functions were achieved, not only
at the outer maximum but practically down to the
outer node as well, the changes in the s radii were
found to be much greater than the changes for the

P radii. These results were obtained only for
elements from the first period, but clearly they
raised great problems for devising structural
maps from co'ordinates derived from orbital radii.
In this paper we have therefore derived refined

(or renormalized) orbital radii for elements be-
longing to the later periods as well, in an effort
to resolve these problems.

II. ATOMIC MODEL PSEUDOPOTENTIALS:,
'AND ORBITAL RADII

Nonrelativistic Hartree-Fock (HF) wave func-
tions O'P~(r) have been calculated for f = 0, 1, 2

and for the hydrogenic ions of the Li, Na, K,
and Cu isoelectronic series using the method
developed by Froese-Fischer. " Rb and Cs have
also been studied in order to complete the group
of alkali-metal atoms. The calculated HF valence
energies" E„"~differ from experimental energies"
E„& by a few percent, apart from the cases of
Cu, Rb, and Cs, where differences &E„&=E„&
—E„, are for some l values larger than 10% (for
Cu, &E„=0.16E„, 4E =—0.14E „for Rb, &E„

These discrepancies are due to electron-electron
correlations and, to a minor extent, to relativistic
corrections. According to relativistic Hartree-

- Fock calculations by Desclaux, ' relativistic cor-
rections amount to 2/o, 3%, and 4% in Rb, Cu,
and Cs, respectively. Electron-electron corre-
lations mostly affect the HF valence energies
through core-charge polarization, " i.e., the dis-
tortion of the outer core shells due to the presence
of the valence electron, which, in turn, feels an
additional self-induced polarization potential.
Core polarization becomes more relevant as the
atomic number increases and is dominated by di-
pole terms which are not taken into account in

any self-consistent field theory where the valence
electron is subject to a spherically symmetric
potential. This effect has so far been quantita-
tively studied in a few calculations only" ' and
has been shown to explain the order of magnitude
of the deviations between experimental and HF
energies.

We have then constructed a simple, nonlocal,
hard-core model pseudopotential" which is able
to fit HF energies and valence HF wave functions
from infinity down to the outer node. Our pseudo-
potential is l dependent and is written as

(la)

where Z is the core charge and W, (r} is a two-
parameter short-range potential

(lb)

which corresponds to Simons's one-parameter
model (8,/r') times a damping factor which de-
scribes the confinement to the core region of the
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short-range orthogonality, electrostatic, and ex-
change interactions of the valence electron with
core electrons. If the core contains electrons
with the same angular momentum l as the valence
electron, W, (r} is dominated by orthogonality
repulsions (A, )0}and strongly confined within the
ionic core. If the valence electron is already
orthogonal to all core e1.ectrons because of its
angular momentum (as it is the case for valence
P or d states of Li-iike ions), W, (r) is attractive
(A, &0}, since it contains electrostatic and ex-
change terms only.

For each ion and each l, the two parameters
A, and y& are obtained by fitting, for the lowest
valence state of the given E, the HF energy and the
position of the outer maximum of the correspond-
ing HF function. When we apply Eq. (1) to Li-
like ions, our model for W, (r) is very accurate
in reproducing HF wave functions outside the
outermost node. " For the 2s states the repul-
sive (orthogonality) term in the valence-core
interactions dominates, and the exponent y, in the
damping function turns out to be simply related
to the atomic number Z„[yo= 2Z„=2(Z + 2)] and to
the inverse of the exponential decay length of the
1s core wave function which is also proportional
to Z„. The valence 2P states are almost hydro-
genic, and the weak core attraction can be well
described by the short-range potential Eq. (1b).
The parameter y, is smaller than y, because the
exchange-attractive interactions are more de-
1ocalized in real space than the orthogonality
effects. On passing to successive rows in the
Periodic Table (Na-like, K-like, and Cu-like
ions}, we obtained y, =y, =2(Z+2) as the best
value to fit the position of the maximum of s and

P valence wave functions.

Valence d states behave differently for different
rows of the Periodic Table, and they require,
therefore, special treatment. In Cu-like ions,
the valence d states are orthogonal to Sd core
electrons, and our model gives very accurate
results with y, =y, =y, . In Li-like ions, 3d states
are mostly hydrogenic, and very good wave func-
tions can be obtained with a model potential having
the same exponential decay as for p states (r, =Z, ).
Our model Eq. (lb) starts to lose accuracy for
Na-like ions and definitely fails (A, &-6) for the
core-penetrating d orbits of E-like ions and for
Hb and Cs. In order to solve this problem, in
all these cases we have replaced (lb} with

W, (r) =A, e "". (1c)

Our model pseudopotential is very accurate for
Li-like ions and accurate still for Na-like ions,
but the accuracy decreases for higher periods
in the Periodic Table since valence and core or-
bits become closer and closer, and the valence
electrons feel more the short-range attractive
interactions with the core. This fact can be easily
seen by comparing the position of the outer max-
imum of the actual wave function R", " and of the
pseudowave function R, s (Table I) for isovalent
atoms. Within a given period of the Periodic
Table, our fit to HF wave functions improves
with higher valence. Once again this is due to the
short-range valence-core attractive interactions
whose strength increases with Z more slowly than
that of the long-range Coulomb interaction.

All our results for the model potential are col-
lected in Table II, in which we give the values of
the parameters A, and y, in (1b) and A., and y, in
(1c}. In Fig. 1 we report our s, P, d model
pseudopotentials for the tetravalent ions, and in

TABLE I. Comparison of the positions of the outer maxima of the HF wave functions (upper
line) and of our pseudowave functions (lower line and in parentheses) for several elements
and for ) =0, 1,2. All data are in atomic units.

C3+ Ne~+

2.026, 1.688, 5.994
(2.021, 1.687, 5.998)

2.311,3.159, 5.948
(2.283, 3.156, 5.949)

3.220, 4.128, 0.707
(3.153,4.274, 0.707)

CL1

1.812, 2.447, 6.216
(1.440, 2.118,6.216)

0.787, 0.438, 1.496
(0.783, 0.438, 1.497)

Sia+

1.319,1.405, 1.282
(1.312, 1.400, 1.282)

2.013,2.234, 0.495
(1.991,2.224, 0.495)

Ge+

1.378, 1.536, 2.085
{1.335, 1.501,2.080)

0.439, 0.231, 0.748
(0.436, 0.231, 0.748)

Ar'+

0.885, 0.879, 0.617
(0.883, 0.876, 0.614)

Fe~+

1.435, 1.507, 0.360
(1.432, 1.499, 0.360)

1.078, 1.140, 1.295
(1.065, 1.129, 1.288)
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TABLE II. Values of the parameters of our nonlocal hard-core model pseudopotentials:
Q.q, 'Yq) in Eq. (1b) and (A~, y~) in Eq. (1c). All data are in atomic units.

Li
Be+
B2'
C3+

N4+

p5+
@6+

Nev+

Na

Mg
Al~+

Si3+
p4+

S5+

Cl"
Ar'+

Yp

6
8

10
12
14
16
18
20

YQ

6
8

10
12
14
16
18
20

YQ

Ap

2233.85
1518.15
1241.36
1096.70
1008.26

948.70
906.00
873.85

Ap

6 820
26 430
71 323

154 250
287 000
479 050
737 000

1 064 600

Ap

Li-like Ions
'Y1

2.02
2.45
2.87
3.30
3.73
4.15
4.58
5.01

Na-like Ions

6
8

10
12
14
16
18
20

K-like Ions

Y$

-1.074
-1.026
-0.716
-0.547
-0.441
-0.368
-0.316
-0.278

Ai

21 280
44 990
81 560

131700.
195100
270 900
357 730
454 120

2.Q2

2.45
2.87
3.30
3.73
4.15
4,58
5.Q1

72

2.805
3.520
4.235
4.950
5.665
6.380
7.095
7.810

Ag

-0.600
-0.400
-0.280
-0.200
-0.158
-0.130
-0,110
-0.095

-20.150
-35.980
-53.200
-71.545
-90.651

-110.350
-130.496
-151.040

K
Ca+
Sc~+
Ti3+
y4+

Cr"
Mn6+

Pe 7+

Co"
Ni+

6
8

10
12
14
16
18
20
22
24

2.7470 x 105
2.9627 x10
1.9030 x10
8.7580 x10
3 1710x10
9 5760 x10
2.5113x10~ .

5.8518 xl0
1.2520 x10
2 4591 x10

6
8

10
12
14
16
18
20
22
24

4.2700 x 10
2.4562 x 107
1,0470 x10'
3.5400 x10
1.0001 x10
2.4460 x 10
5.3690 x10
1.0735 x10&P

1.9822 x 10
3.4466 x10&Q

2.58
3.12
3.56
3.97
4.37
4.77
5.15
5.53
5.90
6.27

-82.0645
-100.3762
-119.7255
-136.9645
-153.7951
-170.9730
-186.6820
-202.5975
-217.7861
-233.1084

Ap

Cu-like Ions

Yi Ag

Cu
Zn+
Ga'+
Ge~
As4+

Se"
Br"
Kr7+

6
8

10
12
14
16
18
20

1.8361 x 10~

4.5480 x10
3.6950 x10
1.9240 x10
7 6990 x10
2.5631 x10
7 4195 x10
1.9210 x10

6
8

10
12
14
16
18
20

2.3550 x10
7.3600 x 10
6.8890 x 104

3.534Q x10
1.3395 x 10
4.1700 x10
1.1243 x10
2.7103x10

6
8

10
12
14
16
18
20.

4.4800 x 10
9.6800 x10
2.2037 x1Q6

4.7308 x106
9.4580 x 10
1.7699 x10
3.1249 x10~
5.2417 x10

Rb
Cs

Yp Ap

1.096 x 106
1.309 x10

Heavier alkalis
'Y|

4.28 x10~
7.56 x 10s

'Y2

1.734
1.244

-24.93
-11.39

Fig. 2 we compare pseudowave functions and HF
functions for the lowest valence s state of these
ions. With our model potential we reproduce both
energies and wave functions with high accuracy,
and, therefore, our approach represents a con-

siderable advance over Simons's model, whose
pseudowave functions compare badly with the
actual. ones even for light elements. " Further-
more, our model retains the chemical regularity
of Simons's model. In the latter ease the reg-
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FIG. 1. s, p, d model pseudopotentials U&(r}= U& (r)
+l (l+1)/r fo2r C3', Sia', Ti~', and Ges' [V&(r) is de-
fined in Eq. (1)J.
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ularity originates from the fact that the model
contains only one parameter, the quantum defect
l', and this parameter is adjusted to the energy
eigenvatues which exhibit high regularity in the
Periodic Table. In our case the exponent y,
does not depend on l when W, (r) represents the
same type of interactions, and it does not change
appreciably along the columns, since it mostly
depends on the core charge Z and not on the nu-
clear charge Z~.

Having defined our model pseudopotentiat. , we
can now calculate the orbital radii, i.e., the
classical turning points for zero energy, "to be
used for structural maps in the next section.
Our pseudopotential being more physical than the
SB model, we can reasonably expect that the cor-
responding orbital radii S, wi11 be more meaning-
ful. The difficulties that we encountered for a
few atoms in fitting the position of the maximum
of the radial wave function are the main source
of inaccuracy of our pseudopotentials and orbital
radii S& . To achieve better accuracy we have
scaled our S& values according to S&
= (R~""/RP )SP, which reflects the fact that at
constant valence energy, a larger value of R, is
obtained with a larger orbital radius. %'e estimate
that the uncertainty in our scaled orbital. radii S&

FIG. 2. Comparison of the lowest s wave function of
the hard-core pseudopotential to the HF wave function of
the outer s electron for C ', Si ', Ti ', and Ge3'. For
each ion, the normalized wave functions have been scaled
so that at its outer maximum the HF function has the
value 1 a.u. The scaling factors are 0.98 (C3'), 1.79
(Si +), 2.99 (Ti '), and 1.85 (Ge ').

is less than 10%, even for those atoms such as
Zn where the valence wave functions are not too
wel. l reproduced by our model pseudopotential.
In Table III we compare our scaled S& val.ues to
those of SB which are obtained by fitting to HF
energies only. Quite relevant differences exist
between the two sets of radii. For s radii, the
ratio (So/Sass ) is almost constant and ranges from
2.5 to 2.8, while P-radii ratios behave quite dif-
ferently for different rows. For I i-like ions with
hydrogenic-like P states, (S,/S~ss )-1, while for
the other rows S,&S,~ by a factor which ranges
from 1.2 to 2.5.

In an attempt to include Cu, Rb, and Cs com-
pounds in our structural plots, we have added in
Table II the pseudopotential parameters for these
atoms. As discussed above, the HF approach is
less accurate for these atoms, due to larger
core-polarization effects. The core-polarization
potentiaP' ' is attractive and quite long-ranged
and therefore significantly increases the valence



HARD-CORK PSKUDOPOTENTIALS A WD STRUCTURAL MAPS OF. . . 4819

TABLE III. Values of the classical turning points of
our model pseudopotentials (S&) and of the SB model (S~ )
corresponding to HF energies. All data are in atomic
units.

sp sSB
0 sg sSB

1 $2 sSB
2

Li
Be+

2+

C3+

N'+
O5+

F6+

Nev+

Na
Mg+
Al2+

Si
p4+
85+

Cl6+

A 7+

K
Ca
Sc2+

TI
p+
Crs+
Mns+

Fe~+
Co~
Ni
Zn'
Ga'+
Ge3+
As4'
Ses+

Br"
Kr~+

Rb
Cs

1.15Q
0.776
0.589
0.475
0.397
0.342
0.300
0.266
1.327
1.096
0.951
0.841
0.756
0.689
0.632
0.583
l.908
1.651
1.478
1.342
1.231
1.138
1.059
0.989
0.935
0.882
0.975
0.929
0.882
0.838
0.797
0.759
0.726
2.139
2.537

0.475
0.317
0.238
0.193
0.162
0.139
0.123
0.109
0.544
0.443
0.379
0.333
0.298
0.270
0.247
0.227
0.775
0.653
0.574
0.516
0.470
0.432
0.400
0.373
0.350
0.330
0.365
0.356
0.340
0.322
0.306
0.290
0.276
0.861
1.016

0.841
0.404
0.280
0.217
0.176
0.150
0.130
0.115
1.626
1.212
0.997
0.854
0.751
0.672
0.609
0.557
2.295
1.901
1.647
:1.458
1.315
1.198
1.107
1.027
0.958
0.900
1.081
1.012
0.946
0.887
0.835
0.788
0.748
2.728
3.188

0.957
0.472
0.315
0.238
0.191
0.160
0.138
0.121
1.215
0.732
0.551
0.449
0.383
0.335
0.299
0.270
1.472
0.980
0.780
0.662
0.581
0.520
0.472
0.433
0.4Q1
0.374
0.667
0.545
0.477
0.426
0.389
0.360
0.335
1.753
1.595

2.999
1.497
0.997
0.748
0.598
0.499
0.427
0.374
2.979
1.362
0.812
0.579
0.458
0.383
0.331
0.294
0.441
0.384
0.330
0.292
0.263
0.239
0.220
0.204
0.191
0.179
1.734
1.382
1.181
1.045
0.944
0.864
0.798
0.651
1.176

3.000
1.499
0.999
0.750
0.600
0.500
0.428
0.375
2.993
1.478
0.970
0.718
0.570
0.472
0.403
0.352
2.278
0.809
0.457
0.348
0.291
0.255
0.229
0.209
0.193
0.179
1.574
1.096
0.856
0.710
0.611
0.538
0.483
2.713
2.329

binding energy and reduces each orbital radius
8 f to a smaller value S& ~ Generally, however, this
potential is smooth compared to the orthogonality
repulsion, and so it has littl. e effect on the orbital
radius (rhS, —= S, -S',). We have numerically ver
ified that this is the case for Cs, where accurate
l-dependent polarization model potentials are
availabl. e' for l = 0, 1. We find that &Sp = 0.0068p

and &S, =0.0048, . To our knowledge, no cor'e-
polarization model potential has yet been proposed
for Rb, but we expect that the effect of polariza-
tion on the Rb orbital radii will be similar to
that quoted above for Cs. The case of Cu is dif-
ferent from those of Rb and Cs. Here, core-
polarization effects are rather strong and, at
the same time, the orthogonality repulsion is not
as sharp and strong as in the other atoms (see

III. STRUCTURAL DIAGRAMS

Structural plots based on SB orbital radii have
already been applied successfully to'A. "B8 "
compounds where A. and 8 are nontransition ele-
ments. '" The structural coordinates proposed by
st. John and Bloch are simple linear combinations
of s and P orbital radii because d electrons do not
contribute significantly to the formation of co-
valent bonds in these compounds. These authors
define two parameters for each element, namely

R, =Sp+S, ,

Rg Sj Spy

(2)

and then they define the structural coordinates,
which were selected to describe primarily the
transition from four fold to six fold coordination,
as

Chelikowsky and Phillips" have investigated the
physical meq, ning of F and X by comparing them
to previously used structural coordinates, namely

the parameters in Table II). Consequently, when
the polarization potential. for Cu is added'4 to our
model, the changes &S~ turn out to be &Sp =0.05S„
&8, =0.27S„and &S, =0.09S,. We notice that
among the ions of the Cu isoelectronic sequence,
only for Cu has the polarization of the core such
large effects on orbital radii. The changes &S&
due to core polarization'4 are in fact less than 2%
in Zn, less than 1% in Ga, and of the order of a
few percent for all the other atoms. We conclude
therefore that, with the exception of Cu, the
values of &8& are all. within the overall compu-
tational accuracy of our orbital radii. Therefore,
we will include Qs and Rb compounds in our struc-
tural plots, without changing the values of their
orbital radii, but we will not consider Cu com-
pounds, since we believe that accurate orbital
radii for Cu require a detail. ed treatment of
electron-electron correlations.

The s, p, and d orbital radii resulting from our
model potential are represented in Fig. 3 and
show a strong regularity in the Periodic Table.
The S& values are a measure of the l dependent
electronegativity of the core: As 8, gets smaller,
the core electronegativity increases. In agree-
ment with this, the orbital radius decreases with
the increase of the core charge Z. Down a given
column, the behavior is l.ess regular because of
the appearance of new core shells. In general,
however, the orbital radius increases due to the
increase in core size.
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FIG. 3. Regularity of the renormalized orbital radii S& (l =0, 1,2) in the Periodic Table.

the Mooser-Pearson' coordinates &Xp,„& and N
and the Phillips-Van Vechten' coordinates C and
E&. Although the correlation is not always quanti-
tative, F and 1/X can be qualitatively interpreted
as measures of the bond ionicity and of the bond
covalency, respectively.

In Fig. 4 we construct the structural plot for
&"8' " compounds with the St. John-Bloch struc-
tural coordinates (3) written in terms of our radii
Sp and S,. Ac cording to our previous discuss ion
(Sec. HI}, we do not expect that different sets
of radii, when combined to give the same co-
ordinates, will give similar plots. The crucial
points in the plot of Fig. 4 are Li halides and par-
ticularly their X coordinate. As we have already
pointed out, "in the case of Li-like ions the ratio
S,/S, is completely inverted from the SB model
to our results [for Li (Ss~ /Ss~ ) =0.49 whereas
we find (S,/S, ) =1.37], and the R, coordinate
changes sign (for Li RP =0.48, while R, =-0.31 in

our calculation). According to the St. John-Bloch
prescription (2}for R, and its interpretation as a
measure for s-P hybridization (or tendency to
form coval. ent compounds), large (small) R, values
(compared to carbon} give weakly (strongly) co-
valent materials. This scheme correctly pre-
dicts Li halides in the intermediate range when
the SB radii are used. On the contrary, our S&

values give a negative 8, for first-row elements.
Since the cation is larger, its contribution in the
definition of the covalency coordinate is more
significant. Thus, a small negative R, value for
Li (not so much different from carbon) makes
Li halides much too covalent.
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FIG. 4. A structure plot using bond-orbital coordinates
derived from renormalized orbital radii. The plot is
successful in separating sixfold from fourfold coordina-
tion except for the Li salts, (boxed).
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Because the definition of elemental coordinates
(2) is empirical, and because our radii differ
from those of SB, the unsatisfactory result
shown in Fig. 4 should not be surprising. How-
ever, the result of a recent calculation" by
Zunger and Cohen (ZC) raises a puzzling and
rather interesting point. ZC have suggested
another set of orbital radii, derived from their
local-density pseudopotential calculation for neu-
tral free atoms, and have obtained a successful
structural plot with the same definition of 8, and

8, as used by St. John and Bloch. Their choice
of free atoms instead of free ions as elemental
constituents of the crystal could represent a good
point; however, they never clarify how their
eigenvalues compare to HF or experimental en-
ergies and how their pseudowave functions com-
pare to actual atomic wave functions, which makes
interpreting or reproducing their radii not easy.
In an attempt to understand the difference between
orbital radii obtained from free atoms and those
from free ions, we compare in Fig. 5 the ZC
orbital radii" S~zc to ours for I =0 [Fig. 5(a)] and
l =1 [Fig. 5(b)]. We note that the ZC orbital radii
differ from ours since they are defined as the
classical turning point of the core pseudopotential
that a valence electron with angular momentum l
feels in the neutral atom. This difference does
not seem to affect the general qualitative trend
of the orbital radii. Quantitatively, the ZC s radii
are -18% smaller than ours while their P radii
are larger than ours for the first-row atoms and
smal. ler for atoms from the second and third
period.

We point out that in Fig. 5(b) we use for the P
radius S, of Li the value 0.9 au, as extrapolated
from the ZC P radii of the other first-row atoms
and consistent with Fig. 5 of Ref. 27. In their

3,0-

s~ &C"(&)
HF, l = (+),.HF

9'2g P )
(4)

where E is the kinetic operator and $2s,
" is the one-

electron HF wave function. In Table IV we com-
pare HF radii with ours. This test gives S"," (Li)
=0.786, in good agreement with our value S, (Li)
=0.841, but very different from the ZC value.
This result suggests that the ZC value for S, (Li)
is probably in error.

%e stress at this point that the value of the
orbital radius of Li is crucial in structural plots.
In fact, if one corrects just the P radius of Li in
the ZC set and replaces it by 0.9, then the ZC
plot strongly resembles the one of Fig. 4. There-
fore we consider the success of the ZC structural
plot for octet compounds to be somewhat
accidental. -

In order to solve the structural problem (Fig. 4),
we must find new linear combinations R,' and B,'
to be used with the new orbital radii. %e define

R,' =—(So+3S,)/4,

where the weighting factor proportional to the

(5a)

work on structural plots, "however, ZC use a
value S~zc (Li) = 1.465 au which is not reliable.
In particular, S (Li)&& Sz (Li) =0.985 au, which
is unphysical because an electron in a 2s state
sees a core size (S,) which is larger than that seen
by an electron in 2P state, since the radial wave
function of the former must be orthogonal to that
of the 1s core electron. Furthermore, we notice
that for Li no difference should be expected be-
tween ZC radii and ours, because in this case
free atom and free ion are the same. In order to
resolve this confusion, we have checked further
our values of S,. For Li-like ions (or atoms) a
simple analysis of HF 2P wave functions immedi-
ately gives the following expression of the ef-
fective HF potential:

8 zc
0

(~4

ac

(a.4 TABLE IV. Values of the turning points S~ calculated
with our model pseudopotentials for Li-like ions and of
the turning points S~"" derived from the effective HF
potential given in Eq. (4). All turning points are in atomic
units.

SHF Sg

So (a.u.)
20

Sg {I.ug

FIG. 5. Comparison between the orbital radii S& ob-
tained in the present work from an analysis of energy
terms and wave functions of free ions and S& obtained
by Zunger and Cohen from free neutral atoms. (a) l =0
and (b) I = l. All data are in atomic units.

Li
Be+
B2+

C3+

N4'
p5+

F6+

Nev

0.786
0.397
0.277
0.215
0.175
0.149
0.129
0.115

0.841

0.280
0.217
0.176
0.150
0.130
0.115
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state degeneracy is a more appropriate repre-
sentation of charge transfer, and

which is orthogonal to R,' in the same sense as
(S„S,) or (g„R,) are pairs of orthogonal co-
ordinates. The definition (5b) needs further com-
ment. R,' should be interpreted as the coordinate
which measures the difference between the ten-
dency to form sP' covalent hybrids (which account
for tetrahedral coordination) and the tendency
to nonhybridization (P bonding orbitals only).
This may explain why the s radius has a larger
weighting factor in determining this coordinate.

Structural coordinates are again defined ac-
cording to Eq. (3) and the resulting plot is shown
in Fig. 6. The regularity of the St. John-Bloch
plot is completely recovered, and the separation
between different domains, which was already
excellent, has even improved. A definite straight
line separates compounds with fourfold coordina-
tion from the sixfold ones which is reminiscent

of PVV diagrams. ' By analogy, this line should
define a critical ionicity, and a new scale could
accordingly be defined. The separation between
wurtzite arid zincblende structures is also quite
definite, apart from the case of SiC (which in-
deed crystalI. izes in a number of different poly-
types ranging from zincblende to wurtzite). As
noted by Chel. ikowsky and Phillips, a more
elegant separation can be obtained by plotting 1'
versus X ' (Fig. 7). The quantity X ' plays the
role of the covalent energy EI, of Phillips and
Van Vechten or the parameter P in Huckel theory.

Our structural plots, Figs. 6 and 7, clearly
distinguish among different coordination numbers.
Going from the C-BN domain to the CsCl-CsBr
region along a line we go from threefold, to
fourfold, to sixfold, and eventually to eightfold
coordination. Enough crystallographic informa-
tion exists to separate with a definite straight line
fourfold from sixfold coordinated compounds.
The same is true within the fourfold coordination
domain for the separation between zincblende
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FIG. 6. A structure plot using modified bond-orbital
coordinates. The modified coordinates yield a success-
ful structural plot, including Li salts.

FIG. 7. The plot shown here using the coordinates
((R,'), Ro) corresponds closely to the Phillips-Van
Vechten (EI, , C) plot.
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and wurtzite structures. All these separations
(represented by solid lines in our plots) are dic-
tated by the high density of data points which are
available in these areas of the plots and by the
pres ence of borderline cas es such as Mgs and
Mg8e (fourfold-sixfold separation), "and SiC
(zincblende-wurtzite separation). " Threefold-
coordinated crystals (BN and graphite) as well
as eightfold-coordinated compounds (CsCl and
CsBr) are well separated from the compounds
with intermediate coordination number, but in
these cases, because of the limited number of
data points available, definite separation lines
cannot be drawn and we have qual. itatively indicated
the domain boundaries with broken curves.

IV. CONCLUSIONS

Ne have examined several sets of orbital co-
ordinates defined from hard-core pseudopoten-
tials. Compared to empirically constructed
elemental coordinates, the s-P orbital coordinates
are manifestly much more successful. in describing
structura1. properties and trends of binary inter-

metall. ic, semiconducting, and insulating solids
formed from nontransition elements. The arbi-
trariness of the definitions cannot be resolved
entirely by comparison with observed crystal
structures because of the limited information con-
tained in the latter. However, in all cases, suc-
cessful results are obtained primarily because
of thy distinctions made between ionic effects
(described by the bond orbital coordinate ft, ) and
covalent effects (described by It,, or more ac-
curately R, '). Many other factors, such as the
degree of accuracy in fitting to atomic wave func-
tions, or even whether neutral atoms or hydro-
genic ions are used to define the coordinates,
appear to be of secondary importance, providing
that the same definitions and procedures are
followed consistently throughout the Periodic
Table.
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