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Large low-temperature Hall effect and resistivity in mixed-valent SmB6

J. W. Allen, B. Batlogg, t and F. Wachter

(Received 26 July 1979)

The Hall coefficient RH has been measured between 2 and 300 K for small crystals of Sm86
in which the resistivity p at 4 K is nearly 10 times greater than its 300-K value of 290 p, A cm.
Significant differences fro'm previous results reported for samples with a much smaller low-
temperature resistivity rise have been found. It is shown that the size of the resistivity increase
precludes its being ascribed to a scattering mechanism for a metallic number of carriers, and
that the size of RH implies numbers of holes and electrons less than -5 &(10' /cm at 4 K. The
origin of the low-temperature residual conductivity is discussed.

I. INTRODUCTION

SmB6 is one of a group of homogeneously-mixed-
valent materials in which the resistivity increases with

decreasing temperature. " Because it is often stated'
that in general the mixed-valent state has a metallic
Fermi-liquid character, and because many mixed-
valent materials are clearly metallic, this group, which
also includes TmSe and high-pressure SmS, has pro-
voked questions as to whether the resistivity rise is
an intrinsic property of these mixed-valent materials,
and whether the rise should be ascribed to a scatter-
ing mechanism or to a carrier decrease.

In SmB6 the resistance increase is rapid belo~ 30 K,
saturates at some lower temperature, and then is
nearly constant down to the lowest temperature of
measurement. The behavior is quantitatively sample
dependent, probably due to variations in

stoichiometry, as shown by systematic studies of
Smt „86.' Samples with x closest to 0 show the larg-
est resistivity. rise, nearly a factor of 10, and the
lowest saturation temperature, about 3 K. As x in-

creases from 0, the size of the resistivity rise de-
creases and the saturation temperature increases.
Only one Hall-effect study has been reported for
Sm86, ' and this was made on samples in which the
resistivity rise is less than 2.5 orders of magnitude
and the saturation temperature is higher than 6.5 K.
Comparison with the resistivity studies on Sm~ „B6
then suggests that the reported low-temperature
Hall-coefficient behavior is not characteristic of
stoichiometric SmB6 and that measurements of the
Hail coefficient in material with a much larger resis-
tivity rise might reveal significant differences. Such
has been found to be the case.

The remainder of this paper describes the new
Hall-effect measurement and points out differences
from the previous results. It is shown that the resis-
tivity increase is too large to be ascribed to scattering
of a metallic number of carriers and that the size of

the Hall coefficient RH implies a number of carriers
less that —5 x 10"/ctn3 at 4 K. The origin of the
residual conductivity is discussed.

II. EXPERIMENTAL RESULTS

The Hall coefficient and resistivity were measured
at 230 Hz by the four-terminal Van der Pauw
method. A signal generator was used as a current
source and a iockin amplifier was used to detect the
voltage. Electrical isolation between the voltage and
current circuits was achieved through shielding and
by using an optical, coupler to provide a reference sig-
nal to the lockin amplifier from the signal generator.
The current was determined by measuring the voltage
across a calibrated series resistor with the lockin am-
plifier. The magnetic field strength for the Hall mea-
surement was 17 kG.

The samples of Sm86 were small, thin flux-grown
crystalline flakes provided by Z. Fisk of the Universi-
ty of California at LaJolla. The dimensions of the
sample for which data is presented were 0.55
mm & 1.1 mm x 40@,m. Contacts were made to the
corners of the sample with 100-p,m-diameter Berylco
wires whose tips were sharpened by electroetching to
points about 10 p,m in diameter. The wires were sol-
dered to terminals on one side of a thin insulating
plate and bent to protrude through four carefully po-
sitioned 150@,m holes to contact the sample, which
was mounted on the opposite side of the plate. The
sample was held in place by a thin piece of quartz
pressed on by a small wire spring clip, and the contact
wires were shaped to press against the sample under
tension. These contacts were found to be reversible
and ohmic using a curve tracer oscilloscope. Occa-
sional lapses of contact quality during the course of
the measurements could be cured by discharging a
capacitor through the contacts.

Figure 1 shows the resis:tivity p between 2 and 300
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FIG. 2. Temperature dependence of the Hall coefficient

of SmB6 measured with B =17 kG.

FIG. 1. Temperature dependence of resistivity of Sm86.

K. The size of the low-temperature increase is nearly
a factor of 104 and its saturation temperature is about
3 K, indicating that the sample is close to being
stoichiometric. The temperature dependence of the
Hall coefficient is presented in Fig. 2. Between 300
and 58 K RH is positive and never larger than
10 ' cm'/C. Below 58 K RH is negative, its magni-
tude increasing strongly between 58 and 4 K to a
value near 30 cm3/C, and then decreasing slightly
between 4 and 2 K.

Above 57 K the values of R~ are very similar to
those reported previously by Nickerson et al. ,

' except
that the high-temperature zero crossing occurs 3—5 K
higher in the previous data. However, there are
striking differences from the previous data at lower
temperatures. For a sample with a low-temperature
resistance rise of about 1.5 orders of magnitude,
Nickerson et al. found that RH was negative with a
magnitude that increased to a peak value of
0.04 cm3/C around 12 K and then decreased sharply
as the temperature was lowered further, so that a
low-temperature zero crossing to positive values oc-
curred at about 5 K. The temperature of the peak in

~ RH ~
was just above the temperature, —10 K, at

which the resistivity rise began to saturate in this
sample. For a second sample with a larger low-

temperature resistivity rise, about 2.5 orders of mag-
nitude, RH was qualitatively the same but with in-

teresting quantitative differences. The maximum in
the magitude of RH occurred at about 8.5 K, with a
larger value, about 0.85 cm3/C (for this sample p and

p, H w'ere published so RH has been deduced with
some uncertainty, from the relation RH = ppH).
Again the temperature of the peak in ~RH ~

was just
above the resistance rise saturation temperature,
about 6.5 K in this sample. The low-temperature
zero crossing to a positive value is at a slightly higher
temperature than in the first sample, near 6 K.

Taking previously published data together with the
new data presented in Figs. 1 and 2, the following
pattern emerges. As sample stoichiometry improves,
the size of the low-temperature resistance rise and
the magnitude of the negative RH peak increase to-
gether, while the temperature at which the resistivity
rise saturates and the temperature of the maximum
in RH decrease together. In the data of Fig. 2 the
low-temperature zero crossing of RH to a positive
value does not even occur. This strongly suggests
that the saturation of p is correlated with the peaking
of RH and that both are extrinsic. Similarly it ap-
pears that a large magnitude of RH accompanies a
high value of p, and both are intrinsic.
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III. DISCUSSION

A. Minimum metallic conductivity, the unitarity

limit, and the failure of the
scattering model

hL = —kFp, =hkF
e m

(2)

In the absence of any disorder, static or thermal, v

and L are infinite, so for a system without static dis-

order, v, L, and the conductivity become infinite as
the temperature T 0. This is the behavior expect-
ed of a perfect Fermi liquid. For a Fermi liquid with

static disorder, the conductivity is finite as T 0, but
Mott has argued that there is a lower limit 0-~;„on
its value. That this is so can be motivated by the
idea that there is a lower limit on L. As pointed out
by Ioffe and Regel, ~ and discussed extensively by

Mott, L is expected to obey the inequality kFL & m.

For a metallic number of carriers kq is approximately
rr/a, where a is the interatomic separation, so the
condition is equivalent to L ) ci. Mott has identified
the regime where disorder would induce L to be
much less than the interatomic separation with
disorder-induced Anderson localization. ' If the dis-
order causing the localization is static, the conductivi-
ty at T 0 is expected to be zero, which can be taken
to define localization. For T & 0 the conductivity in

Consider now the low-temperature increase of the
resistivity. It is the aim of this section to show that
the resistivity reaches a value too large to be account-
ed for by scattering of a metallic number of electrons
in delocalized states and to that end lower limits on
metallic conductivity will be discussed. The expres-
sion for the conductivity cr obtained from the Boltz-
man equation for a metallic cubic crystal is7

e SF
QS L

12m3

where SF is the Fermi-surface area and L, the mean
free path, is vF v where eF and ~ are, respectively,
the velocity and lifetime of electrons at the Fermi
level. Strictly, L in Eq. (1) is the mean free path
averaged over the Fermi surface if the surface is not
spherical, but it is assumed here that the electrons
are in a parabolic band. This assumption leads to
simple results that display important qualitative rela-
tionships and does not introduce numerical. error
large enough to invalidate the order-of-magnitude
comparisons to be made. For a parabolic band eF is

related to the effective mass m and the Fermi wave

vector kF by m v~=hk~. Using this relation and
putting SF =4m kF', Eq. (1) takes the often used form
o.= ne p, where n = kF3/3rr' is the conduction-electron

density and p, =er/m is the mobility. It follows
that the mobility and mean free path are related by

states localized by static disorder need not vanish be-
cause thermally activated hopping may occur. It may
also happen that thermal disorder is responsible for
inducing localization, in which case the conductivity
at T =0 should be greater than cr;„, whatever its
value when T & 0. An experimental conductivity
small enough to imply L « a for a metallic number
of carriers means either that the transport proceeds
via localized states or that the number of carriers is
much smaller than that of a typical metal.

For a system which may have unusually narrow
bands at the Fermi level, as with mixed valence, it is

important to assess the role of m, which will be
large for narrow bands. Since kq does not change for
a simple variation of the bandwidth, Eq. (1) shows

that a depends on m through L, and Eq. (2) shows

an explicit inverse dependence of L on m, reflecting
the fact that'heavier electrons have a smaller vF. In
addition ~ is proportional to an inverse scattering
rate, which is typically proportional to the density of
states at the Fermi level, causing v to vary inversely

with m . Thus L is typically proportional to m 2 so

a large m is expected to make L, and hence a-,

small. However, in a Fermi-liquid model, a very
small conductivity cannot be accounted for simply by

invoking a sufficiently large m if this leads to

L « a. Large m systems are not exempt from the
ideas of the preceding paragraph.

One simple estimate of minimum conductivity for
a metallic number of carriers follows from setting

kF = rr/a and L = a in Eq. (I). This estimate, denot-
ed here by cr„ is given by

1

1 ~ 1 4(2I + I) c
rrtN, (0) V

(4)

where l is the virtual-bound-state angular momen-
tum, c is the impurity scatterer concentration, and V

is the atomic volume. N, (0) is the unperturbed den-

sity of conduction-electron states at the Fermi level
in the absence of scattering. Using Eq. (2) and the

relation m kF = m2h 2N, (0), valid for parabolic bands,

e2

3ka

A second lower limit on cr due to Friedel, " can be
obtained by invoking the fact that the maximum
scattering rate of conduction electrons by an impurity
occurs when the magnitude of the phase shift in-

duced by the scatterer is —2m. This "unitarity limit" is

closely approached for resonant scattering into a vir-

tual bound state, and has been a useful concept in

studies of the Kondo effect. It has also been applied
to discuss the resistivity of concentrated rare-earth
compounds. The unitarity limit on the conduction-
electron lifetime is given by ' '
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this result implies a lower limit on L given by

1 m' 4(2I +1) c
(5)L„kg'- ~ V

and since 1/L = Q(c/ V), the maximum scattering
cross section'3 Q„can be discerned from Eq. (5). It
is interesting to note that L„does not depend on m

owing to the circumstance that v„ is proportional to

m, although it should not be forgotten that m here
refers to the unperturbed conduction-electron states.
Putting L„ into Eq. (1) and using expressions given
above for S~ and n yields the unitarity limit expres-
sion given by Friedel" for the resistivity, which is

4rrtc(2I +1) (6)pu =~u
p kp.p

where p = n V is the number of conduction electrons
per atom. It is of great interest to compare o-„with
o-„which means comparing L„with the interatomic
separation a. For a metallic number of carriers,
kF —~/a and so 0„—a'. Then Eq. (5) shows that
in the extreme case where every unit cell has a
scatterer, so that c/V —a ', one has I,„—a, imply-

ing that o-„—o-„ i.e., that the two limits coincide in
this extreme case.

The conductivity in Eq. (6) is based on a scattering
theory linear iq c, and is therefore somewhat suspect
for c —1. Motts has, in fact, obtained a lower esti-
mate for the minimum conductivity, denoted by him
as cr;„, by evaluating the general Kubo-Greenwood
conductivity formula for aonditions corresponding to
the onset of Anderson localization. Presumably the
difference between o-;„and cr, —o-„entails scatter-
ing nonlinear in c. The regime between o-, and cr;„
is one of great disorder in which the Fermi surface is
undefined, and for the present purpose of comparing
to nearly perfect Fermi-liquid behavior, o-„suffices.

The dense scatterer limit just described has been
applied' successfully to explain the maximum value
of resistivity observed at T =37 K in CeA13, in the
model that the 4f state at each Ce site acts as a
resonant scatterer of conduction electrons. Applying
the same picture to SmB6 then yields a concrete esti-
mate of the maximum resistivity increase which
could be attributed to either thermal or impurity
scattering. Cubic Sm86 has one Sm per unit cell with
a valence -2.6, and the Sm atom density is
1.42 x 102~/cm3, leading to p =0.6, e =0.4,
V =7.06 x 10 "cm', and kF =6.32 x 10' cm '. Be-
cause the intraaiomic Coulomb interaction separates
states of differing 4f occupation, I is taken to be 0
rather than 3. Equations (2) and (4)—(6) then yield
the following unitarity limit values'.

p„=5.44 & 10 Qcm

p,„=1.35 cm2/V sec, L„=5.61 A

0„=n(3 16) A22, . r„= 67&&910 ' sec

where the free-electron mass, probably appropriate
for the conduction electrons, has been used to com-
pute v. As expected the geometrical quantities L„
and 0„ involve lengths of about the lattice constant
a =4.133 A.

The room-temperature resistivity of SmB6 was
measured to be 290 p, 0 cm, not much less than the
value of p„. As the temperature is lowered, p in-
creases to values well above p„. In fact, the experi-
mental low-temperature resistivity of 2.60 cm is
about 5000 times larger than the value of p„. For
this resistivity, assuming a metallic number of car-
riers p/ V=8.5 x 102'/cm3, and a free-electron mass
to compute v, one finds

p, =2.79 x 10~ cm2/V sec, L =2.80 x 10~a

0 =m(53a) r =1.59 X 10 ' sec

Especially the geometrical quantities L and 0 show
how physically untenable is a scattering model for the
resistivity rise if there is a metallic number of car-
riers. The conclusion from this comparison is that
the resistivity rise must be ascribed to a decrease of
carriers relative to that at room temperature, or to
conduction in states localized by disorder, i.e., hop-
ping conduction.

Kasuya' has considered a model involving hopping
conduction, in which perfect SmB6 would be a metal,
but that disorder due to small numbers of Sm vacan-
cies causes the states at the Fermi level to be Ander-
son localized. The very low-temperature conductivity
was ascribed to hopping and the activation energy
was then associated with excitation of carriers to
delocalized states. This model is inconsistent with
two experimental results. This first' is that the low-
temperature conductivity increases, rather than de-
creases, with increased numbers of vacancies. 4 The
second, pointed out by Kasuya, ' is that the conduc-
tivity does not fall to zero as T 0, but saturates at
the small value of 0.38 (0 cm) '. He and his colla-
borators have measured the conductivity for tempera-
tures down to 15 mK and found no decrease. As-
suming that this behavior extends to T =0, it must
be concluded that in the samples measured to date
hopping transport dogs not occur at the lowest tem-
peratures and that nonlocalized states exist at the
Fermi energy.

Section III B uses the Hall-effect data to estimate
carrier concentrations and Sec. III C returns to the
question of the size of the low-temperature conduc-
tivity.

S. Estimate of the carrier concentration

In the absence of a detailed model for the electron-
ic structure of SmB6 it is not possible to make a de-
tailed analysis of the Hall effect, and especially its
temperature dependence. But one basic idea which
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N, = (—I/RHe)/4

p,~
—2P( RH/p)— —

p,, ——2( —RH/p)

(7b)

(7c)

(7d)

can be employed is that the order of magnitude of
RH is determined by the number of carriers in the
limit of collision-dominated transport. To proceed in
this manner requires excluding from consideration
situations in which thc ratio of Hall mobility to the
drift mobility differs greatly from one. Such situa'-

tions are known, notably hopping conduction or the
presence of magnetic moments which produce an
anomalous Hall effect. A large anomalous Hall effect
seems unlikely for SmB6 because it does not order
magnetically and its magnetic susceptibility is small,
with a weak temperature dependence compared to
that of RH. The arguments against hopping conduc-
tion have been set forth above.

The reason why small numbers of carriers cause a

large Rg can be readily recalled from the simple clas-
sical picture of the Hall effect in which the force qE
due to the Hall field E balances the force qv~8 due
to the magnetic field acting on carriers with drift
velocity vz = J/nq, where J is the current density. RH
is defined as the field E for unit 8 and unit J. For
unit 8, a large E requires a large vq, and for unit J,
large v~ occurs only if n is small. The drift velocity is
relevant if the carriers are scattered many times dur-

ing their precession period in the magnetic field;

This condition requires (eB/m ) r (( I,
or p,8 &(1, which defines the low-field, collision-

dominated regime. Since 8 =10 ko corresponds to
8 = 10~ V sec/cm, it is clear that the experiments
described here were conducted in the low-field re-
gime. The simple interplay of the magnitude of RH
and the value of n is not expected to be dramatically
altered in more sophisticated treatments of the trans-
port.

Even allowipg for the presence of both holes and
electrons leaves the conclusion unaltered. Consider
the familar model' of a hole band and an e)ectron
band, each with a spherical Fermi surface, character-
ized by electron and hole densities and mobilities,
N„N~, p,„p,l„respectively. This is the simplest pos-
sible model for a system where RH( T) has a zero
crossing. Evidently, the two experimental quantities

p and R~ do not completely determine the four
model parameters. A straightforward analysis sum-
marized in the Appendix yields the following conclu-
sions for the case that RH is negative (analagous
results obtain with holes and electrons reversed for
RH positive). The one-band density (—I/RIre) is an

upper bound on N„with the two being equal if
Nq =0. For N, ( I/RHe, Na has a m—aximum value
which depends on |3=p, q/p, „and at the conditions
for maximum Nq,

N„= (-I/R„e)/4P, (7a)

These simple results are here applied to the low-
temperature values of RH and p in SmB6 only to ob-
tain order-of-magnitude bounds on the carrier densi-
ties. At 4 K, —I/RHe =2.08 x 10'7/cm3 which is an
upper bound on N, . An upper bound on Nq entails a
choice of a minimum value of l3, which is obtained
by choosing a minimum value of p, . The physical
content of the situation is that any number of holes
can.be present if their mobility is low enough to
prevent them from dominating the Hall effect. For
small numbers of carriers the minimum mobility im-

plied by kFL & m is rather large, but to obtain a max-
imal estimate of Nq, the minimum p, will be taken as
the metallic value p,„=1.35 cm2/V sec, determined in
Sec III A. Since —R„/p = 20 cm'/V sec at 4 K in

Sm86, Eq, (7c) implies P «0.1 so that Eq. (7a) im-

plies

Nl, ~2.5( 1/RHe) —=5.2 x 10'7/cm3

This analysis then implies that the mobilities lie in
the range 2 to 40 cm2/V sec.

The room-temperature values of RH and p are,
respectively, 2.57 x 10~ cm3/C and 290p, Q cm.
These can also be analyzed in the two-band model,
using the relations'of the Appendix but with hole and
electron labels interchanged in defining a, P, and y
because RH is positive. The experimental one-band
carrier density and mobility are 1/RHe =2.43
x 1022/cm3 and RH/p =0.886 cm2/V sec. The small

value of R~/p suggest l3 —1 so that neither p,, nor
p, q will be too small. Equation (AS) shows that max-
imum N, occurs for @=0.375, for which o.y=0.125,
leading to N, =3.04 x 102'/cm3, Wq =9.11 &&10~'/cm3

and p,, = p~ =1.7'7 cm /V sec. These upper-limit car-
rier densitics are close to the average density of Sm3+

sites, the mobilities are close to the lower limits dis-
cussed above, and p is about half the unitarity-limit
value.

These results imply that Sm86 at room temperature
is a poor metal with —9 x 102'/cm3 carriers being
strongly scattered, and that the number of carriers
decreases upon cooling to —5 x 10"/cm' at 4 K,
causing the large conductivity decrease. Such
behavior is realized by a small gap semiconductor
model, and several have been proposed in the past
for SmB6." 'o In the temperature range 4—13 K,
the plots of log~o~RH ~

and loglop vs I/T are roughly
linear, implying activation energies of 1.8 and 2.7
meV, respectively, and for the same temperature
range Menth et al. ' deduced an activation energy of
2.3 meV from their resistance data. A gap of the or-
der of magnitude of these activation energies would
be consistent with the bad metal picture2 at room
temperature where kT is about 10 times larger than
the activation energy.
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C. Low-temperature conductivity

e2

(r;„=0.026
AaE

(8)

where aE is the distance between defects. An esti-
mate of aE is obtained here from

The size of the low-temperature conductivity is an
important issue. As mentioned above, the saturation
of the conductivity fall as T 0 implies that nonlo-
calized states exist at the Fermi energy. Further,
since the conductivity at T =0 is not infinite these
states entail static disorder. Kasuya' has emphasized
that the model for the ground state of perfect SmB6
must be consistent with the observed effects of static
disorder. Citing an estimate of cr;„of—10~(Q cm) ', which is much greater than the ob-
served conductivity, he argues that a novel model of
the ground state is required to evade this conflict. To
this end, he has proposed that the ground state of
SmB6 is a Wigner lattice which, in the absence of dis-
order, would have an infinite conductivity at T =0
due to phase slippage. Disorder pins the signer lat-
tice and reduces the conductivity to the observed
value.

Kasuya's model is innovative and interesting, but

may not be necessary. The estimate of
o. ;„—104(Q cm) ' is somewhat larger even than the
0-, obtained above for a metallic number of carriers
and L —a. A much smaller value can reasonably be
estimated by taking account of the small low-

temperature carrier density. In a narrow gap model
defects such as Sm vacancies could shift the Fermi
energy away from the gap center and produce band
tails extending into, and possibly across the gap. For
such a case, Mott has given for a. ;„ the expression

mental fact" that the observed conductivity increases
with degraded stoichiometry mitigates generally
against any models in which defects reduce otherwise
infinite conductivity.

D. Conclusions

The low-temperature resistance rise in SmB6 has
prompted several small-gap insulator models for this
material. ' However, various arguments for
perfect-crystal metallic ground-state models have also
been cited ' and the existence of homogeneously
mixed-valent insulators is not generally conceded.
The most prevalent general model for the mixed-
valent ground state is presently the two-component
Fermi liquid, although the possibility that SmB6 and
some other mixed-valent compounds are not metallic
has been raised again recently. 2 As analyzed above,
resistivity and Hall-effect data strongly support a
model in with the carrier density decreases from a
metallic number —9 x 10"/cm3 at room temperature
to —5 x 10"/cm at 4 K. The origin of the residual
low-temperature conductivity could be band tail con-
duction, but is an important problem' which
deserves further study.

ACKNOWLEDGMENTS

It is pleasure to acknowledge P. W. Anderson, B.
R. Coles, R. M. Martin, and J. Schoenes for helpful
discussions and advice. J.Vf.A. is deeply appreciative
to P. Wachter and many others at the Eidgenossische
Technische Hochschule in Zurich for making his visit
there memorable and stimulating.

r & I/3
aE n

a n&
(9)

where a is the lattice constant, n is the metallic
number of carriers, p/ V =8.5 && 102'/cm3, and n; is
the low-temperature carrier density deduced from the
Hall effect, —5 x 10"/cm'. Equation (9) yields
aE=106 A, for which a;„=5.7(Q cm) '. The re-
duced value of o-;„compared to cr, is due to two
factors; the reduction in the number of carriers so
that aE & a, and the size of the coefficient 0.026 in
Eq. (8) compared to —, in Eq. (3), which is probably

due to nonlinear scattering processes as mentioned at
the close of Sec. III A. This estimate of cr;„ is 15
times, rather than 104 times, the observed conduc-
tivity. Given the general lack of-detailed knowledge
of the bands in a mixed-valent material, and of the
effect of disorder upon them, as well as the difficulty
of assessing cr;„, it is by no means obvious that a
factor of 15 is cause for alarm. Finally, the experi-

APPENDIX

For the two-band model in the low-field regime, "

and

p =e(p,,N, +pqNq)

Npp, I,
—W, p, e

2 2

eRH =
(Nrr prr + Ne p,e )

(Al)

(A2)

Equation (A2) readily takes the form

Ne 1 —eeP2
—1/R„e (1+aP) 2 (A3)

N, ~ 1/RHe, for Rn (—0 (A4)

where a =Nr, /N, and P = pr, /pe For RH negative, y
is positive, and so it must be true that nP' ( l.
Therefore the value of y is between 0 and 1, and
achieves 1 for o, =0, implying that
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—(2y+p)+(4y+4yp+p )'i
2

(As)

and the derivative of Eq. (A5) with respect to y is

(A similar result holds for Al'a when RH &0.) There
is also a limit on the number of carriers of opposite
sign, but it depends on p. Equation (A3) can be
soived for ay =Nq/( 1—/Arre), giving

zero for
1+2p

(A6)4(1+p)
which is the condition for maximum 4't„as shown by
the second derivative. For p (0.25, which turns out
to be the condition for Na & —1/RHe (i.e.,
ay & 1),y =0.25. This leads to (ny) =1/4p, or

(aP) =1, and using Eq. (Al) one finds, for max-
imum Na, the results given in Eq. (7) in the text.
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