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A method is described for quantitative analysis of low-energy-electron diffraction (LEED) intensity-energy
spectra by comparison of experimental spectra with spectra calculated using a dynamic theory of LEED.
The method involves a minimization of the variance of the fit between experimental and calculated spectra
as a function of the calculational variables, both structural and nonstructural, leading to determination of
optimum parameter values. Correlation between the variables is taken into account. The method is applied
to extensive, new experimental LEED data for Pt(111). It is shown quantitatively that the variance of the fit
depends strongly on the value of a single structural variable, d;, the first interlayer spacing, but weakly on
the values of three nonstructural variables, ¥, the inner potential, V,,, the absorption potential, and @, the
Debye temperature. The analysis leads to an optimum value of d, =229 A, corresponding to a 1%
expansion of the first layer spacing, with an estimated error of 40.1 A. This result is in good agreement

with the earlier studies of Kesmodel and co-workers.

1. INTRODUCTION

The work described in this paper constitutes the
first of a projected series of studies of platinum
surfaces. It concerns the most simple case of the
clean Pt(111) surface, for which previous low-en-
ergy-electron diffraction (LEED) studies have
shown that the surface.structure has the same two-
dimensional periodicity as the bulk, and for which
both LEED and ion-scattering studies have shown
that the first interlayer spacing has the bulk value
to within a few percent.'™3

Since the Pt(111) surface structure appeared to
be quite well established, it seemed to us to be a
useful starting point for testing our LEED experi-
mental and computational procedures with a view
to their later application to structurally more
complex systems such as the reconstructed Pt(110)
surface.” In the course of the work, however, we
were led to investigate several questions of gen-
eral importance concerning the quantitative analy-
sis of LEED data. The results of these investiga-
tions form the basis for this paper.

The most widely used and accepted procedure
for surface-structure determination via analysis
of LEED measurements is a trial-and-error
method, in which the measured intensities of (k%)
diffracted beams, usually in the form of intensity-
energy spectra, [(#2) beam intensity versus inci-
dent beam energy] are compared with intensities
calculated for a trial surface structure having
the appropriate two-dimensional periodicity, as
determined from the LEED pattern. An accurate
calculation of diffracted beam intensities requires
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in principle a self-consistent construction of the
electron wave field in the solid, taking into ac-
count all multiple scattering processes, from
which the intensities of the diffracted beams in
the vacuum can be obtained. The calculation nec-
essarily involves simplifying assumptions concern-
ing the interaction of the incident electron with the
surface region of the solid and involves several
parameters characterizing that interaction, whose
values can only be fixed via comparison with ex-
periment. Thus the procedure of comparison in-
volves variation over the value of these nonstruc-
tural parameters, in addition to variation over the
values of the structural parameters.

In the last few years, the development by Pen-
dry,® Van Hove and Tong,® among others, of rel-
atively fast computational schemes for calculation
of LEED intensities, following the accurate, but
demanding, calculations of Jepsen, Marcus, and
Jona’ have created the ability to range more wide-
ly over the values of the calculational parameters
than was previously practical in terms of compu-
tational expense. It is still the case, however,
that the computational requirements are too large
to permit automatic variation of parameter values
to find a best fit between experimental and calcu-
lated intensities, as is carried out, for example,
in least-squares structural refinement in x-ray
diffraction analysis. Accordingly, parameter
variation is expensive in computational time, re-
quiring repetitive calculations, and the risk exists
that the search procedure may fail to range suf-
ficiently widely to find the optimum parameter
values.
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It is evident that a considerable simplification
of the parameter search could be achieved if the
number of parameters could be effectively re-
duced. In fact, it has been generally assumed in
analyses of LEED data via model calculations that
the fit between experimental and calculated inten-
sities depends more strongly upon the values of
the structural parameters than upon the nonstruc-
tural parameters, which are typically fixed at
presumed reasonable values, except for a fitting
of the muffin-tin constant. Some support for this
practice has been provided by comparisons to ex-
periment involving variation of the nonstructural
parameters, but a quantitative assessment of the
relative importance of structural and nonstructur-
al parameters has been lacking because of the im-
precise nature of the comparison procedures typ-
ically used in LEED studies. A major conclusion
of the present study is that the relative importance
of the structural parameters in determining the fit
to experiment is established via quantitative com-
parison procedures.

Until quite recently, there has been an apparent
reluctance to apply to LEED analyses the kind of
quantitative, reliability index assessment of the
comparison between experiment and calculations
that is standard practice in x-ray crystallography.
This reluctance can probably be attributed in part
‘to the inevitable lack of truly quantitative agree-

- ment resulting from the approximations made in
the calculations and the difficulties in obtaining
precise measurements. There is a prevalent
opinion that in the absence of quantitative agree-
ment a visual comparison of spectral peak posi-
tions and line shapes is more reliable than a
representation of the fit by a single number. In
the case of a small data base, such a visual as-
sessment of the comparison is feasible, but pos-
sibly ambiguous. Clearly the risk of finding an
apparently acceptable but incorrect structure is
minimized if the comparison involves a large data
base, but a visual assessment of the effects of
variations of several parameters is then less prac-
tical, and more objective assessment is needed.

Objective measures of the agreement between
experimental and calculated LEED intensities
have been proposed by Ignatiev et al.® and investi-
gated by Van Hove, Tong and Elconin,® Zanazzi
and Jona,'° and in a different context by Adams and
Landman.!’ The somewhat complicated reliability
index (r factor) proposed by Zanazzi and Jona,'®
designed to emphasize spectral peak positions
and line shapes and involving both first and second
derivatives with energy of intensity-energy spec-
tra, has been further applied recently by Mitchell
and coworkers.'®’* In most cases, the dependence
of the » factors on the parameter values of the

calculations was found to be quite well behaved,
and reasonable optimum parameter values were
determined from the minima of » factor plots.

In the present work, we demonstrate that »
factors defined in terms of the variance of the fit
between experimental and calculated LEED inten-
sities, and related to the simple 7 factors used in
x-ray crystallography, are quite adequate for the
determination of both structural and nonstructural
parameters. In addition we discuss the assess-
ment of the accuracy of the parameter value de-
termination, including the effects of correlation
between the parameters. Specifically, we use 7
factor assessment of the fit between experimental
and calculated intensity-energy spectra to exam-
ine the influence of the platinum potential used in
the calculations, and the accuracy of its repre-
sentation; the effect on the fit of the inner poten-
tial V,, absorptive potential V, , Debye tempera-
ture ©p, and a single structural parameter, the
first interlayer spacing d,, and to determine
optimum values ford,, V,, V, , and ©,.

The organization of the remainder of this paper
is as follows. Experimental procedures used in
measurement of intensity-energy spectra for
Pt(111) are described in Sec. II. In Secs. III and
IV, the basic assumptions of the theory and some
details of the computational schemes are briefly
summarized. Quantitative procedures for com-
parison of experiment and theory are described
in Sec. V and applied to the analysis of the exper-
imental intensity-energy spectra for Pt(111). A
discussion of this work and some conclusions
are presented in Sec. VI. Plots of experimental
and calculated intensity-energy spectra corre-
sponding to near-optimum parameter values are
shown in the Appendix, with the purpose of en-
abling the reader to relate the determined 7 fac-
tor values to a visual judgment of the extent of
agreement between experiment and theory.

II. EXPERIMENTAL PROCEDURES

The experimental apparatus used in the present
study is an ion-pumped, metal, ultrahigh-vacuum
system, base pressure =5X107" Torr, construct-
ed to our design by Vacuum Generators Ltd., and
including four-grid LEED optics and electron gun
manufactured by Varian Associates Inc. The main
experimental chamber is constructed of mumetal;
the magnetic field in the region between the sample
and the LEED optics measured = 20 mG.

The Pt(111) sample was mounted on a Vacuum
Generators manipulator, which has facilities for
sample rotation about the main, vertical axis of
the chamber and also about a horizontal axis coin-
cident with the axis of the LEED optics, The man-
ipulator permits translation of the sample along
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the vertical axis and along two orthogonal horizont-
al axes, and also permits tilting of the sample in
any direction about a pivot point near the top of the
manipulator. By means of these facilities, it is
possible to control the relative geometry of the in-
cident electron beam and the sample surface to
better than 0.1° in terms of the angles of incidence
and azimuth. The tilt adjustment was found to be
useful in correcting for small misalignments of
the sample on its supports to that the angle of in-
cidence could be defined purely in terms of a rota-
tion about the main vertical axis. :

The Pt(111) sample was kindly supplied to us by
Mr. Bernard Addis of Cornell University in the
form of a ribbon of dimensions =~ 0.25X 5X 15 mm?,
oriented and polished. The sample was spot-weld-~
ed to molybdenum supports and attached to a sam-
ple support assembly of our construction, which
includes facility for electron bombardment heating
of the reverse side of the sample. The manipula-
tor also included provision for liquid nitrogen
cooling of the sample. With out support assembly,
temperatures of = 86°K can be achieved. The
temperature of the sample was measured, using
a tungsten-rhenium thermocouple spot-welded at
the middle of a sample edge.

After installation of the Pt(111) sample in the
vacuum system, Auger electron spectroscopy
(AES) measurements, using the LEED optics and
an ancillary electron gun at ~15° incidence, in-
dicated the main impurities to be C, P, Ca, and S,
The carbon was removed by heating for several
hours at 1100°C in 1X 1077 Torr of oxygen. The
most persistent impurity was sulfur, which was
only removed by extended heating to 1250°C in
vacuum for several days. During the LEED mea-
surements, the sample was flashed to 1250°C to
remove adsorbed impurities before each mea-
surement of an intensity-energy spectrum. AES
measurements made shortly after taking the LEED
spectra indicated that the impurity level was less
than 1% of a monolayer of detectable impurities.

Intensity-energy spectra for individual (k%) dif-
fracted beams were obtained via measurement of
the light intensity from the fluorescent screen of
the LEED optics, using a Photo Research spot
photometer of 0.5° angular acceptance. In the case
of the nonspecular (%) beams, the beam move-
ment with changing incident electron energy was
manually tracked by sighting through the spot

- photometer viewfinder. Accurate measurements
could be made in this way using sufficiently slow
scan rates of the incident beam energy of less
than 1 eV sec™!. Repeated measurements were
made for each (n2) beam to confirm the repro-
ducibility of the spectra. The measured spectra
were converted to digital form and normalized

for the measured variation of the incident elec-
tron beam current with changing energy. The
spectra were all measured at room temperature.

In order to avoid errors in the measured spec-
tra due to inaccuracies in settings of the angles
of incidence 6 and azimuth ¢, particular care
was taken to ensure that the set of intensity spec-
tra for given 6, ¢ showed the appropriate sym-
metry relationships. Since the computational
schemes used for calculating intensity -energy
spectra rely for their efficiency on exploitation of .
special symmetry conditions, care was also taken
in setting the appropriate angular values.

As discussed by Holland and Woodruff,® for ar-
bitrary 6, ¢, the diffracted intensities do not re-
flect the symmetry of the surface structure. How-
ever, the reciprocity theorem is applicable, im-
plying that I ,(E, 6)=1,,(E, —6). This relationship
was used to establish the true zero of incidence by
comparison of specular-beam intensity-energy
spectra for +6 values. In the case of Pt(111), as
illustrated in the sketch of Fig. 1, the surface
structure has a threefold rotational symmetry ax-
is in the surface normal direction and a set of

Diffraction
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FIG. 1. Sketches of the Pt(111) surface structure and
(below) the corresponding diffraction pattern. In the top
sketch, circles numbered 1, 2, and 3 illustrate the rela-
tive positions of atoms in the first, second, and third
layers. The orientation of the crystal was as is shown
in the sketch, with a mirror plane (normal to the dashed
line) coincident with the horizontal plane of the vacuum
system and coincident with the plane of incidence of the
incident electron beam. This orientation we define as ¢
=0°, The threefold rotational symmetry and mirror-
plane symmetry present for ¢ = 0° and 0= 0° is shown
schematically in the diffraction pattern. It is noted that
exactly the same symmetry exists for ¢= 180°, but that
distinction between ¢ = 0° and 180° can be made via com-
parison of experimental -and calculated intensity spectra.
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three equivalent mirror planes, which contain this
axis. At normal incidence, the diffracted beam
intensities exhibit the full symmetry of the surface
spacegroup, allowing a further check to be made
of the setting of zero incidence by comparison of
intensity-energy spectra of symmetry equivalent
(%) beams. For nonnormal incidence, but at an
azimuthal angle of ¢ =0 as defined in Fig. 1, the
plane of incidence coincides with one of the mir-
ror planes, and so this symmetry element is re-
tained in the intensities. This condition was ex-
ploited to set the zero of azimuth.

By using the symmetry conditions and by com-
paring intensity spectra taken for small differen-
ces in angular settings, we believe that the angu-
lar values were determined to an absolute accur-
acy of +0.2° It is also noted that the successful
application of symmetry conditions (symmetry
equivalent beams weve equivalent to within a few
percent in relative intensities, and peak positions
in the spectra were reproduced to better than 1
eV) implies that the response of the fluorescent
screen was uniform across its area.

Intensity-energy spectra were measured for
twelve (%) beams (some of which were symmetry
equivalent at normal incidence) at angles of in-
cidence =0, £4° +10° and +16° and for azi-
muthal angle ¢ =0 in each case. These spectra
are shown together with the corresponding cal-
culated spectra in the Appendix., The energy ran-
ges of the spectra were limited by the emergence
threshold conditions for the particular (k) beams
and by the experimental.arrangement. The fluor-
escent screen subtends a solid angle of 96° about
the axis of the LEED optics, but a central region
of the screen is partially obscured by our sample
manipulator and support assembly. We note that
due to the close-packed nature of the Pt(111) sur-
face, threshold emergence energies are quite
large; in general, intensities were not measured
below 60 eV. In comparing calculated and experi-
mental spectra, the maximum energy range con-
sidered is 60-280 eV.

Finally, we note that the present intensity spec-
tra compare reasonably well with the data of
Stair et al.! obtained using a photographic tech-
nique, although the present data set is more ex-
tensive. Over the common range of the data sets
spectral peak positions are consistent to within a
few eV.

III. CALCULATIONAL-MODEL ASSUMPTIONS
AND PARAMETERS

Calculations ofr (nk) beam intensities were based
on the conventional model of LEED, involving sol-
ution of a one-electron Schrédinger equation for

a model system, in which the ion~core scattering
potential has the muffin-tin form and in which the
incident electron is attributed a complex self-en-
ergy inside the solid to simulate many-body in-
teractions.

No effects specific to the surface were included
in the electron-solid interaction potential. The
surface potential barrier was treated as a non-
reflecting (but refracting) potential step.

The ion-core scattering potential was obtained
as a tabulation of V(¥) from the relativistic aug-
mented-plane-wave (RAPW) calculation of Ander-
sen,'® in which Slater exchange was used. Partial-
wave phase shifts were calculated from V (7) by
numerical integration of the Schrddinger equation
in the usual manner. In some calculations, rela-
tivistic effects were approximated by use of
“quasirelativistic” phase shifts, obtained by aver-
aging spin-up and spin-down relativistic phase
shifts calculated using the Andersen potential and
kindly supplied to us by Roland Feder.!”

The complex self-energy was represented in our
calculations by a real part, the muffin-tin zero
with respect to the vacuum level, V, (“inner po-
tential”) and an imaginary part, Vim (“absorption
potential”). V, and Vin were treated as energy-
independent parameters with values to be fixed by
comparison of experimental and calculated inten-
sity spectra. The absorption potential was taken
to set in abruptly at a distance above the top layer
of ion cores of one-half the bulk interlayer spac-
ing.

The effect of thermal vibrations was treated in
the usual approximation of renormalization of the
ion-core scattering matrices by a Debye-Waller
factor. Isotropic thermal vibrations were as-
sumed, and no distinction was made between the
vibrational properties of different layers. Thus a
single Debye temperature was required, with
value again to be fixed via comparison of experi-
mental and calculated intensity spectra.

As discussed in Sec, IV the computed (k%) inten-
sities are believed to be numerically accurate
(=0.1%) within the above model assumptions at
reasonably low energies. At higher energies,
computational limitations to the number of partial -
wave phase shifts that could be used in describing
scattering from the ion-cores were a source of
error. This problem is illustrated in Fig. 2,
where the ion-core differential scattering cross
section for normal incidence and diffracted angles
of 0° and 180° is shown as a function of energy
for different total numbers of phase shifts used in
its calculation. As can be seen in Fig. 2, con-
vergence in the cross section is achieved for cal-
culations using 12 or more phase shifts at all en~
ergies up to 280 eV. In our calculations, how-
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FIG. 2. Atomic scattering factor (differential scatter-
ing cross section) versus electron energy, calculated
using the Andersen'® Pt muffin-tin potential, for different
total numbers of partial-wave phase shifts., Top panel
for backward scattering, bottom panel for forward scat-
tering. Normal incidence in each case.

ever, maximum numbers of 10 and 8 phase shifts,
respectively, were used in calculations of normal
and nonnormal incidence intensity spectra. The
results of Fig. 2 suggest that the former spectra
are likely to be in error at energies above 180 eV
and the latter above 120 eV. While the magnitude
of the error cannot be determined, its conse-
quences for the fit to experimental spectra is
evaluated in Sec. V.

IV. COMPUTATIONAL PROCEDURES

Diffracted-beam intensities were calculated
using a version of Pendry’s® renormalized forward
scattering (RFS) algorithm.®

The RFS algorithm involves calculation of layer
scattering matrices for each nonequivalent layer
via a matrix inversion procedure, based essen-
tially on the original formulation of Beeby,'® which
takes into account multiple scattering processes
within the layer to infinite order. Within each
layer, the electron wave field is expanded in a
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basis of spherical harmonics. The accuracy, with
which the layer scattering matrices are obtained,
is determined by the number of spherical harmon-
ics used in the representation, and by cutoff cri-
teria which determine convergence of lattice
sums. The latter were chosen in our calculations
to ensure convergence of the matrix elements to
better than 0.1%.

The electron wave field in the region of constant
potential between the layers is expanded in a
plane-wave (beam) basis for reasons of computa-
tional efficiency, including exploitation of sym-
metry conditions. The layer scattering matrices
are obtained in the plane-wave representation via
a unitary transformation. The accuracy of the
plane-wave expansion depends upon the number of
beams used, which is determined for each incident
electron energy. All propagating (k) beams are
included together with those evanescent beams
whose amplitudes decay by less than a specified
ratio in propagating from one layer to the next.
This cutoff ratio was set conservatively in the cal-
culations at 107%, ensuring convergence of the
plane-wave expansion at all energies used. This
led to inclusion of 61 beams at the highest energy
of 280 eV. In the normal incidence calculations,
the threefold rotational symmetry and mirror-
plane symmetry enabled the 61 beams to be re-
duced to 15 symmetry nonequivalent beams, with
consequent large reductions in computational time
and storage. The mirror-plane symmetry for
¢=0, 6#0 allowed the 61 beams to be reduced to
35.

In the RFS algorithm, the layer scattering ma-
trices are used to obtain the diffracted beam in-
tensities via a perturbation expansion of the total
reflectivity in orders of backward scattering pro-
cesses. The accuracy of this part of the calcula-
tion is determined by convergence criteria, which
determine, firstly, for each order of the pertur-
bation expansion how deeply into the solid the
electron propagation is followed, depending upon
damping of the wavefield by elastic and inelastic
scattering, and secondly, the number of orders
of the perturbation expansion. The convergence
criteria were again set conservatively in the cal-
culations, with the result that the diffracted beam
intensities were converged to better than 0.1% at
all energies. )

As a check on the numerical reliability, inten-
sity spectra for normal incidence were also cal-
culated, using Van Hove and Tong’s modification
of Pendry’s layer -doubling algorithm. In this
procedure, layer scattering matrices are first
calculated in a similar manner to that used in
the RFS scheme. Multiple scattering processes
between the layers, however, are summed over
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in a different manner. In the layer-doubling al-
gorithm, a total scattering matrix is first obtained
via an iterative process for a slab of the bulk of
the solid 2" layers thick, where v is the number
of iterations. The total scattering matrix for the
surface layer plus bulk is obtained in a final lay-
er-doubling step. In each layer-doubling step,
multiple scattering processes between the layers
are included to infinite order via a matrix-inver-
sion procedure. The accuracy of this part of the
calculation is limited only by the number of iter-
ations used, if sufficient beams are included to
ensure convergence of the plane-wave expansion
between the layers. In our calculations, the dif-
fracted beam intensities were converged to better
than 0.1%, typically after four or five iterations,
including the final addition of the surface layer.

To compare the results of the RFS and layer-
doubling algorithms, normal incidence intensity
spectra were calculated for all the emergent
beams in the energy range 60-280 eV. Eight
partial-wave phase shifts were used in each cal-
culation; 61 beams were used, reduced by sym-
metry to 15 in the RFS calculation and to 35 in the
layer-doubling calculation. The results of the two
calculations agreed to within +0.2% for all beams
at all energies. While this agreement does not
establish the absolute reliability of the calcula-
tions, because of the similarities in calculation of
the layer scattering matrices, it clearly provides
grounds for some confidence in their reliability.

For comparison with the experimental results,
intensity spectra were calculated using the RFS
scheme for the 12 measured (k%) beams in the
energy range 60-280 eV for angles of incidence
6=0° +4° x10° and +16° and for ¢=0 in each
case. For the normal incidence spectra, the
computer storage reduction achieved by exploita-
tion of symmetry enabled the use of ten phase
shifts. Eight phase shifts were used in the cal-
culations for non-normal incidence. Each com-
puter run involved calculation of the intensity
spectra for all emergent beams for given 6 and ¢.
Since the calculation of the layer scattering ma-
trices, comprising a large fraction of the total
calculation, is independent of the layer spacings,
intensity spectra for typically five values of the
first-layer spacing were calculated in each run.
In the case of nonnormal incidence, spectra for
+6 were efficiently calculated in the same run,
without recalculation of the layer scattering ma-
trices, via calculations for +6, ¢=0°and +6, ¢
=180° and interchanging % and k indices in the
latter case. The experimental uncertainty in the
setting of ¢ as 0° or 180° (see Fig. 1) was re-
moved by comparison of experimental and calcu-
lated spectra.

Intensity-energy spectra were calculated as
described above for a range of values of the non-
structural parameters Vi, and ©, and for different
numbers of partial-wave phase shifts. Choice of
optimum parameter values including d, and V|,
was made by comparison with experimental spec-
tra, as described in Sec. V.

Finally, we note that each computer run as des-
cribed above for fixed values of Vi, and 6, re-
quired = 65000 words of central processor unit
(CPU) memory. The 61 beams, 10 phase shifts,
normal incidence runs required = 20 min and the
nonnormal incidence, 61 beams, 8 phase shifts
runs =50 min on the Aarhus CDC 6400 computer.

V. COMPARISON OF EXPERIMENT AND THEORY

In this section, we describe the procedure used
to determine optimum parameter values and esti-
mates of their accuracy via comparison of experi-
mental and calculated intensity-energy spectra.
We concentrate almost entirely on the analysis of
the five (k%) experimental spectra for normal in-
cidence since the calculated spectra are inde-
pendent of V for this case; the effect of varying
V, is simply to translate the relative energy zeros
of the calculated and experimental spectra. In
fact, the spectra for nonnormal incidence were
calculated after determining the optimum value of
V, as described below. The subsequent compari-
son of experimental and calculated spectra for
nonnormal incidence served to confirm the param-
eter determination based on analysis of the nor-
mal incidence spectra.

Plots of experimental spectra and spectra cal-
culated for near-optimum parameter values are
given in the Appendix.
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FIG.3. Dependence of the fit between experimental
and calculated intensity spectra for normal incidence on
the value of the first-layer spacing, d,, used in the cal-
culations. The fit is characterized by R, factor (see
text). The different plots are for calculations using total
number ¢ + 1) of phase shifts of 4, 6, and 10 respective-
ly.
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NUMBER OF PHASE-SHIFTS

FIG. 4. Dependence of R, on the total number of phase
shifts used in the calculations. In each case the bulk val-
ue of 2.265 & was used for the first-layer spacingd, .

A. x? and R factors

The agreement between individual experimental
and calculated intensity spectra [i.e., for given
(%), 6, and ¢] and the effect of parameter varia-
tion on the agreement was assessed in terms of
the following statistics:
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FIG. 5. Dependence of R, on d, for different values of
the inner potential Vj. Smooth curves in this and subse-
quent figures correspond to the least-squares parabolas
fitted to the five data points closest to the minimum val-
ue of Ry. Note the shift in the minimum value of R, to
lower values of d, for increasing values of V.
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FIG. 6. Dependence of R, on the inner potential v for
different values of d;. Note the pronounced shift in the
minimum of R to lower values of V, for increasing val-
ues of d,.
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(5.2)

R.= f[WIexpt(E) "'Icalc(E)]sz
2w L )P dE .

(5.3)

Optimum parameter values were obtained by
minimizing x® or R, with respect to the different
parameters. Within the determined errors, these
values were independent of which statistic was
used. The reduced x? factors R, and R, are used
to provide a convenient basis for comparison with
LEED studies of other systems. They correspond
to the 7 factors used in x-ray crystallography.

In applications of Eq. (5.1), the unknown standard
deviations o(E) of the data points were assumed

016

|
[
|
i
1 1 1 1 I
30 40 50 6.0 70
Vim (eV)

FIG. 7. Dependence of R, on the absorptive potential
Vim for fixed values of 4, and V.
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FIG. 8. Dependence of R, on the Debye temperature
@ p for fixed values of d, , Vy and Viy, .

equal, with rms value regarded as determined by
the variance of the fit between experiment and
theory, i.e.,

o o)
z(( [ 10T () = T (E)]sz» . (5.4)

As noted previously, the absolute scale of the
experimental intensities I.xp: (E) is not known, and
the scale of the calculated intensities I (E) is
liable to be in error, depending, for example, on
the assumptions made concerning the onset of
damping of the incident electron wave. According-
ly, Egs. (5.1)-(5.4) include a scale factor, which
we define as

w={ I (E)dE/f Lo (E) dE (5.5)
0.4 T T T T[T T T T T I
_ L J e p=d, i
Ry : o p=0,
. . ap=V,
03 . p:Vim .

1 \\\xg [ e -

1 1 1 1 1 Il 1 1
-60 -40 -20 0 .20 40 60

Ap (% of "near optimum” value)

FIG. 9. Comparison of dependence of R, on the calcu-
lational variables. The parameter values are expressed
as percentages of their near-optimum values (see text).
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FIG. 10. Correlation of optimum values of d, and V.
Circles: Plot of optimum V (d,) vs d,, corresponding to
ax2/oVy(dy, Vo) = 0. Triangles: Plot of optimum d (V)
vs V;, corresponding to 3x2/adl(d_,_, Vo) = 0. See text and
Eq. (5.21). :

Unless otherwise stated, numerical values of R,
and R, in tables and figures to follow were obtained
using Eq. (5.5) for each individual pair of experi-
mental and calculated spectra. Values of w so ob-
tained varied by almost a factor of three over the
different spectra, due in part to the dependence of
fIcalC(E) dE on the parameters of the calculation,
particularly d,, and in part to experimental uncer-
tainties in the relative scale factors of spectra for
different beams and different angles of incidence.
To the best of our knowledge, spectrum by spec-
trum normalization of scale factors, as described
above, has been used in all previous 7 factor an-
alyses of LEED intensities. Although in the pres-
ent case, the variation in scale factor did not ap-
pear to seriously affect the determination of op-
timum parameter values, it clearly leads to a
risk of biasing the optimization procedure. Ac-
cordingly, in a more rigorous analysis based on
minimization of x2, we have used a single, con-
stant scale factor. It was found that an average

TABLE 1. Optimum values of d, and V; from Xx? analy-
sis.

dy (R) v, (eV)
2.289+0,0092 5,420,572
2.297+0.008" 5.30+0,93P
2.279+0,008° 5.73+0.53¢
2.285+0.0101 5.83+0,584

2 Using (x2) and constant scale factor .

b Using R, and constant scale factor w.

© Using (X% with individual beam scale factors w.
4 Using R, with individual beam scale factors w.
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TABLE II. Optimization of d, and V, for different V;
and @p. :

- Vim (€V)  @p (°K) d;_(A) Vo (eV) R min
2.5 260 2.292+0.011 6.66+0.,51 0.2086
3.5 250 2.287+0.010 6.50+0.47 0.1706
5.0 260 2.285+0,010 5.83+0.58 0.1612
6.5 260 2.289+0,011 5.89+0.61 0.1760
7.5 260 2.287+0.,010 5.71+0.70 0.1904

(Plot of Ry min V8 Vim gives Vip (opt)=5.18+0.42 eV)

5.0 200 2.285+0.011 6.08+0.56 0.2000
5.0 216 2.285+0.010 6,13+0.53 0.1819
5.0 230 2.285+0.010 6.16+0.52 0.1724
5.0 260 2.285+0.010 5.83+0.58 0.1612
5.0 - 300 2.286+0.010 6.23+0.50 0.1600
5.0 350 2.287+0.010 6.24+0.51 0.1624

(Plot of Ry min. Vs ®p gives @p (opt)= 302 %16 °K).

scale factor defined by
W={wpy) , / (5.6)

i.e., the average value of w of Eq. (5.5) over all the
diffracted beams, was independent of the param-
eters of I, (E) to within a few percent over a wide
range of parameter values so that a single constant
value of w could be used without biasing the op-
timization of the parameter values. We note that a
similar beam average of a scale factor designed to
minimize ax%/ow, i.e.,

_ S Uoot (Bl (B)] dE
[T e (B)]? dE

w (5.7

was found to depend more strongly on the parame-
ters of I (E), leading to our choice of the defi-
nitions of Eqs. (5.5) and (5.6).

Numerical calculations of x*, R,, and R, as de-
fined above were carried out by trapezoidal-rule
integration on an energy grid of 2 eV, after inter-
polation of the spectra. The calculated spectra
were initially on a grid of 0.3 Ry (4.08 eV), and
the experimental spectra on a nonuniform grid of
=1 eV. .

In addition to x?, R,, and R, values for individual

pairs of spectra, average values were calculated
for sets of difracted beams via the following defi-
nitions,

(x2>(ﬁ)=% ; X (5.8)

where b is the number of (k2) beams in a set and
# the average over the set of the number of data
points n,, per beam used in approximating the
integrals of Eqs. (5.1)—-(5.5), and

1
R, ,== 2 nuRy . (5.9)
nb 45 .

Equation (5.8) corresponds to an unweighted aver-
age over the beams of the set, whereas Eq. (5.9)
corresponds to an average weighted by the energy
ranges of comparison of the individual pairs of
spectra. If the mean-square experimental inten-
sities (I}, (E)) of the different beams of the set
were the same, and if a constant scale factor w
were used, then (x®» and R, would be related by

R,=(x*)/mw*(1%(E)) . (5.10)

B. Influence of structural and nonstructural
parameters on the fit between experiment and
theory

In this section, we demonstrate the relative im-
portance of structural variables (d,) and nonstruc-
tural variables (V,, Vi,, and €,), and the influence
of the accuracy of description of the scattering
potential on the R factors defined in the previous
section,

Inspection of R, and R, values calculated for a
range of parameter values for the set of (k)
beams at normal incidence suggested that the op-
timum parameter values were close to d, =2,265
A (bulk value), V,=17.0 eV, Vi, =5.0 eV, and ©)
=260°K. The calculated intensity spectra shown
in the figures in the Appendix are in fact based on
these “near-optimum” values. Refinement of
these values, taking into account correlation be-
tween the variables, is described in following sec-
tions. ‘

TABLE III. Optimization of d, and V, using x? for individual beams at normal incidence.

Beam Energy range (eV) d, () vV, (eV)
(10) 64278 2.275+0.006 5.76+0.31
[§5)) 66—-278 2.308+0.012 4.59+0.60
(27) 144-2178 2.323+0.009 5.84 40,42
(20) 184-278 2.343+0,011 5.91+0.56
(22) 184-278 no well-defined minimum

Unweighted mean values 2.313+0.057 5.53+0.56
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TABLE 1V. R, factors for individual beams. The numbers in parentheses give the energy ranges of comparison in

eV,
M (00) (10) (11) (01) (17 (11) (12) (2T) (20) (22) 02) (22)
0.39 0.38 0.22 0.24 0.42
0° = (10) =(11) =(21) =(20) =(22)
(214) (212) (134) (94) (94)
0.41 0.37 0.32 0.52 0.43 0.51 0.73 0.37 0.53
+4°
(218)  (48) (206) (202) (204)  (104) (62) (134) (126)
0.38 0.32 0.39 0.51 0.61 0,51 0.48 0.56
—4°
(218)  (206) (120) (198)  (110) (150) (58) (128)
oe 0.37 0.40 0.41 0.40 0.5Q 0.27 6.51
(218)  (198) (134) (170) (96) (112) (156)
0.34 0.28 0.25 0.46 0.72 0.41 0.39
~10° .
(218)  (182) (156) (152)  (98) (66) (160)
0.49 0.30 0.34 0.27 0.34 0.29
+16°
(218)  (210) (120) (46) (120) (78)
0.49 0.30 0.19 0.36 0.25 0.27 0.51
-16°
(214) (100) (132) (218) (78) ' (30) (120).

The variation of R, with d, for fixed, near-
optimum values of the remaining variables is
shown in Fig. 3. The figure includes plots based
on calculations using a total of four, six, and ten
phase shifts, respectively. As shown in the fig-
ure, each curve has a minimum in the vicinity of
the bulk value of d, =2.265 A. However, subsidi-
ary minima are also present in the region 2,7-
2.9 A. These spurious minima presumably corre-
spond to the “multiple coincidences” noted by
Andersson and Pendry'® in visual compirisons of
experimental and calculated spectra.

We note that for the most accurate calculations,
involving the use of ten phase shifts, the minimum
near d, = 2.265 A is clearly dominant, but that
discrimination between “real” and “spurious”
minima becomes increasingly less certain as the
accuracy of description of the scattering potential
is decreased. A shift in the minimum to higher
values of d, can also be seen in the plots.

The effect of the calculational accuracy with re-
spect to the scattering potential is further demon-
strated in Fig. 4, where R, is plotted versus total
number of phase shifts. The variation in R, shown
in the figure suggests that convergence in the R,
factor has been almost reached at ten phase shifts,
and that the results at eight phase shifts are not
far from convergence. These results can be seen
to be consistent with the dependence of the accura-

cy of the scattering potential on the number of
phase shifts, as shown in Fig. 2.

We note that calculations carried out using eight
“quasirelativistic” phase shifts produced quite
significant changes in spectral line shapes but only
a small improvement in the overall agreement,
yielding a value of R,=0.175, as compared to the
value of R,=0.180 obtained using eight nonrela-
tivistic phase shifts and R,=0.163 using ten nonrel-
ativistic phase shifts.

The dependence of R, on d,, V,, Vin, and ©, is
shown in Figs. 5-8, respectively. In Fig. 5,
plots of R, vs d, are given for several values of
V,, and in Fig. 6, plots of R, vs V,, are shown for
several values of d,. The correlation between
these two variables is evident from Figs. 5 and
6.

The results of Figs. 5—-8 are gathered together
and replotted in Fig. 9. Each curve shows the
variation of R, with a single variable; the remain-
ing variables being fixed at their near-optimum
values. Comparison of the curves of Fig. 9 clearly
shows that the fit between experiment and theory
depends strongly upon the structural variable d,
and relatively weakly on the nonstructural varia-~
bles V,, Vim, and ©,.

C. Refinement of parameter values

In this section, we consider refinement of
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parameter values based on tabulated values of

x? or R,, taking into account correlation between
the variables. In principle, the problem is to find
the global minimum of x® in a hyperspace of # + 1
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FIG. 13." Non-normal incidence spectra. The experi-
mental spectra are shown as solid lines, the calculated
spectra as dashed lines. The 7 factor is the R, factor.

dimensions for » variables. In practice, as dem-
onstrated later, there is no significant dependence
of the optimum values of d, and V, on the values
of Vim and ©,. Thus the problem can be simplified
to finding the minimum of x* as a function of d,
and V, for fixed values of Vi, and ©,.

In recent papers, Mitchell and co-workers'?~!*
have used contour plots of an 7 factor (proposed
by Zanazzi and Jona'®) vs d, and V, to locate the
global minimum and hence best values of d, and
V,; the contour plots being constructed by inter-
polation between tabulated values.

The approach that we have taken is similar to
that followed by the above authors, except that by
use of x* as defined in Eqgs. (5.1) and (5.8), and by
use of a constant scale factor w as defined by

'Egs. (5.5) and (5.6), we consider that our approach

is more correctly based on least-squares minimi-
zation, In particular, we are able to adopt the
usual procedures for analysis of errors used in
nonlinear minimization problems. In addition, we
have designed an automatic search procedure us-
ing tabulated values of x* which avoids explicit
construction of contour plots.

Our procedure involves the basic assumption,
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which is shown to be justified for the present data
set, that in the vicinity of the minimum of the y?
plot, x2 can be expanded in a Taylor series in the
parameters d, and V, in which second~ and higher-
order terms can be neglected. To simplify the no-
tation, we make the substitutions:

z2=x% x=d,, y=V,. (5.11)

Then the Taylor series is to first order:
0z 0z
z(x+u, y+v)=2(x,y)+u ox (x,9)+v 9y (x,¥). (56.12)

Following the method of least squares, the opti-
mum values for the increments are # =x, —x and
v=Y,-9, for which the function z is at a minimum,
with coordinates z,, x,, ¥,. Differentiation of Eq.
(5.12) with respect to x and y then leads to the
least-squares normal equations, which can be
written in matrix form as

(az/ax _ [ 9% /ox? azz/axay)(x -,
0z /0y 8% /oxdy 8% /0y% J\y -y, /"’
or compactly as

(5.13)

Inversion of Eq. (5.13) allows the minimum to be
determined via

g=Ga.

5= ig-cd (5.14)

where the error matrix € =G™* .

Within the above assumptions concerning trunca-
tion of the Taylor series, implicity involving a
linearization of I..c (E) as a function of d, and V,
the standard deviations of x, and ¥, can be shown®
to be given by

2
X

0F = €,,2,/7, 0 (5.15)

0 = E2220/ n,
where # is the number of data points used in form-
ing %, with each data point equally weighted.

A convenient procedure for determination of x,
Yoy 02 and of,o, which avoids numerical calcula-
tion of first and second derivatives of xZ, is to
take advantage of the equivalence® between the
first-order Taylor expansion and a parabolic
representation of x? in terms of d, and V.

In the absence of correlation between d, and
Vo, i.e., 822/0x0y =0, the x® plot in the above ap-
proximation is an elliptic paraboloid with elliptic
axes along d, and V,, i.e.,

clz —z,)=(x —x0)/a®+(y —=y,)2/b* . (5.16)
In the event of a linear correlation between d,

and V,, i.e., 8%z2/0x8y =cons, which we justify
below, then the paraboloid is rotated by an angle
a about the x axis and is described by

2=20+a,(% =%,)%+a,(Y =3o)?+ 2a,(x —x)(y =¥,) ,

(5.17)
where
_1 (cos®’a sina
“ e\ T, ’
1 [cos’a sin*a
2= E- '—b—z—- + “";2_— ’
a3=%(z‘1? —312—) sina cosa . (5,18)

Differentiation of Eq. (5.17) with respect to x and
Y, and use of Egs. (5.13)-(5.15), leads to

°§0=zo€u/ﬁ =z,a,/| 2(a,a, —a?) 7@ (5.19)

and

0%, =26€0a/M=24a,/ [ 2(a,a, - a2)]7 . (5.20)
Thus by fitting tabulated values of z(x,y), i.e.,
x?(d,,V,), to Eq. (5.17), z,, X4, Yo, qfo, and o
can be determined.

In practice, starting from a matrix of tabulated
z(x,y) values, we have found that the safest pro-
cedure to ensure the validity of the parabolic ex-
pansion of x? is to fit a parabola according to Eq.
(5.17) to each row and column of the matrix, i.e.,
z vs x for constant y or vice versa. If a given
row or column does not contain a fabulated min-
imum, then the calculation is bypassed. Other-
wise, vectors of z,(¥) and z,(x) are assembled
from the minima of the parabolas.

Setting the first derivatives of z from Eq. (5.17)
equal to zero yields

xo(y) _xo= -a3(y _yo)/a]_

and

Vo) =Vo= = aylx —x)/a, . (5.21)

Substitution in Eq. (5.17) yields

z‘a: /dvy=0 =20(y)=z0+ (y "yo)z/zezz

and

2| ge/0y=0=20(%) =2+ (X =%,)%/2¢,, .

If the vectors of z,(y) and z,(x) contain minima as
functions of ¥ and x, respectively, then they are
fitted to Eq. (5.22) to finally determine x,, ¥,,

0, and o} .
Finally, we note that an alternative procedure
to find x,, ¥, is to plot y vs x,(¥), and y,(x) vs x.
According to Eq. (5.21), this should yield two
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straight lines, which intersect at y,,x,. Such a
plot is given in Fig. 10 and demonstrates the val-
idity of the assumed linear correlation of d,

and V, in the region of the global minimum of the
xZ plot.

The results of applying the above analysis to
{x?){d,, V) values calculated for the comparison
with the five (#k) experimental intensity spectra
at normal incidence are shown in Table I. Also
included in the table are optimum parameter val-
ues derived using R, in place of (x?), and values
derived using (x*) and R,, in which the scale fac-
tor w was not constant but evaluated for each spec-
tral comparison via Eq. (5.5). As can be seen
from the table, the results in the last three rows
do not in fact differ significantly from those in
the first row, for which (x?) with constant # was
used, although only the latter is strictly justi-
fiable.

D. Influence of ¥V, and ©)

In Sec. VC, the determination of optimum values
of d, and V, assumed them to be uncorrelated with
the values of Vi, and ©,. This assumption was
verified by repeating the analysis for different
values of Vin and ©,, with results shown in Table
II.
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FIG. 14. Same as Fig. 13.

Since the intensity calculations for values of Vi,
and ©, other than 5.0 eV and 260°K, respectively,
had not been saved at this stage of the work, the
analysis was carried out using previously calcu-
lated values of R, for the normal incidence spec~
tra, in which individual scale factors w had been
used.

By fitting the minimum R, values (corresponding
to optimum values of d, and V in each case) as
functions of Vin and ©p, optimum values of these
variables were found to be

65=302+16°K, Vin=5.18+0.42 eV.

E. Inclusion of spectra for non-normal incidence

The analysis described in Sec. VC was repeated
using(x3(d.,V,)) values averaged over the complete
data set including both normal and non-normal in-
cidence spectra. A constant weighting factor was
used in forming (y?).

We note that the procedure for taking into ac-
count the correlation between V, and d, is not
strictly applicable in the case of the non-normal
incidence spectra since the calculated intensities
depend on V, due to the refraction of the incident
electron beam on entering the solid. The results
of the analysis, nevertheless, were in good agree-
ment with the previous results for normal inci-

T T T T T

40 -

. N
w107 i (eIO) Iiiam

L i\ A _

VA R=032

20

10

0
30+ -1

x10° f (10) Beam
AB e=-10°
hifl R=028

REFLECTIVITY
N
o
T

(10) Beam
08 g--1p°
x10 R=030
04+

T

1 | 1 N7 1 -
40 80 120 160 200 240 280
ENERGY (eV)

FIG. 15. Same as Fig. 13.
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dence spectra. The optimum values of d, and V,
were found to be

d, =2286+0.012A, V,=7.01x0.53 eV.

F. Average versus individual r factors

The analyses described in Secs. VB-VE in-
volved the use of (x*) and R, factors averaged over
several (#2) beams. We have also investigated the
use of individual diffracted beams in carrying out
parameter determination.

The procedure described in Sec. VC was applied
individually to the five (k%) beams for normal in-
cidence, with results given in Table IIL

There are two disturbing features of the results
shown in the table. Firstly, the calculated stand-
ard deviations of d, are smaller than the deviation
of the unweighted mean value given in the final row
of the table. Secondly, no well-defined minimum
was found for the (22) beam for physically accept-
able values of V,. We presume that the cause of
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FIG. 16. Same as Fig. 13.

these problems is the occurence of systematic er-
rors, in part associated with determination of the
optimum value of V.

In the case of the (22) beam, a local minimum of
x? was found in the tabulated x* values in the region
of V,=6.0 eV, d, =2.265-2.315 A but the global
minimum was found at a negative value of V,, with
d, = 2,365 A. This appears to be a consequence of
the small energy range of comparison for this
beam and the existence of adjacent peaks in the ex-
perimental spectrum (see Fig. 12), which leads to
multiple possibilities of matching with calculated
spectra via a translation along the energy axis.

We believe that similar, but less drastic, ef-
fects may be responsible for the spread in op-
timum parameter values for the remaining beams
of the set and note that Mitchell and co~work-
ers'?" ! have also observed pathological behavior
in 7 factor plots for individual beams, associated
with variation in V.

It seems likely to us that in the case of 7 factors
averaged over several beams, as used in pre-
vious sections, the possibility of systematic er-
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FIG. 17. Same as Fig. 13.
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rors in choice of V is reduced, since a larger
number of spectral peaks must be simultaneously
brought into coincidence, and this argues strongly
in favor of using such averages.

VI. DISCUSSION
A. The use of r factors in LEED

The use of quantitative procedures for compari-
son of experiment and theory, as pioneered by
Jona® '° and others® "¢ is an idea whose time
was clearly overdue. We have shown in this paper
that simple measures of the variance of the fit
between experimental and calculated intensity
spectra are quite adequate for determination of
optimum parameter values and have a potential
advantage over alternative definitions in that a
least-squares analysis of errors can be made.
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FIG. 18. Same as Fig. 13.

We emphasize that the reliability of the reliability
indices is clearly greater when an average over
several (z2) beams is used.

An additional potential advantage of the use of
7 factors in LEED analyses, as stressed by
Zanazzi and Jona,'° is their usefulness in assess-
ing the reliability of different structure determi-
nations. In this respect, however, it seems evi-
dent to us that an absolute 7 factor scale to take
into account all the factors that may differ from
one structure determination to the next can only
be defined in a rather arbitrary manner. The
problem lies in the difficulty in quantifying the
information content of a collection of LEED data.
For example, hypothetical LEED intensities
measured for the (111) planes of platinum and
nickel for the same number of beams and energy
ranges could be argued to have different informa-
tion contents in the sense that the larger layer
spacing in the case of platinum should result in a
more dense distribution of peaks along the energy
axis of the spectra, but it is not obvious that such
a difference can be assigned a meaningful numer-
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ical value.

In view of such difficulties, we doubt the use-
fulness of reduced 7 factors designed to account
for different numbers of beams, energy ranges,
etc. In the respect, we consider that the simple
R, factors defined in Egs. (5.2) and (5.9) are
adequate to enable a rough judgment of the reli-
ability of a structure determination to be made.
In the case where the R, factors are calculated
with scale factors w defined by Eq. (5.5), they
they are bounded by zero and two for the cases
of perfectly correlated and perfectly anticorre-
lated pairs of spectra. The average R, factor
for the normal incidence spectra shown in the
Appendix is 0.34, and the average over the entire
set of spectra is 0.40. The corresponding num-
bers when a single scale factor w is used are
0.43 and 0.52 respectively. We have not (inten-
tionally) investigated the range of values for
randomly correlated spectra, but various mis-
taken comparisons and a plot of R, vs d, similar
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FIG. 20. Same as Fig. 13.

to that shown for R, in Fig. 3 suggest the range
to be R, =0.7-1.0.

B. Accuracy of structure determination

We believe that the level of agreement between
experimental and calculated intensity spectra
achieved here for Pt(111) is close to the current
state of the art of LEED analyses for high-z
elements. It is a fact, nevertheless, that the R,
factor of 0.34 for the normal incidence spectra,
for which the most accurate calculations were
possible, compares unfavorably with R, factors
of 0.1 or less typically achieved in x-ray cry-
stallography.
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FIG. 21. Same as Fig. 13.



It seems unlikely in view of the determined
variations in 7 factors with the model parame-
ters that the level of agreement is limited by
choice of optimum parameter values. The rel-
ative insensitivity of the agreement to the values
of the nonstructural parameters V,, Vin, and ©,
suggests that inclusion of an energy dependence
of V, and Vi, and a layer dependence of © , would
not significantly improve the agreement, although
such dependencies have not been investigated in
the present work. The results of Fig. 4 suggest
that failure to include enough phase shifts in
representing ion-core scattering cannot be the
limiting factor in the level of agreement. Sim-
ilarly, the relatively small overall improvement
produced by use of “quasirelativistic” phase
shifts would seem to rule out relativistic effects
as being the determining factor.

As far as the calculations are concerned, we
are forced to presume that the ion-core potential
itself is the dominant source of error. The most
likely source of experimental error is probably
the inability to prepare perfectly planar and de-
fect-free surfaces. However, the magnitude of the
errors resulting from these causes is impossible
to determine, and in any event unlikely to be
diminished in the near future.

Whatever the origin of the remaining discrepancy
between experiment and theory, it would be desir-
able to have a clearer understanding of its conse-
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FIG. 22, Same as Fig. 13.
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quences for the accuracy of structure determina-
tion via LEED than seems to be currently possible.
In Sec. V, we presented an analysis of intensity
spectra for five diffracted beams at normal in-
cidence for Pt(111), which yielded a value of d,
=2.29+0,01 A. Having reached this conclusion,
based on accepted methods of least-squares min-
imization, it must be recognized that the estimate
of the error is probably too small. In particular,
the results for the individual diffracted beams, as
discussed in Sec. VF, suggest that systematic
errors may be five or six times larger than the
determined standard deviation of d,.

In the analysis as described, the error is de-
termined by the curvature of the x® plot at the
minimum. In view of the fact that such plots may
contain additional local minima (see Fig. 3), the
question of accuracy should perhaps include con-
sideration of the ability to resolve the true mini-
mum and be judged perhaps by the half-width of the

T T T T T
(10)Beam ©=0°

d,=2.165~R =064 'r\

(10)Beam ©=0°
- dy=2.265-R=040 ]’\l 4

REFLECTIVITY (ARBITRARY UNITS)

0
(10)Beam ©=0°
B d,=2315~R=071 h
f
0 I 1 \ \
40 80 120 160 200 240 280

ENERGY (eV!

FIG. 23. Experimental intensity spectrum (solid line)
for the (10) beam at normal incidence compared to cal-
culated spectra for three values of d;,. The r factor is
the Ry factor.
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global minimum,. If this more conservative defi-
nition of the accuracy were adopted, the results
of Fig. 2 would suggest an error in d, of about
+0.1A.

C. Nonstructural parameter values

Analysis of the fit between experimental and cal-
culated intensity spectra for normal incidence,
as described in Sec. V, leads to optimum values
for the nonstructural variables of V,=5.4+ 0.6
eV, Vimn =5.2+0.4 eV and ©,=302+ 16°K.

It is evident that the relative insensitivity of
the fit to the values of the nonstructural variables
(Fig. 9) leads to greater error in determination
of optimum values than is the case for the struc-
tural variable d,. The nominal errors quoted
above are probably too small due to systematic
errors associated partly with the lack of inclusion
of the energy dependencies of V; and Vim, and the
layer dependence of ©,.
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APPENDIX
A summary of the comparison between experi-~
mental and calculated intensity spectra for Pt(111)
is given in Table IV. The calculated spectra were
obtained using “near-optimum” parameter values
of

d, =2.265 A (bulk value), V,=17.0eV,
Vim =5.0 eV, ©,=260°K.

These values are to be compared with the “op-
timum” values determined as described in Sec.
V to be

d, =2.29+0,01 A, V;=5.42%0.57 eV,

Vin=5.18 £ 0.42 eV, ©,=302x 16°K.

The R, factors in Figs. 11-23 and Table IV were
calculated via Eq. (5.2), using individual scale
factors w given by Eq. (5.5).

Normal-incidence intensity spectra are shown
in Figs. 11 and 12, Nonnormal incidence spectra
are shown in Figs. 13-22, Finally, in Fig. 23
an experimental intensity spectrum for the (10)
beam at normal incidence is compared to calcu-
lated spectra for three values of d,, to illustrate
the sensitivity of the agreement to this parame-
ter.

In Figs. 11 to 23 the experimental spectra are
shown as solid lines, and the calculated spectra
as dashed lines. The » factor given on each figure
is the R, factor.
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