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Charge-ordered ground state of a half-filled Hubbard
model with strong intra-atomic attraction
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With a canonical transformation, the antiferromagnetic ground state and the electron-hole ex-
citation energy gap of the conventional Hubbard model are transferred to describe the charge-
ordered ground state and the similar excitation energy of a half-filled Hubbard model with neg-

ative U. The band-structure effect is also considered.

Since Little suggested the possibility of supercon-
ductivity in one-dimensional organic chains, the
problem of ordering in one-dimensional metallic
chains has been discussed extensively. The central
theme of the investigations is the role of an attractive
on-site interaction, which can be derived from the
coupling between the electrons and molecular vibra-
tions or electronic excited states. ' ' Two models
have been considered: an extensio'n of the Luttinger
or Tomonaga model has been studied by many au-
thors' ', and a modified Hubbard model by the oth-
ers." " %hile the forn1er is mostly restricted to
the one-dimensional systems, the latter can be easily
generalized to the. cases of three dimensions. Furth-
ermore, the Hubbard model with attractive intra-
atomic interaction has been used by Anderson' and
Street and Mott' to interpret the electrical and opti-
cal properties of amorphous semiconductors. In or-
dered systems, mean-field approximation" and solu-
tion derived from the functional integral method
yield charge-ordered state solutions for such case.
On the other hand, Brouers'0 has shown the absence
of the charge-ordered solution in. the Hubbard-III
Green's-function decoupling scheme (see Ref. 21).

For the attractive Hubbard model

0= Xr;,a; a& + Lr gn, tn;t

Wth U & 0, Shiba' has pointed out that at the
strong-coupling limit

~ U~ )) r~ the ground state of a
ha/f-filled band corresponds to a charge-density wave
with every second site doubly occupied. The charge-
ordercd state was explored further by Emery" by ele-
mentary degenerate perturbation theory. In this
short note we wi'1 use the symmetry of thc Hubbard
Hamiltonian under U —U plus an appropriate

canonical transformation to show that the transition
from the charge-ordered to the disordered states can
be obtained simply from the transition between the
antiferromagnetic and the paramagnetic states of the
conventional Hubbard model with U )0. Such tran-
sition was derived earlier with the Gutzwiller
scheme. '2 2'

Let us briefly outline thc Gutzwillcr treatment on
the antiferromagnetic-paramagnetic transition in the
conventional Hubbard model with U & 0 and a half-
filled band. 23 Following Slater's suggestion of sublat-
tices with split subbands, we separate the lattice of
L sites into two interpenetrating sublattices L (l) and
L (i). The number of electrons with up-spins and
down-spins are equal, namely, N(l) =W(l)
= L/2 = W/2. We also split each Brillouin zone into
an inner and an outer subzone of equal volume, and
so each energy band into two subbands. For con-.

venience, we will call the inner (or the outer)
subzone of the first Brillouin zone the first (or the
second) magnetic zone, and the corresponding split
subband the lower (or the upper) subband.

For each k vector in the first magneitc zone E we
define two sets of single-particle creation operators
dkg and dk~ as

g X eikgat +~ $ eIkgat

g eL(~) g eL(-~)

r

dk~ = sq (k X e'"ga—
g + X e'"gag, (3)

g EL(cr) g 6L(-cr)

where ag~ creates a 0--spin electron in the VAnnier
state localized at site g. Sk is a normalization con-
stant and (k is a variational parameter to be deter-
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mined later. The operators dk and dk are associat-
ed, respectively, to the states in the lower and the
upper subbands.

To construct the trial function for the ground state,
we must specify the occupied states in both the lower
and the upper subbands. Let X (or I' ) be a set of
y (tr) N k vectors in the second (or the first) magnet-
ic zone such that the corresponding Bloch states in
the upper (or the lower) subband are occupied (or
unoccupied) by o.-spin electrons. The set k vectors
in the first magnetic zone which specifies the set of
Bloch states in the lower subband occupied by 0--spin

electrons is then labeled as E(I' ). If we define the
Gutzwiller projection operator '

~ = g [1-(1-()ng, ng,],
where g is a'v'ariational parameter, the trial function
can be expressed as

cr k~2 k~K(I' )

For a most general mathematical treatment, one
should choose X and I' so as to minimize the ener-
gy. However, to be mathematically tractable, almost
all authors assumed X and I" as null set. In other
words, they assumed that the first magnetic zone (E)
boundary coincides with the Fermi surface.
Although the variations of X and I are considered
in the Gutwiller treatment, ' to avoid further compli-
cation in mathematical manipulation, it has been as-
sumed the the number of k vectors in X (and I ) is
small compared to the total number of electrons.

/

The calculation of the energy
E = (4'~H)'I)/(V~%') consists of two steps. The
step is to use the quasichemical approximation ' to
calculate the energy E for given X I, {(k), and g,
and then minimize E with respect to these parame-
ters. From Eq. (4) it is clear that the variation of g
optimizes the number of doubly occupied atoms

v=(+I gn, tn«lq)/(+I+) .
g

It has been shown" "that v decreases monotonically
to zero as U/W, where %is the bare bandwidth, in-

creases to a critical value (U/ W),. For a correct
treatment, 22 v can be small but never vanishes.
The reason for v =0 if U/ W ~ (U/ W), is entirely
due to the quasichemical approximation. Also as a
result of the quasichemical approximation, the depen-
dence of E on X and I is drastically simplified. Let

. y =y(]) + y([) and e(k) be the bare band energy. If
we define the average energy of the yW bare-
electron-hole pairs as

E„(X.r.) = -'
X g .(k) —X .(k), (6)
0' kGX kEI'

then E depends on X and -I only through
Eso(X I' ) and y(a).

It was first pointed out by Brinkman and Rice'
that v 0 indicates the metal-nonmetal transition.
To illustrate the physical properties of the half-filled
Hubbard Hamiltonian in the strong correlation re-
gime, let us rewrite the Hamiltonian Eq. (1)

H=Hp+H

and

Ho= gt;, [n; ~a~~at n, +(1 —n; )a, a, (1 —n, )]+—$[n;tn;t+(I —n;t)(1 —n;t)]

Hf X tfJ [(1—n; ) a; a, nj + n; a; a, (1 —n, )]

Here we have introduced the spin dependence in t~

for the convenience of future discussion, though it is
clear that t;, = t;, . In rewriting Eq. (8) we have used
the condition W= L, namely, one electron per atom.

The electron hopping processes in Hp do not alter
the number of doubly occupied atoms, while each
hopping in H~ changes the number of double occu-
pancies by one. One characteristic feature of the
ground state 'P in the Gutzwiller variational method
is that the probability P(p, ) of having p, doubly occu-
pied atoms in Ii' is a hypergeometric function of p,

highly peaked at the optimum value vp of double oc-
cupancies. ' Consequently, one can approximate

v= &q'IXn, tn, tl+)/&qI+& =vo .

However, we must point out that 4 still contains
configurations with numbers of double occupancies
JM, & vp, although the occupation probabilities of such
configurations are extremely small. In the following
second step of calculating E, we will improve the
result with respect to this aspect.

For a strongly correlated metal, the dominating
contribution of electron hoppings to the total energy
E is from Hp, while H~ can be treated as a second-
order process. It is not so for the special case of
half-filled band with U/Ik'» (U/8'), where the
quasichemical approximation yields op =0, but
actually

.=(e) Xn„n„)q)/(e)q)~0 .
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In this case we can consider Hp as the unperturbed
Hamiltonian and H~ the perturbation. It is clear that
the eigenstates of Hp are characterized by the
number of double occupancies being 0, 1, 2,
with no doubly occupied atom for the ground state.
The hopping terms in Hp thus contribute nothing to
the ground-state energy of Hp Since H~ changes the
number of double occupancies by one, the perturba-
tion correction in energy starts from the second or-
der. It is easy to see that such second-order

- processes provide an antiferromagnetic coupling
between the unpaired spins localized on different
atoms. As the intermediate state of the second-order
process contains one doubly occupied atom, to the
first-order correction in the wave function, it has
been found that

(+I X n, in, l I +)/(q'I q')

0.05 0,04 0.03 0.02 0.01 0

FIG. 1. The charge-ordered state for large ~ U~ is separat-
ed from the disordered state for small

~ U~ by a surface
across which a first-order transition occurs. y and Egp
measure the band-structure effect.

is nonzero for the ground state of H. '
%e therefore conclude that the quasichemical ap-

proximation treats H] incorrectly not only for
U/ W ~ ( U/ W) „butalso for U/ W ( ( U/ W), and

, very close to (U/ W), . For the latter, the number of
doubly occupied atoms (or of holes) is small and the
number of nearest-neighbor pairs of unpaired spins
in large. . Hence, the net contribution from the first-
order hoppings due to Hp and from the second-order
hoppings due to H~ to the energy E are equally im-
portant. An improved energy calculation with more
careful treatment of Hj than the original quasichemi-
cal approximation was carried out in Ref. 23. Let us
redefine E as the so-obtained energy including both
the first- and the second-order hopping processes.
This is the energy which should be minimized with
respect to y(o-), Esa, ((k], and g. However, the
minimization with respect to y(cr) and Ess requires
the detailed bare band structure. Without such infor-
mation, parabolic density of states with nearest-
neighbor hopping t was used in the actual calculation,

while y(t) = y(]) = —,y and Ese were treated as vary-

ing parameters. "' Let e «0 be the average bare
barid energy per electron. For simple cubic structure,
the antiferromagnetic-paramagnetic transition is
shown in Fig. 1 (reproduced from the Fig. 4 of Ref.
23), provided that oi, charge-ordered and disordered
are replaced, respectively, by e, antiferromagnetic and
paramagnetic. For given values of Esp/ Wand y, the
ground state becomes antiferromagnetic when the
intra-atomic Coulomb repulsion reaches a critical
value.

Now we consider the Hubbard Hamiltonian with
negative U. Let us first define 7 Jt = t„"t= t;, ,
7j J tj~) tj and the canonical transformation

b;t =a;t, bi, =a;t~

If we further define mI =bI~ b&, then we can
transform the Hubbard Hamiltonian with U &0 to

H =H ——U=Hp+H
2

where

and

Hp= QTs [m; b, b~ m& +(1 —m; )b; b; (1 —mj )] + $ [m tm;t+(1 —m l)(1 —m l)]
IJ 0' I

Ht = gr;, [(1—m; )b; bj m, +m; b;t bj (1 —
m& )]

(12)

(13)

This Hamiltonian has exactly the same structure as
the previous one defined by Eqs. (7)—(9). The
down-spin holes for U & 0 then play the roles of
the down-spin electrons for U & 0. As a conse-
quence, the antiferromagnetic ground state for U & 0
corresponds to the charge-ordered ground state for
U & 0 with every second site doubly occupied. Since
r &t

= ttjt, it is convenient t—o define ta(k) as the bare

band energy for up-spin electrons and —ta(k) as the
bare band energy for down-spin holes. We can then
define ~ as the average bare band energy for up-spin
electrons and down-spin holes, and similarly define
Esp in terms of ta(k). The transition between the
charge-ordered and the disordered ground states is
simply obtained from the corresponding transition for
U & 0, as illustrated by Fig 1.
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For the case of U & 0, the electron-hole excitation
energy of a stable antiferromagnetic ground state has
been calculated in Ref. 23. Depending on the confi-
guration of the final state, there are two types of ex-
citations. In the %annier representation, an
electron-hole excitation can be described as a ~-spin
electron hops from the singly occupied ith site to a
nearest- neighbor jth site which is already occupied
by a —o-spin electron. An empty ith site and a dou-
bly occupied jth site are then created, leaving the
system in a conducting state. %'e call this the
"frozen" final state and the corresponding excitation
energy AF measures the Mott-Hubbard gap. Howev-
er, the final state can relax via the hopping of the
—o--spin electron from the jth site to the empty r'th

site. Such "relaxed" final state is just a magnetically
excited state created by double spin flips at both the

, ith and the jth sites simultaneously. Thus the excita-
tion energy b q corresponds to the antiferromagnetic
coupling strength. b F and 4~ are shown in Fig. 2
(reproduced from the Fig.6 of Ref. 23) in the energy
unit of 4(e~, if we replace co by e.

Similar excitations can be defined for the charge-
ordered ground state for U (0, The frozen final
configuration is produced by the split of one doubly
occupied atom into two singly occupied nearest-
neighbor pair. If both electrons hop from one doubly
occupied atom to an empty neareat-neighbor site, we
have the relaxed final state. Therefore, Fig. 2 exhi-
bits such excitation energies in the energy unit of
41~1

To close this short note, we make the following
remarks, First, the Hartree-Fock result of Penn 8 for
the antiferromagnetic ground state for U & 0 can also
be transferred directly to describe the charge-ordered
ground state for U (0 and n =1. Therefore, in
Hartree-Pock approximation the charge-ordered
ground state is stable even with infinitesimal

~ U~, in

contrast to our result with a finite critical value of U.
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Second, although the electron-hole symmetry used
above to transfer the results of U )0 to describe the
case U & 0 breaks down when n &1, the variational
calculation for U (0 and W ~1 is straightforward.
Yet in this case one should also consider the stability
of the charge-ordered state against the superconduct-
ing state.

FIG. 2. Energy gaps for an electron-hole pair excitation in
the charge-ordered state: hF for frozen final configuration
and AR for relaxed final configuration.

'Permanent address.
'W. A. Little, Phys. Rev. A 134, 1416 (1964).
P. Pincus, Solid State Commun. 11, 51 (1972); R. A. Bari,

Phys. Rev. B 9, 4329 (1974),
P. M. Chaikin, A. F. Garito, and A. J. Heeger, Phys, Rev.

B S, 4966 (1972); J. Chem. 58, 2336 (1973).
4A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).
A. Luther and&. J. Emery, Phys. Rev. Lett. 33, 589

(1974).
P. A. Lee, Phys. Rev. Lett. 34, 1247 (1975}.

7H. Gutfreund and R. A. Klemm, Phys. Rev. B 14, 1073
(1976); 1086 (1976).

G. E. Gurgenishvili, A. A. Nersesyan, G. A. Kharadze, and
L. A. Chobanyan, Physica (Utrecht), B 84, 243 (1976).

M. Takahashi, Prog. Theor. Phys, 42, 1098 (1969).

'OH. Shiba Prog. Theor. Phys. 48, 2171 (1972).
"P. Pincus, P. Chaikin and C. F. Coll, III, Solid State Corn-

mun. 12, 1265 (1973).
'2V. J. Emery, Phys. Rev. B 14, 2989 (1976).
' K. B. Efetov and A. I. Larkin, Sov. Phys. JETP 42, 390

{1976).
' M. Fowler, Phys. Rev. B 17, 2989 (1978).
' I. F. Dzyaloshinskii and H. I. Larkin, Sov. Phys. JETP 34,

422 (1972)
~6P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975); J. Phys.

(Paris) 37, C4-339 (1976).
'7R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293

(1975).
S. P. Ionov, V. S. Lubimov, G. V. Ioneva, G. V. Uimin

and E, F. Makasov, Phys. Status Solidi B 72, 51S (1975).



20 CHARGE-ORDERED GROUND STATE OF A HALF-FILLED. . . 4745

G. Ropke, B. Albani, and %. Schiller, Phys. Status Solidi B
69, 45 (1975).
F. Brouers, J. Phys. F 7, L87 (1977).

'J. Hubbard, Proc. R. Soc. Lond. Ser. A 281, 401 (1964).
J. Florencio Jr. and K. A. Chao, Phys. Rev. B 14, 3121
(1976).

23K. A. Chao, Phys. Rev. B 16, 4126 (1977).
24J. C. Slater,„Phys.Rev. 82, 538 (1951).
25For a detailed description of the Gutzwiller- method and

the quasichemical approximation, see M. C. Gutzwiller,

Phys. Rev. Lett. 10, 159 (1963); Phys. Rev. A 1726
(1965); K. A. Chao, Rev. B 4, 4034 (1971);8, 1088
(1973); J. Phys. C 7, 127 (1974); 7, 2269 (1974).

P. W. Anderson, in Solid State Physics, &ol. 14, edited by

F. Seitz and D. Turnbull (Academic, New York, 1963), p.
99.

7W. F. Brinkrnan and T. M. Rice, Phys. Rev. B 2, 4302
(1970).
D. R. Penn, Phys. Rev. 142, 350 (1966).


