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Renormalization-group study of Anderson localization
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A renormalization-group method is used to study localization of electrons in a random sys-

tem, A position-space method yields a localization edge in three dimensions. In two dimen-

sions our results indicate localization even for small randomness in agreement with Abrahams,
Anderson, Licciardello, and Ramakrishnan; however we cannot rule out the existence of a local-

ization edge.

The localization of electrons moving in a random
potential' has attracted considerable attention' ever
since the problem was first posed by Anderson. ' In

-recent years, various authors have attempted to con-
struct a scaling theory of localization, 3 4 and to ad-
dress the issue on the basis of renormalization-group
arguments, ' The latest development was reported by
Abrahams et aI. who presented a scaling theory for
the dimensionless conductance 2tG/e'. They con-
clude that in two dimensions all states are localized;
while in three dimensions a. localization edge is ex-
pected.

Iri what follows we present a renormalization-group
study of the problem; although our results indicate
agreement with the predictions of Abrahams et al. ,

6

we cannot rule out the existence of a localization
edge in two dimensions.

%e consider the Hamiltonian

H -X a; I I ) (I I- X ( li) (i I
+
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where (i,j ) are nearest-neighbor sites of a d-

dimensional hypercubic lattice. The independent,
random site energies ~& are taken from a Gaussian
distribution of width cr and zero average, e.g. ,

(61) =0, (6)aj) ~ (7 Sly

The hopping element was chosen to be t =-1 in Eq.
(1); this choice sets the energy scale, and does not
affect the eigenstates of H, The problem of interest
is whether the eigenstates of Eq. (I), especially those
with energies near the band center, E =0, are local-
ized or extended, For o. -0 ail states are extended,
and for cr o all are localized. The manner in
which the localization length L varies with o depends
on the dimensionality of the system. In three dimen-
sions we find that states at the band center are local-
ized for o- & o„with the localization length L
diverging according to a power law L —( o —0, )
v & I gs cr approaches 0., =7 from above. In two di-
mensions, although we cannot rule out the existence
of such cr„ourresults are consistent with localiza-
tion for all values of cr, with L diverging exponential-

ly for small a, i.e., L —exp ( I/a o ).
Our method uses perturbation theory to map the

Hamiltonian (1) onto a new Hamiltonian, character-
ized by a new width 0 of the random distribution.
The central problem is to establish this mapping, and
to determine how cr scales under the
renormalization-group transformation; namely, to es-
timate the function a'= f(cr) The. main part of this
work utilizes an application of position-space
renormalization-group ideas. This method is expect-
ed to yield reliable results when cr is not too small.

our approach is based on a version of perturbation
theory. ' The Hamiltonian H is written as the sum of
two terms,

H =Ho+Hi . (3)

A certain set of the eigenstates of Ho is included in a
"model space" D. If P is an eigenstate of H with en-
ergy F., the projection of g onto D, denoted
PD =PDQ, satisfies the equation

HDAD -EAD

The operator HD is defined only in the subspace D,
and is given by

HD =HO+ VD

~here ~D is the solution of the operator equation

1—PD
VD H)+H) VDE—Ho

If E, an exact eigenvalue of H, is known, one can„ in
principle, construct VD and by solving Eq. (4) find
the projections of the corresponding eigenstates g
onto the model space D.

For an infinite lattice the spectrum of Eq. (1)
forms a continuum, and we can choose any value of
E near the band center to study the corresponding
eigenstates. A realistic application of perturbation
theory will expand VD and keep terms to some finite
or'der in H& (the present work is based on neglecting
all second- and higher-order terms). This way an
operator Vg""'" is defined, which is used in Eqs. (4)

20 4726 1979 The American Physical Society



20 RENORMALIZATION-GROUP STUDY OF ANDERSON. . . 4727

and (5) instead of VD. Whether such an approxima-
tion yields reasonably good eigenstates PD, depends
on the choice of Hp and the model space D. If Hp is
such that its eigenstates reasonably approximate the
eigenstates of H, low-order truncation of ~D can yield
reasonable results. It is also important to include in
D all eigenstates of Ho with energies close to the en-
ergy E, thereby avoiding small values of the energy
denominator in Eq. (6). When many states with en-

ergy near E are excluded from D, the approximation
of replacing VD by. H], say, is not expected to yield
reliable estimates of PD.

Turning now to the Hamiltonian (1), note that for
large o all eigenstates of Eq. (1) are expected to be
localized. Thus in this regime, it is appropriate to
break the lattice into cells, and include in Hp all ele-
ments of Eq. (1) that connect sites i,j within the same
cell. Hopping elements that connect sites in neighbor-

ing cells are included in H~. This separation of H is
the basis of our position-space method, details of
which are given belo~. The eigenvalues and eigen-
states of Hp are found numerically. To complete the
definition of our procedure, we have to specify how
the model space D is constructed. The choice of
which states are to be included in D, depends on the
energy E whose corresponding eigenstates we wish to
study. If a cell contains b sites, b states per cell are
generated. Of these, we include one from each cell
in D; the state whose energy E is closest to E is
chosen. If a, P stand for the selected cell states, we

obtain, using Vp =H~,

where (a, p) are nearest-neighbor cells, and
t «= (~ IHf )p). In this new Hamiltonian not only
the site energies e are random, but also the hopping
elements t &. %e now follow the spirit of
renormalization-group treatments of random spin
systems, approximating the generated t & distribution
by a simpler one. Two choices were considered. The
first replaces t «by a uniform t,ff. However, one has
to note that the variables t & will be generated with
randomly selected signs. Sign( t «) is determined by
the signs of the cell states ln), IP) that are chosen ar-
bitrarily by the computer. The Hamiltonian (7) is in-

variant under a trivial gauge transformation generat-
ed by flipping the sign of any set of the cell states;
only the frustration of a plaquette of cells has physi-
cal significance. %e investigated various measures of

ff and chose to work with t,« = (I t «I) . Replace-
ment of t «by t,ff in Eq. (7) reduces the randomness
in the Hamiltonian, so that the "true" randomness is
probably larger than what our estimate will yield. On
the other hand, by working only in the model space
D, some channels of possible propagation of the elec-
tron are discarded, thereby increasing the possibility

of localization, which amounts to an effective in-
crease of o.

To put Hf2 in the form given by Eqs. (I) and (2),
we divide Eq. (7) by t,ff , h'owever, we also have to
shift the origin of energy by the average value of ~ .
For general E, (e ) A 0, although for the band center
(E =0) we get (e ) =0. After these manipulations
the state pD satisfies the equation H'pD = E'&D,
where H' has the form (1). The new width o.' of the
random site energy distribution and the new eigen-
value E' are given by

(Sa)

(Sb)

Equations (Sa) and (8b) constitute the recursion rela-
tions of our renormalization-group procedure. It
should also be noted that, for small E the distribution
of the site energies generated by our procedure was
found to be reasonably approximated by a Gaussian
distribution, even when the initial ~; were taken from
a uniform distribution over an interval [—w/2, w/2].
The second approximation of the t & distribution as-
signs to each bond the value t,ff with probability p or

ff with probability 1 —p. The value of p is deter-
mined by requiring that the probability of frustration
of a basic plaquette is the same as that of the actual
t «distribution (for details see below). With this
parametrization the Hamiitonian (1), Eq. (2) is
mapped onto

I

3'- = X ~f I i & (f I
+ X n;, ( I f & (j I + Ij& & f I ),

I (tj&

where e; are distributed according to Eq. (2) and 2ii
according to

p(2tt) =pg(2ift —I) +(I p)S(gi —I) —. (10)

We found that starting with the Hamiltonian (1) (i.e.,
p =1) after a few iterations we map onto p = —,and

this value does not change with further iterations.
For e ——~ all states are localized, and for cr=0 it

has been shown9 that there exists a finite range of
energies near the band center with all states extended
(although the off-diagonal elements are random).
The recursion relations (Sa) and (Sb) are supple-
mented by one for p; however, the line p = —, was

found to be invariant, and therefore on this only Eqs.
(8a) and (Sb) are needed.

Since for the band-center equation (8b) yields
E =E =0, this line is a trajectory of the
renormalization-group transformation. On this line it
is sufficient to study the recursion relation (Sa), that
yields o =f( o ). An unstable fixed point of this re-
lation corresponds to a critical randomness cr„above
which the system flows to the localized ( fr ~) re-
gime, while for cr & cr, it flows to can=0. For ~ & cr,
the states are localized over a length given by
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L =L«(o —o, ) ", where v=lnb/lnA, with
A = [df( o.)/da], and b is the linear cell size. Sta-

c
bility of this fixed point in the E direction means that
the same exponent characterizes the divergence of
the localization length of all states as the mobility
edge is approached. The mobility edge itself E,( a )
is given by the sepratrix that flows into the fixed
point ( a„0).The recursion relation (8a), for E =0,
was studied extensively in two and three dimensions. .

We worked with cells of 3~ sites ( b =3 ). In 2-D
samples of 900 cells were generated for each 0-., in
three dimensions the sample size was 512. These
cells were arranged in five different ways to form a
30 &&30 (2-D) or 8 &8 X8 (3-D) lattice, that was used
to determine a'. To study the flow of p, for each lat-
tice the fraction of frustrated squares was calculated,
and the new p was fixed to yield the same frustration
probability. The function f(o ) was determined us-

ing both ways of approximating the t & distribution;
for the second approximation E«1. (10) was also used
(with p =

2
) to generate the original random cells.

The results of these procedures are showa in Figs. 1

and 2. In two dimensions we obtain o- & cr for all o.

(except a =0). In three dimensions the numerical
results do indicate a fixed point for a- =7. These
results may be viewed as evidence for the absence of
localization in two dimensions, and presence thereof
in three dimensions. However, this perturbative ap-
proach is certain to break down for small o-. In that
regime the eigenstates are either extended, or local-
ized over a scale much larger than any realistic choice
of b. Moreover, for small o- each cell will contain
more than one state with e =0. Since the number
of these. nearly degenerate states increases when a
large cell is created from b~ small cells, increasing the
number of states that are assigned to D (say, from
one to «hree) will not resolve the problem of degen-
eracy. This, in turn, will cause the perturbation
series for VD to be very slowly convergent. Thus for
small enough o., truncation after first order in H~ is
not expected to yield a good representation of VD.

Therefore we are reluctant to accept the small-cr part
of our curves as valid. However, we do believe that
the results shown in Figs. 1 and 2 represent a good
approximation of f ( a ) for a. ) 1.

In two dimensions, the analysis of Abrahams
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FIG. 1. cr vs cr, in two and three dimensions. Results
based on representing the hopping elements t

& by a uni-

form teff. In two dimensions no fixed point is found, while

in three dimensions we get o., =7.

FIG. 2. a. vs o-, in two and three dimensions. Results
based on hopping elements with random signs I.Eqs. (9) and

(10) with p = 2]. No fixed point in two dimensions; in three
im "' " ~c=
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et al. 6 implies that the randomness is marginal near
the cr =0 fixed point. It can be, however, marginally
stable or marginally unstable, depending on the sign
of the second-order coefficient in the expansion

f(o) =o+a2o'+O(o') .

At this point it seems that we do not have suffi-
cient information to determine the sign of a2 in an
unambiguous manner, since our position-space
method clearly breaks down for low cr. Nevertheless,
since our results in three dimensions do show a fixed
point, we believe that the absence thereof in two di-

mensions can serve as an indication of agreement
with Abrahams et al. In this case, the differential re-
cursion relations obtain from Eq. (12),

dt's

=ao'+O(a')
di

leads to the form L -exp (1/a o ) for the localiza-

tion length L.
In three dimensions the randomness is irrelevant

near the o 0 fixed point, i.e., f( rr) = a~o +0( o')
with a~ & 1. This is indeed consistent with our nu-

merical findings which show a fixed point for cr, = 7.
The statistical error in our present procedure does
not allo~ a precise determination of v, values of
1.25 & v & 1.75 are consistent with the data.

It is difficult to make direct comparison with

results derived by other methods since most ~orkers
use the rectangular site energy distribution of width

w. If, however, we associate with 0- a value of w that
yields the same second moment, i.e., w, = o, (12)'I',
our result could be interpreted as w, =24. Analytic
work by Licciardello and Economu' gave for the
simple cubic lattice the values 62, 32, and 14.5 for

three different criteria of localization, of which they
consider 14.5 the most reliable. They also quote an

upper bound of 24, attributed to numerical analysis
of Schonhammer and Brenig. " Other numerical esti-
mates for «, /Z (where Z is the number of nearest
neighbors on the lattice), evaluated for the diamond
lattice, " '3 yield w, /Z =2.

As to the exponent v, the values reported in the
literature ' correspond to a definition

L —(E —E, ) ", which is different than ours. Most
values for v are in the range 0.6—0.75. Stein and
Krey" estimate v 0.66 +0.05, and although their
definition of v coincides with ours, the numerical
value is not in agreement.

An important question we plan to address in the
future concerns the stability of the E =0 fixed point.
If it is unstable, the exponent v is expected to differ
from our i.

The numerical method presented above can be im-

proved by studying larger cell sizes, and, to a certain
extent, by increasing the number of states assigned to
D from each cell. Inclusion of second- and higher-
order terms in V~ may turn out to be important to
achieve significant improvement.

Recently we received a report by Lee who studied
the 2-D problem by a closely related method, and

does find a localization edge. "
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