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We have calculated the energies of formation for various defects in a two-dimensional elec-
tron lattice. Included are vacancies and interstitials, dislocation pairs, and grain boundaries.
From the results, we have extracted the dislocation core energy, and an approximate formula
for the grain boundary energy as a function of angle. e discuss some possible implications for
melting, and for dynamic processes such as electron diffusion and dislocation migration.

I. INTRODUCTION

There has been considerable interest recently in
two-dimensional classical systems of electrons, and in
particular in the possible formation of a two-
dimensional electron crystal. ' Recent experiments by
Grimes and Adams2 on electrons trapped at the sur-
face of liquid helium found several resonances in the
rf absorption of the system which appeared suddenly
as the system was cooled through a transition tem-
perature T, which lies in the range of a few tenths of
a kelvin for electron densities (n, ) of a few times 10'
electrons/cm'. The experiment has been analyzed by
Fisher, Halperin, and Platzman who show that excel-
lent agreement with the data can be obtained from a
theory which assumes the existence of a triangular
electron lattice at temperatures below T,.

In order to understand the electron system in more
detail, it is important to investigate properties of the
classical two-dimensional electron crystal. Several au-
thors 5 have calculated ground-state energies and
phonon spectra for various electron lattices at zero
temperature. However, in order to understand
finite-temperature static and dynamic properties, it is
also necessary to investigate deviations from a perfect
crystal, i.e., defects. Localized defects (i.e. , vacan-
cies, interstitials, divacancies, etc.) will be present in
finite concentrations at any nonzero temperature and
will be important for dynamical processes in the crys-
tal. Extended defects, (dislocations, grain boun-
daries, etc.) while not present individually at low

temperatures due to their large energies, may
nevertheless play important roles in the melting of
the crystal.

In the present paper, we present the results of nu-
merical calculations of the energies of various defects
in the two-dimensional electron crystal. (A system of
780 electrons with periodic boundary conditions has
been used for the numerical computations. ) We

A. Conventions for energies

We now consider the ground state of the electron
system. To sensibly define energies in a Coulomb
system, a background of positive charge is needed.
(The background is provided by image charges in a
distant metal plate in the case of electrons on heli-
um. ) If we include this positive background, then
the energy of a Bravais lattice of N electrons (and
their associated uniform positive background) is

~here E&, the energy required to remove one elec-
tron and its positive background, is given by

1 e' ~ d'r (1.2)

where IKI are lattice vectors and Ca is the unit cell

briefly discuss the important interactions between
these defects and possible implications of our calcula-
tions on theories of two-dimensional melting and
dynamical processes in the electron solid.

The remainder of this section is devoted to discus-
sion of the ground state and useful conventions for
defining defect energies. In Sec. II below, we com-
pare numerical and elasticity theory calculations for
the energy of a vacancy and also exhibit numerical
results for interstitials„divacancies, and other local-
ized defects. In Sec. III, we present analytical and
numerical results on dislocations, the defects impor-
tant in the Kosterlitz-Thouless-Halperin-Nelson-
Young theory of two-dimensional melting. Section
IV deals with grain boundaries and their analysis as
arrays of dislocations and Sec. V discusses melting
and dynamical processes. Discussion of the numeri-
cal calculation iS contained in the Appendix.
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centered at R with area A, .
Both the sums in Eq. (1.2) are divergent at large R

but their difference is well defined and can be calcu-
lated numerically by Ewald's method for Madelung
sums. The energy Fq has been calculated for various
lattices and it is found that for a given density, the
triangular lattice has the lowest energy of all the Bra-
vais lattices with one electron per unit ce11,4 The
result is

Eg ~ 3.921 %p II' 1gA&

where

(1.3)

(1.4)

is the natural unit for energy which will be used
throughout this paper. For a perfect lattice

1
n, =—

A,

and for the triangular case,

%e rearrange the N electrons to form a lattice with a

defect and define the energy of the defect as the limit
as A ~ (with n, conitant) of the difference
between the energy of the rearranged lattice and a
perfect crystal.

For definiteness let us consider a single vacancy.
In this case the rearranged lattice will have one more
cell than the original lattice. If we neglect the distor-
tion produced by the missing electron, the area of the
new unit cell is given by

~here ap is the lattice spacing.
The energy of a square lattice is

Eg 3.900op,

rather close to that of the triangular lattice, but at
zero temperature it has an unstable shear mode.
However, one cannot rule out the possibility that in
some range of temperatures the square lattice (or
some other) is favored over the triangular lattice by

entropy considerations, We will not discuss this pos-
sibility here and will content ourselves with the ob-
servation that the experiments of Grimes and
Adams2' are very consistent with the assumption of
a triangular lattice at all temperatures below melting,
and restrict ourselves to this case throughout the pa-
per.

We now turn to the question of definition of defect
energies, Let us consider a system with N electrons
(and their compensating positive background) in an
area, A, with density

We now let the lattice relax to its new equilibrium.
The limit as N ~ of the energy of this rearranged
lattice is well defined as long as the density and the
corresponding positive background remain constant.

In the computer calculations, we have not an infin-
ite system but a system with a large but finite block
of particles with periodic boundary conditions. For
comparison with the computer results, we must
therefore calculate not the energy of a single defect
in an infinite system, but the energy per block of a
periodic array of defects in an infinite system. Dis-
cussion of how this is. done is included under each in-
dividual type of defect considered. After correcting
for these "image" defects we can extract the desired
energy of a single defect.

II. VACANCIES, INTERSTITIALS, AND OTHER
LOCALIZF9 DEFECTS

In this section we first calculate the energy of a sin-
gle vacancy in a triangular lattice by a variational
method with several approximations and compare
this to computer calculations. Second, we discuss
similar calculations for other simple defects and final-

ly present computer results for the energies of inter-
stitials and other localized defects.

A. Definition of vacancy energy

It is convenient to calculate energies of vacancies,
etc. , at constant lattice spacing rather than the desired
energy at constant density (as discussed in the Intro-
duction) and then correct for the difference.

Let us consider again for definiteness, the case of
a vacancy in a system of N electrons in area A. If the
computed energy of this system is E, then the defect
energy is

ED =E + —W as ( W/A ) 'i2 (2.1)

and hence the energy at constant lattice spacing is

E 2 = E +—( W + I ) a [(hr + I ) /A ] '~ (2.3)

For large N, we then find that

ED =ED" ——,
'

~gn,'",
This can be generalized for defects which differ from
a perfect lattice by addition of WD (or subtraction of
—ND) electrons to

(2.4)

where the second term is just the negative of the en-
ergy of the perfect crystal with the same number of
particles N. The energy of a perfect crystal with the
same lattice spacing is

(2.2)

ED ED~2~ +—Nae gng'~ (2.5)
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$. Ejasticity theory

Before proceeding with our calculation of the va-

cancy relaxational energy, EvRs it is useful to digress
and revie~ elasticity theory.

If we have an electron crystal with the electrons at
each site displaced slightly from equilibrium, then the
additional potential energy is

1 1

, ~, ix(l)+u(l) —x(l') —u(l')i

1

ix(l) —x(l')i
(2.7)

where the sums run over lattice sites I, and u(l) is
the deviation of the Ith site from its equilibrium posi-
tion.

If the displacements, u, are sma11 with respect to
the lattice spacing, ao, we can expand the energy in

powers of u and obtain

QE = —e~ X II,&( l, l') u, ( l) us( I')
II

(2.8)

where ED ' is the energy calculated at constant lattice
spacing. In this section we will calculate energies at
constant lattice spacing, and then use Eq. (2.5) to
correct the result.

The energy of a vacancy is given by

Ev-Ea+&vR —
4 &a (2.6)

where the first term Es (as defined above) is the en-

ergy required to remove one electron and its positive
background without allowing the lattice to relax, the
second is the-relaxational energy, and the third is the
correction given by Eq. (2.4).

where q is a constant

q =0.245 065 (2.13)

The longitudinal phonon branch has the dispersion
relation

o)1'(q) = cu' — ~q —+ 0(q4),5 8
(2.14)

~here e, is the two-dimensional plasma frequency

2

a) (q) =2m
Nge g

m
(2.15)

(Note the anomalous a& —Wq behavior of this plas-
malike mode. ) The transverse phonon frequency
obeys

. 2( ) 'gq e
(2.16)

%e wish to compare these phonon frequencies with
those for a triangular crystal with short-range forces
obtained from continuum elastic theory.

If u(l) varies slowly with x(l) we can replace the
discrete set u ( I) by a continuous u ( r ), and the
strain energy is given from continuum elastic theory
by

2

4&
)

2m'

The phonon frequencies cu;( q ) of a perfect electron
crystal are given by a&; ( q ) = ( e2n, /m ) h, , where X&

are the eigenvalues of the dynamical matrix II,&( q ).
For small q, 11 &(q) is isotropic because of hexago-
nal symmetry, and we find"

p
II s(q),

~

+A, g(S sq' —6q.qs)+0(q"),
IQ

(2.12)

DC= J d'r ( lApuu s+-,' gu, u&&) (2.17)

II p( l, l ) = X II p( I, I ) (2.9)

where u & is the strain tensor
T.

$Qp gQ~
Pop= — —+-

2 gr Qr~
(2.18)

We can Fourier transform Eq. (2.4) to obtain

, Jt u ( q ) u&( -q ) II s( q ), (2 10)
2 A,2

and p, and ) are the Lame coefficients. Here we
have made use of the hexagonal summetry: there
are only two independent elastic coefficients, and the
triangular crystal behaves like an isotropic medium.
The matrix II is then (for small q)

(sums over repeated indices impUed) where

u (q)=A, Xu (l)e '~ ' "&'&,
I (2.11)

II s(q) ~ ( p, + X) q qs+ pq'5 s,
and the phonon frequencies are

a), (q) = — q
pAg

(2.19)
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transform Eq. (2.25) to obtain

co,'( q) =(2p, +X) 'q' . (2.20) Eva= —', „u (q)us(q)II p(q)

p 2

&=&(g )3i2
(2.21)

but for the longitudinal frequencies we run into trou-
ble. The appearance of a longitudinal sound velocity
in the electron crystal which diverges as q 0 is
equivalent to the observation that the Wigner crystal
is incompressible. It is thus natural to choose an ef-
fective A. which is infinite. In the experiments with
electrons on helium, due to the image charge screen-
ing at long distances (as mentioned in the Introduc-
tion), X assumes a finite value given by

We can thus obtain the elastic moduli for the elec-
tron crystal by comparison of Eqs. (2.15), (2.16), and
(2.20).

From the transverse frequency we find

2

J~ VP(q)u ( —q)

2

V2s(q —k ) u (k)u~( —q )
qadi f

(2.26)
where we can easily obtain Vp ( q ) and Vg& ( q )
«om II s(q) by noting that

V2s (q ) = —,
' V2"" (0)S.a+ II.s(q ), (2.27)

where V2" (0) is a constant which will drop out of
Eq. (2.26) for the energy by symmetry under
q —q, and

V (q)=-I II (q)77

g =4~/ (2.22)
+iq 8A,' q+0(q )

12VFq
(2.28)

where d is the depth of the helium film. However,
this is extremely large ( it/p, & 104), and for the sec-
tions of this paper ~here continuum elasticity theory
is used, we will set

(2.23)

C. Variational calculation of vacancy energy

With the connection with elasticity theory clear, we
now proceed with the calculation of the vacancy re-
laxational energy, using the assumption that the devi-
ations from the perfect lattice sites {u(i) j are small
and reasonably slowly varying.

To second order in u(i), the relaxational energy
for a vacancy at the origin can be obtained by minim-
ization with respect to {u( i) j of

In order to minimize the. energy given by Eq.
(2.26) it is necessary to know II s for all q. Bonsall
and Maradudin have calculated the phonon spectra
for all q, and even away from q =0, it is approximat-
ed reasonably well by a II,@ of the form Eq. (2.12).
We thus, for simplicity use Eq. (2.12) for all q, hop-
ing that integrating over angles in Eq. (2.26) will can-
cei most of our errors. [We have found, in any case,
that adding terms of order q" to Eq. (2.12) does not
affect the variational energy appreciably. ] In addition
we approximate the hexagonal Brillouin zone by a
circle of equal area with radius

ig . (2.29)
g 1/2

With these approximations it is straightforward to
do a variational estimate of EvR. By our assumed
symmetry, u'( q ) must have the form

Eva({u(i))) = —,'e'XII s(ii')u (i)us(i')

—e' X VP(i)u (i)
u (q)=A, ', F(iqi),

and we try

(2.30)

where

VP(i) = x (i)
)x(i)T3

'

(2.25)

3x (l) (x!)s—8 px (i)
ix(i) i'

e' X V;s(i)u. (—i)u, (i)
(2.24)

F(q) =f(l+ciqi+diqi'), (2.31)

with f, c, and d variational parameters.
Before proceeding with the variational calculation it

is instructive to discuss the motivation fo'r choosing
this form for u ( q ).

Because of the long-range Coulomb force between
the electrons, we expect that at long distances u( i)
will be determined by enforcing charge neutrality
within any circle about the origin. This yields,

and II «(i, i ) is given by Eq. (2.9). We Fourier
~, x.(i)
2n [x(i)[' (2.32)
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In Fourier transform, for q 0, this implies

( ) =+'A,
)q

(2.33)

In addition by expanding the variational equation for
u(q) in powers of q one can show that (even includ-

ing higher powers of u ) u is given by Eq. (2.33)
plus corrections of order unity (e.g. , q /~q ~

).
The variational calculation is straightforward and

we find that the minimum energy is

1Ey= 4Eg+EvR (2.37)

is given less accurately by the variational calculation
since it is the difference of two large energies. The
numerica! result for the total vacancy energy is

Ev =0.24ep (2.38)

tions are reasonable. This compares with a maximum
displacement of 0.1Sap from the computer calcula-
tions. The total vacancy energy

EvR = —0.59~p (2.34) A system containing a vacancy is shown in Fig. 1.

f =0.99, c = —0.262 '~2 and d =0.009',

(2.35)

This yields a u ( q ) which is almost independent of
~ tT~ near the zone edge as is expected by periodicity,
and again, as expected f is nearly one.

In order to compare this result for a vacancy in an
infinite system with the computer calculations for
periodic boundary conditions, we assume that the in-

teractions between vacancies in the periodic array are
negligible and hence that we can directly compare the
computer results with the above calculation. This as-
sumption is discussed at the end of this section.

From computer calculations we find that

D. Other localized defects

It is possible in principle to calculate energies of in-
terstitials and other simple local defects by a similar
procedure to that described above for the vacancy.
However, while for the vacancy, V~ and V2~ are ob-
tainable from the phonon spectrum, this will not gen-
erally be the case and the V~ and V2 for interstitials
must be calculated at small q by evaluating many
Ewald sums. In addition, while a vacancy has sixfold
symmetry, [and hence for small q we expect u ( q ) to
be isotropic], interstitials only have three- or twofold
symmetry (see Figs. 2 and 3 ) and hence, u ( q ) is
anisotropic. (Actually, the charge neutrality condi-
tion

EvR —0 73&o (2.36) A, q (2.39)
and hence a 20'to discrepancy between the simple-
minded calculation and the computer result. This
difference is presumably attributable to nonlinearities
and errors caused by the assumption of circular sym-

metry and approximation of the Brillouin zone by a
circle. In this vein, we should note that the max-
imum calculated displacement u is of the order of
0.12ap and hence our assumptions of small distor-

wi11 still apply, and it is only in the next order in q
that anisotropy will appear. ) We will hence proceed
no further in this section with analytical calculations,
and will just quote results from the computer. We
have calculated (in addition to the vacancy already
discussed) the energies of two distinct stable intersti-
tials and a divacancy.

FIG. 1. Vacancy. FIG. 2. Centered interstitial.
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~ ~

~ Oo ~

FIG. 3. Edge interstitial. FIG. 5. Twisted bond.

The centered interstitial, Fig. 2, has energy

Eci =0.15ap, (2.40)

considerably lower than the vacancy energy. It
should be noted that (as might be expected) the lat-
tice distortions are considerably larger for the intersti-
tials than for the vacancy. An at first surprising
result is that the "edge interstitial, " Fig. 3, which
might be expected to be only a saddle point in the
energy, is actually stable with a rather low energy

EE(-0.125ep . (2.41)
The divacancy, Fig. 4 shows a characteristic dipentag-
onal form and has an energy of

EDv 0.25 op (2.42)

and (2.43)

ETT -0.27op,

respectively.

In addition to these vacancies and interstitials, we
here include computations of the energy of two other
small defects which are only "saddle-point" configura-
tions of the energy rather than minima. These are
the "twisted bond" and "twisted triangle" (see Figs. 5

and 6 ) which may play a role in determining rates of
particle exchange at finite temperatures (see Sec. V).
They have energies of

ETg =0.31'

I
J

\

FIG; 4. Divacancy. FIG. 6. Twisted triangle.
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E. Effect of periodic boundary conditions

To rationalize our assumption that the interactions
with the image vacancies, etc. , can be ignored in the
computation with periodic boundary conditions, we
here consider the interaction between two vacancies,
one at the origin and the other at a large distance r.
At large distances from either vacancy the distortion
is small and will be given by the sum of the parts due
to each vacancy

u (q) = ', (1+cq+dq') (1+e'r'~)
q

dislocation in a system of area A has an energy which
diverges as log(A /a02 ) where ao is the lattice spac-
ing. However, in a system with many dislocations,
(1&}, the energy is finite as long as

(3.1)

This condition is analogous to charge neutrality in a
Coulomb system.

For large separations between dislocations, we can
~rite the total energy as the sum of pairwise interac-
tions

The interaction energy is then given by the cross
term of uIIu

E=-,' $ E,'(r, r;, 1,,—b, )+XE,(~,'),
jAJ

(3.2)

E~"„„,~ —e'JI — -[1+O(q) +O(q')]e'&''
q

fakD—e'J dq J (qr) [1+O(q) +O(q')]
0

where the pair interaction E$ is given at separations
r jj r; —

r& large compared to ap by continuum elas-
ticity theory

lrslEo(r J,b;, 1))= —1;.1jln
4m

'
ap

—.e +0—
I'

(2.45)
(1, r~j)(bj r J)

The order q term does not contribute since

q dq Jo(qr) =0 (2.46)
aJ p

and there is an additional energy +e2/r from the
Coulomb interaction between the two missing elec-
trons which exactly cancels the e /r in Eq. (—2.45).
Hence, we find that the total interactioin energy
between two vacancies goes as 1/r' (the same result
as continuum elasticity, theory with finite p, and A.)
and is presumably neghgible for r/a0-30.

The divacancies and interstitials also discussed in
this section, can be considered to be composed of a
pair of dislocations at one or two lattice spacings
separation. In Sec. III it will be sho~n that the total
energy change due to the images goes as ao /L' and
is hence again negligible. In fact, due to higher sym-
metry, the interactions between some of the small
defects (e.g. , vacancies, see above) fall off faster, i.e.,
as 1/rs.

III. DISLOCATIONS

The Kosterlitz-Thouless theory of two-dimensional
melting suggests that dislocations are responsible
for the melting of two-dimensional solids. In this
section we compare theoretical and numerical predic-
tions for the energetics of dislocations.

In two dimensions, dislocations are point defects
(the intersection of dislocation lines in three dimen-
sions with the plane) characterized by a two-
dimensional Burger's vector, b, which is Bravais lat-
tice vector of the tw'o-dimensional lattice. A single

ap+0-
fIJ

(3.3)

and we have lumped all local and nonlinear effects
near the cores of the dislocations into a core energy
E,( [b [') which increases with increasing ]6[. We
shall, in particular, be interested in dislocations with
minimal Burger's vectors

~
1

~

= ao and for simplicity
denote this minimum core energy by

E, -=E,(a,') . (3.4)

Dislocations with larger Burger's vectors are usually
unstable to division into several dislocations with
minimal Burger's vectors.

The coefficient It'. in Eq. (3.3) is given in terms of
Lame coefficients by .

4~(p, +h. )
2p, +A.

(3.5)

For the electron case, A. = ~, we have simply'

In this section we compare theoretical predictions
for the energy of pairs of minimal dislocations with
numerical calculations for electrons with periodic
boundary conditions and thereby extract information
on the core energy and the approach to the asymptot-
ic form of the pairwise interaction given by Eq. (3.3).
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A. Dislocations arith periodic
boundary conditions

In order to compare with our numerical computa-
tions with square periodic boundary conditions of
period L, it is necessary to calculate the total energy
per block of size L & L of an infinite square array of
dislocation pairs with Burger's vectors +b and -b.
This energy, for pairs of separation p, is given by

tributions to the sum from large (R, we divide (if pos-
sible) the function f( r ) into two parts

f( r ) =f(( r ) +f)( r ) (3.i2)

with f&( r ) decaying at large r as e ' ( a is an arbi-
trary parameter to be fixed later) and f)( r ) analytic
near the origin. The sum of f& is now rapidly con-
vergent and we are left with the problem of summing
the ill-behaved series

E =2E, +E'(P),
~here

(3.7) Xf (4- p) .
(R

(3.i3)

Ed( p ) =E~( p ) + X E~ ( tR —p ) Ef ( (R—)
@gsgO

(3.8) .

the sum runs over (R (I„L,I»L ) with I„,I» integers

and

E][(r)=El[(r;bt =b, b2= —b)

SC, lrl (b r)'
4m ao

(3.9)

Xf(IR- p) (3.1 1)

with f ( r ) nonanalytic near r 0 and with large con-

We note that, provided the sum in Eq. (3.8) is made

convergent at large distances by an appropriate

method, E~~ will be periodic, i.e.,

E~((R+ p ) -E~( p ), (3.10)

and for
~ p ( ((L, E~~ clearly reduces to Ef. The sum

in Eq. (3.8) is very badly behaved, however, and we

need a method for making sense of it and evaluating

it numerically. %e use a generalization of the

method, originally due to Ewald, which is extremely

useful for calculating oscillating Coulomb Madelung

energy summations.
To evaluate a sum of the form

It is now convenient to fnake use of the identity
/

Xf (& P)=-, e '~ ~f.(C) .
(R

L'

where f)(Q) is the Fourier transform of f)( r ):

f)(Q) =~ d'r e 'O "f)(r )

and g are "block reciprocal-lattice" vectors

g (2e/L)(g„, g») with g„,g» integers. Now, how-

ever, since f)( r ) is analytic near r 0,
f~( g ) —e sb for large g and hence the sum over

g in Eq. (3.14) is rapidly convergent, and we can
write

(3.14)

(3.15)

which is now explicitly periodic in p. [The only am-

biguity in Eq. (3.16) arises from the g =0 term,
which may be divergent or ill defined. ]

The sum in Eq (3.8) i.s actually of a slightly more
complicated form than Eq. (3.11),

Xf(@-p)- X f(dt),
~SO

(3.17)

with each sum separately infinite but the difference
finite. 1t is straightforward to generalize Eq. (3.16) to

Xf(IR- p) -Xf,(IR- p)+, $e-. 'S ~f, ( g),
5L

'
8

(3.i6)

Xf( tR- p) - X f( dt ) = X [f ((R- p) -f.(%)l+, X (e-m e -1)f,( g) +j,(p)
(Q gsl O (Q gsl0 L2 (3.18)

Now the g =0 term is absent from the sum. To
evaluate Eq. (3.8) we now need to choose an ap-
propriate f&

with

8fa oo -j
Et(x) = —Ei( —x) = dr~x (3.20)

f&( r ) = —b2
2

[E~(ar~) +lna+y] and y Euler's constant. With this choice of f&,

(b r)
2

(3.19)
f((r ) =ED(r) —f((r ) (3.21)

is analytic at f =0 and car be Fourier transformed to
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obtain

X4~ b'+—(b Q)' +
Q2 4a

(3.22)

~ / o

e /'
4

/
0 / ~

E'=g( U~~
—

2 S,~Ukk)
2 1 (3.23)

For a pair of dislocations of Burger's vectors +b at a
separation p, it can be shown that

1
UIJ 2 ( b(aypi+ b&fkipi) (3.24)

and the shear energy is simply
2

E'= —p, b2P
2 L2

(3.25)

If we choose a = rr/L' both sums in Eq. (3.18) con-
verge equally rapidly and a few terms of each give
accura'. c results.

The calculation described above gives the energy
per pair of a periodic array of dislocation pairs in a
large crystal with free boundary conditions (at con-
stant pressure). In our numerical calculations, how-
ever, we have imposed periodic boundary conditions
on the electrons in a fixed block whose size and
shape were chosen to accommodate an integral
number of cells of the original defect-free lattice, with
essentially vanishing shear stress. Since this pro-
cedure mill generally result in additional stresses in
the defective sample, it is necessary to take account

. of the macroscopic stress energy, when comparing
the numerical results with the analytic calculations.

The additional stresses resulting from enforcing
periodic boundary conditions are of two kinds. The
first is due to a change in the average density of par-
ticles caused by the removal or addition of part of a
row between the two dislocations. This compression-
al (or expansional) effect is simply taken into account
by the method described in the introduction in the
same way as for vacancies, etc. However, for disloca-
tions there is in addition a shear stress which cannot
relax due to the periodic boundary conditions. This
can most easily be seen if a whole horizontal row of
electrons (corresponding to dislocations at boundaries
of the unit block) is removed. In this case the sys-
tem is again a regular lattice after relaxation; however
the lattice spacing is different in different directions,
and hence there is clearly an unrelaxed stress. %'hile
for an arbitrary pair of dislocations the situation is
more complicated; the stress energy can be calculated
as follows. Let U& denote the average distortion of
the periodic block which would occur if the constraint
of fixed size and shape were removed. The addition-
al shear energy due to the imposed constraint of
fixed (square) shape is then

~ ~ /
~ / ~

e
0

~ / ~
~ / o

FIG. 7. Pair of dislocations. The dash-dotted lines show
the axes of symmetry of the dislocations. The arrows indi-
cate the Burger vectors, and are located so that the center of
each arrow coincides with the position of the dislocation ac-
cording to our definition.

independent of direction of b or p. It is simple to
check that this expression is correct for the case
described above with one row removed.

Taking into account the effects of image disloca-
tions, additional compression and additional shear,
we can now compare theoretical and numerical calcu-
lations for the energy of various dislocation pairs to
try and extract the core energy E,. Before doing this
we must define the position of a dislocation. Clearly
this definition is somewhat arbitrary and we make
what is a reasonably natural choice.

Consider dislocations in a triangular crystal, as
shown in Fig. 7. In the regions of maximum distor-
tion, there is a well-defined symmetry axis (dash-
dotted lines) at 30' with respect to the unperturbed
lattice. On that symmetry axis, the separation
between the electrons is ao&3, except for one pair
which is separated by approximately ao. %e define
the midpoint between these two electrons as the posi-
tion of the dislocation. The Burger's vectors, which
are perpendicular to the symmetry axes, are indicated

by the arrows. For dislocation pairs separated by
pure glide, this definition leads to separation vectors
which are parallel to the Burger vectors, as they
should be. Another dislocation pair, similar to a di-

vacancy, but with a different symmetry, and also
described by two missirig particles, is shown in Fig. 8.

%e now proceed with comparison of the energies
of various dislocation pairs. In Table I data on vari-
ous dislocations and theoretical and numerical values
for their energies are presented. The average core
energy based on nine different configurations of pairs
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TABLE I. Dislocations, Summary of numerical and analytical results on energies of dislocation
pairs with separations p and minimal Burger's vectors at an ang1e 8 to their separation vectors: the
numerically calculated energy in a system with periodic boundary conditions, (E"), the energy
from elastic theory excluding (Eo ) and including (Ez~) images, the additional energy {E') due to
the shear caused by periodic boundary conditions, and the core energy {E, ) are tabulated in units
of ep.

p {ao)

6.7
3.2
9.8
S.3
2.5

13.6
8,6
6.2
2.5

86
80'
88'
75

89'
81'
5S'
46'

0,34
0.31
0.365
0.30
0.29
0.465
0.41
0.393
0.280

0.171
0.102
0.205
0.143
0.039
0.234
0, 191
0.134
0.044

0.153
0.098
0.168
0.131
0.037
0, 168
0.161
0.119
0.041

0.009
0.002
0.020
0.006
0.001
0.038
0.015
0.008
0.001

0.089
0.105
0.089
0.082
0.126
0.130
0.117
0.133
0.119

of dislocations is

E, ( 0.11 + 0.02 ) ao . (3.26)

The long distance form for the dislocation-dislocation
interaction energy [Eq. (3.9)] is seen to be valid
down to rather small distances, =3 lattice spacings.

In principle, vacancies and interstitials can be con-
sidered as dislocation pairs with separation onc lattice
spacing perpendicular to b (the "climb" direction),
but since the former have a higher symmetry than
the latter, it is more useful to consider them as
separate entities. In particular, as a consequence of
symmetry, the interaction between vacancies, as dis-
cussed in Sec. II falls off as 1/r3, while that between
dislocation pairs -1/r'. In the present paper we will

not consider a defect to be a dislocation pair unless

the separation is at least two lattice spacings.
In addition, dislocation pairs separated in the direc-

tion parallel to b (the "glide direction") can be creat-
ed without adding or removing particles. Pairs of this
kind with one or two lattice spacing separation are al-

most certainly unstable, although they may be impor-
tant for renormalization of the elastic constants (see
Sec. V). We shall denote such pairs "virtual" disloca-
tion pairs, and we shall thus impose the restriction
that real dislocation pairs having p II b should bc
separated by at least three lattice spacings.

With the conventions adopted above, the minimum
energy for a pair is estimated to be

2E, + ~(ln3 —1) =2E, +0.01&0 =2.1E,

which is achieved for a separation of three lattice
spacings in the glide direction.

IV. GRAIN BOUNDARIES

Another defect which partially destroys the ordered
solid is the grain boundary, a line defect separating
domains tilted with respect to each other by an angle g.

0

/

FIG. 8, Dislocation pair with two missing electrons, simi-

lar to a divacancy, but with different symmetry.

A. Energy Qf grin bQQQdarles

(analytical)

Small angle grain boundaries can be considered as
lines of dislocations with equal Burger's vectors b."
The configuration of lowest energy is an equally

spaced tow of dislocations of minimal Burger's vec-
tors perpendicular to the grain boundary. For defi-
niteness, let us consider two parallel grain boundaries
separated by a distance y, one consisting of N disloca-



4702 DANIEL S. FISHER, B. I. HALPERIN, AND R. MORF

E( ) «pr
2s

which drops off very rapidly for Y & s.
By taking the limit y ~ we find that the energy

per unit lattice spacing for one grain boundary is

(4.2)

apE( oo)

2Ns

tions of Burger's vectors in the y direction
(b» =ap, b„=0) with separation s )) ap, and the
other identical but with Burger's vectors in the oppo-
site direction (b» = —ap, see Fig. 9(a)1. (As discussed
in Sec. III, for the overall energy to be finite, the to-
tal Burger's vector must be zero, hence the necessity
for considering tw'o equal but opposite grain boun-
daries. ) The energy of this configuration can be cal-
culated relatively straightforwardly and it is found
that the total energy is"

(~) =2E+
N '

4m 2vrap s s

+ ln2 sinh (4.1)
s

For large separations y, we find that

Since the angle 8 of the grain boundaries is just ap/s
for small angles, we find the well-known result"

e( 8) ——8( ln8+ const ) (4.4)

Lap2

p(8) = —sin38 E, — ln( —msin38)
3 Sm

(4.S)

For 8=30' Eq. (4.3) yields

e(30') =0.029 pp (4.6a)

which differs by a rather small amount from the
result of Eq. (4.5).

Clearly this form cannot be right for large angles,
since we have not considered nonlinear effects other
than those buried in the core energy, E,. In particu-
lar, for a triangular lattice it is clear that p(8) must
be periodic in 8 with a period of 60'. To obtain a
reasonable form for p(8), we guess a function which
has the appropriate periodicity and is correct for small
8 and hope that the result will be reasonably good
even for 8 —30' ( the maximum possible angle).

The simplest form with the required properties is

obtained by replacing ap/s in Eq. (4.2) by —, sin38;

pp Eao ao s
2

=—E, + —ln
s 4s' 2$ 2vTQp

(4.3) p(30') =0.026 pp (4.6b)

i~

e~~
~++O a saeaee

Before comparing this analytical result with numer-
ical calculations, however, we must discuss additional
complications. In a real crystal, even for small angle
grain boundaries, the dislocations will not be exactly
equidistant due to the discreteness of the underlying
lattice. There will thus be a small contribution to the
energy arising form deviations of the dislocation
separations from their average values. This will give
a correction to the energy per lattice spacing of order
( ap/s )3, which is hence negligible for small angles.

For large angle grain boundaries, in addition to the
nonlinear dislocation interactions which we have hid-
den in Eq. (4.5), there are again corrections due to
the discreteness. Both of these effects are hard to es-
timate, but our computer simulations (see below)
suggest they are small, possibly due to cancellation of
many, more or less random, positive and negative
contributions to the total energy.

(c)
la%&&a&a%%&%%&a

B. Comparison ~ith numerical computations

h

FIG. 9. Grain boundaries as lines of dislocations, depicted

by their Burger's vectors: (a) two parallel grain boundaries,
(b) "vibrating" small angle grain boundary, and (c)
"meandering" large angle grain boundary.

We have investigated numerically several straight,
large angle grain boundaries (Figs. 10 and 11). The
numerical results are summarized in Table II. Due
to the periodic boundary conditions, we actually cal-
culated the energy of a parallel array Df grain boun-
daries with separation y =13ap. However, 2my/s is

very large and hence by [Eq. (4.2)) the interaction
energy of a grain boundary with its images is negligi-
ble and can be ignored. For the large angle grain
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FIG. 10. Two straight-line 29.0' grain boundaries.
FIG. 12. Hexagonal 29.S' grain boundary of length

-40ap.

boundaries investigated, we find slight variations in

the energy of sets of grain boundaries with almost
the same angle but different methods of preparation
(e.g. , sliding one half crystal slightly with respect to
the other before relaxing the system). This is in ac-
cord with the expected effects of nonlinearities dis-
cussed above.

In addition to straight grain boundaries, we have
investigated several roughly hexagonal domains
(Figs. 12—14). The energies of these configurations
are listed in Table II. The energy per lattice spacing
of the boundary is roughly the same as that for a
straight grain boundary. From this we can conclude

that, at 1east on the scale of ten lattice spacings, the
"corner" energy associated wtih bending a grain boun-

dary is small. This will be important for the possibili-

ties of grain boundary melting discussed in Sec. V.
To summarize, the energies per lattice spacing of

length of the large angle grain boundaries considered
with angles 22'& 8 (30'lie in the range

0.0185cp ( E & 0.0226ap (4.7)
and are slightly lower than those given by the inter-
polation formula in Eq. (4.5). The discrepancies can
presumably be attributed to the nonlinear effects dis-
cussed above.
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FIG. 11. Two straight-line 21.8' grain boundaries.

FIG. 13. Hexagonal 30 grain boundary with length
-52ap.
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A. Melting

~ « ~IIII
0I

I

FIG. 14. Twisted hexagon. Can be regarded as hexagonal
30' grain boundary of length -10ap.

It has been known for a long time that there can be
no long-range translational order in two-dimensional
systems of the type usually associated with a solid. '5

However, Kosterlitz and Thouless (KT)~ have sug-
gested that there can be a second-order transition
from a liquid to a low-temperature "solid" phase
characterized by the existence of a finite shear
modulus. They predict that dislocations are present
in the solid phase only in bound pairs, but above the
transitions temperature, T„ the system becomes un-
stable to the creation of free dislocations and melts.
At the transition the shear modulus drops discontinu-
ously to zero. KT further predict that the ratio of the
combination of elastic constants discussed in Sec. III
to the temperature approachs a universal constant at
T (Rer. 7.)

K( T)a02
lim =16'

N

(5.1)

V. FINITE TEMPERATURES, DISCUSSION,
AND CONCLUSIONS

So far in this paper all our calculations have been
at zero temperature, yet, as was mentioned in the In-
troduction, an important motivation in studying de-
fects is to understand properties of the electron solid
at finite temperatures, and hopefully to learn some-
thing about the melting process. In this section, we
shall briefly discuss several finite temperature prop-
erties. First, we review predictions of the dislocation
theory of two-dimensional melting, in particular as
applied to our system, ' ' and mention the results of
several computer simulations. ' ' We next estimate
densitites of various defects, which will affect the, fin-
ite temperature behavior. We then consider grain
boundaries as a possible mechanism for melting of
the electron solid. Lastly, we discuss some dynamical
properties of the solid.

4u( T) (p( T) +) ( T)l
2p, ( T) + Z( T)

(3.5')

Thouless' has estimated the melting temperature of
the electron system by using the zero-temperature
values for p, and h. (h. ~) in Eqs. (3.5') and (5.1).
He finds that in terms of the dimensionless parame-
ter,

(7m, )' 'e'
I =

T

T is given by

r "=r(Tr")=78.7

(5.2)

(5.3)

However, p, and A. are expected to be renormalized
at finite temperature by nonlinear processes, in par-
ticular nonlinear phonons and dislocation pairs.
Hence this prediction for I' is at best a reasonable

where E( T) is given in terms of the finite temperature
Lame coefficients p, ( T) and X( T) by

TABLE II. Grain boundaries. Summary of results on grain boundary energies and the figure
numbers in which they are illustrated: the length, angle (8), numerical values for the total energy
(E"), and energy per length ap ( E ) are tabulated in units of Ep.

Type Figure Length &"(~p) ( 6p)

Straight
Straight

Hexagon
Hexagon

Small hexagon

10
11
12
13
14

21.8'
29.8'
27.8'
30'
30'

42
54
40
52

=10

0.778
1.22
0.927
1.12
0.26

0.0185
0.0226
0.0232
0.0215—0.026
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guess. Since p( T), X(T), and hence T depend on
renormalizations of p, and X by dislocations (and
probably other defects) it is useful to make some es-
timates of dislocation pair (and other defect) densi-
ties; these will enter any calculation of p( T) and
) ( T) 6, 7. 13

We first compare the Thouless estimate [Eq; (5.3)]
for 1 to that found in the experiments and to
several numerical calculations.

Grimes and Adams2 find that the transition in elec-
trons on helium mentioned earlier is well
parametrized by 1'( T ) =1' with

I'" =137+15 (5.4)

considerably larger (corresponding to lower tempera-
tures) than 1' ".

Three numerical simulations have been reported,
two molecular dynamics (by Hockney and Brown"
and very recently by Morf'3) and a Monte Carlo cal-
culation by Gann et a/. ' They find, respectively,

(

95+ 2
PllUm ~, 130 + 10 (5.5)

125 +15
t

While the latter two results are in reasonable agree-
ment with the experiment, the result by Hockney and
Brown differs considerably. They find A.-like
behavior of the specific heat at A, -95 + 2 and identi-
fy this as the melting transition. As discussed in Ref.
13, we believe that their calculation is likely to suffer
from nonequilibrium effects. It is, however, conceiv-
able that some of the anomalies observed in their
simulation might reflect the existence of the second
phase transition conjectured by Halperin and Nelson'
in which the orientational order of the "hexatic"
(liquid-crystal) phase is lost due to the unbinding of
disclinations. Since the orientational order parameter
has not been determined in the calculation by Hock-
ney and Brown, "no definite conclusions can be
dragon.

The large difference between the Thouless esti-
mate' for I and the experimental and numerical
results"' have been discussed in detail by Morf. "
In his numerical simulations Morf found that, at low
temperatures, the shear modulus decreases linearly
with increasing T. At a value I —140, this decrease
amounts to approximately 22%. It is attribute:d to the
effects of phonon-phonon interactions. '6 Using the
renormalization-group equations derived by Halperin
and Nelson, 7 Morf was able to estimate the additional
renormalization of the shear modulus p, below the
melting point due to the effects of dislocations. A
linear extrapolation of the low-temperature shear
modulus p, L( T) was used as the initial value of the
shear modulus, prior to renormalization by disloca-
tion pairs. In addition, it was assumed that the dislo-

'

cation core free energy E,( T) is reduced by phonon

B. Defect densities

Let us first discuss the density of dislocation pairs
as a function of temperature. This can be crudely es-
timated by treating the pairs of dislocations as di;
atomic molecules which do not interact with each oth-
er. As discussed in Sec. III, we will only count pairs
with separation larger than r;„=3ap. The number
density of dislocation pairs per unit cell is easily
found to be

~
' c Z(E), '

(5.6)

~here

Zap
T

(5.7)

and Z is the internal partition function of a disloca-
tion pair

Z( Jt') =3 exp — ln-d2r K r
min 4m. ap

'
2 —K/4e

4o'v3 r mtn r + K/SeIp 8
E/4' —2 ap 8

(5.8)

where the factor of 3 comes from possible orienta-
tions of the Burger vectors and Ip is a modified
Bessel function. 1t is not clear what value of E( T)
should be used in evaluating Eq. (5.8). Probably the
most appropriate would be to include phonon renor-

interactions in the same proportion as the shear
modulus, i.e.,

E,(T)IE,(0) = pL(T)lpr. (0) .

Using a value E,(0) =O. lap [which is 10% lower than
the value given by Eq. (3.26) and which was obtained
using a slightly different definition of the dislocation
position), Morf obtained a melting point 1' =128.2
consistent with the strong drop of p, for
140 & I ) 120 observed in the simulation. This
analysis shows that the large difference between the
Thouless estimate' I' "=78.7 and the experimental
and numerical results I' —130 does not rule out the
validity of the theory of dislocation mediated melting
in two dimensions; about half of the difference is ex-
plained by the renormalization of the shear modulus
by phonon interactions and the other half by the ef-
fects of dislocations. A conclusive test of the validity
of this theory, however, requires a much more accu-
rate determination of the shear modulus at tempera-
tures just below melting. Since such a conclusive test
has not yet been carried out, it is interesting to dis-
cuss other possible mechanisms for melting in two di-
mensions. This will be done later in this section.
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TABLE III. Defect densities. Densities per unit cell for several defects at three values of I.
Columns headed 3 are derived using zero-temperature values for p, and ED. Those headed 8 are

derived using zero-temperature values scaled by p, L( T)/p, L(0) (see text).

Defect
Density/unit cell

r=a50 r =200

Vacancy
Centered
interstitial
Edge
interstitial
Dislocation
pairs

8.8 x 10-8

7.8 x10 '

5.1 x 10~

9.8x10 4

6.3 x10~ 5.2 x10 3

1.5 x10 9 8.8 x10 8

7.7 x 10-5

1.2x10 6

6.3 x10 4

6x10 5

6.2 x10 6 7.8 x10-s

1,8 x10 ~2

9,0 x10

2.3 x10

1.8x10 9

1.0 x10-"

1.1 x 10~

1.9x10 '

9x10 '

malizations (and possibly those from virtual disloca-
tion pairs) in p, and k but not renormalizations due
to dislocation pairs.

In Table III we have tabulated estimates for the
densities per unit cell of dislocation pairs and various
other localized defects for three typical temperatures,
I =120, 150, and 200. For each temperature we list
two values. The first is obtained by using the zero-
temperature values for the defect energy, ED, and the
shear modulus. The second value is obtained by us-
ing a shear modulus, pL( T) (found in Morf'3),
which decreases linearly with temperature as dis-

cussed above. In addition, the defect energy is as-
sumed to depend linearly on temperature, i.e, ,

ED( T) =ED(0)pL( T)/IJ„(0)

C. Grain boundaries and melting

If the small angle grain boundary is made up of
parallel Burger's vectors with separation s, we showed
in Sec. IV that its energy per lattice spacing of length
ls

2ao «p s
- ln —+ const

s 8vp ap
(s.9)

where the constant is independent of s/ao for
s && ao. We now allow each dislocation to deviate
from its equilibrium position (equally spaced) by an
amount p„, where n labels the dislocation. The total
energy for a grain boundary of N dislocations is then

E b=N—e+ V
S n

a p s
(s.10)

where Vb is the change in energy due to the displace-
ment of the dislocations. The free- energy is

In addition to the instability of two-dimensional
(2-D) solids to formation of free dislocations exploit-

ed in the KT theory, 6 2-0 solids can also be unstable

to formation of grain boundaries.
We consider here possible instabilities to formation

of both small and large angle grain boundaries
separately. There are two variations in the minimum

energy form of a grain boundary [as in Fig. 9(a)] that
we must consider at finite temperatures. The first of
these is "vibration" [illustrated in Fig. 9(b)], in which

the Burger vectors of the dislocations making up the
grain boundary remain parallel but fluctuate in posi-
tion.

The second in "meandering" [illustrated in Fig.
9(c)], in which the direction of the grain boundary

and the burger vectors of its composite dislocations
vary along the boundary in multiples of 60 .

We first consider a small angle grain boundary for
which it easily can be shown that the dominant con-
tribution to the entropy comes from "vibration", and

second a large angle grain boundary whose fluctua-
tions can mostly be described by "meandering".

1

Fgb = X—a —T ln g J d2p„A, ' exp —p Vsb
—"

ap N s

Lap s s=W ln ——2%Tin —+NfSe ap ao
(s.11)

where f is independent of s/aa. For small angles
(s )& ao) this will change sign at

Eap2

16m
(5.12)

/

which is identical to the KT calculation for the insta-
bility temperature to formation of free dislocations
and, in fact, is essentially the same mechanism under
a different guise.

The expression derived by Halperin and Nelson7
for the correlations in the Burger vector den. sity in
the hexatic phase, T & T, shows an angular depen-
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F,„-2e(30') —T ln(1+2e ' ) (5.13)

If a, is small, as it appears to be in practice (see Sec.
IV), we can estimate a grain boundary melting tem-

perature

~ab 2e(30')
ln3

(5.14)

(corresponding to I,"=44) above which the solid
becomes unstable to large angle grain boundaries.
%'hile this estimate is a factor of two higher than T~~"

and even larger compared to T"" and T'"" it is pos-
sible that entropy contributions from softening of vi-

brational modes near the grain boundary and self-
crossing terms may lower the estimate of Ts" consid-
erably. Thus, from the above estimates it appears
unlikely, but still possible, that the experimentally
and numerically observed melting at I —130 is due
to large angle grain boundary formation.

D. Dynamics

dence, which one may describe as a strong tendency
for dislocations to arrange themselves is small angle
grain boundaries.

While the instability of a 2-D solid to formation of
small angle grain boundaries depends only on long-
distance properties, our second example, instability to
large angle grain boundaries depends on details of
short-range interactions.

%e consider an extremely oversimplified model of
a meandering 30' grain boundary made of segments
of roughly two lattice spacing (the separation between
dislocations in a straight 30' grain boundary is

ao/2 sin15' =1.9ao) whose orientaiton varies along
the grain boundary in steps of 60'. Each segment
has an energy 2e(30') =0.44eo and a Burger vector
perpendicular to it [Fig. 9(c)l and at the end of each
we allow three possibilites. ' the grain boundary can
continue in the same direction costing no energy, or
it can bend 60' to the right of left costing an energy
a, . If we ignore interactions between segments and
the gain or loss of energy due to self-crossings, then
our meandering boundary has a free energy per seg-
ment

der of the temperature for 1 —I, The interstitial
diffusion constant, Dq, wi11 be roughly given by

-h~/T
Dg e cclpQp (5.15)

~p-10" sec '
10'/cm'

(5.16)

For temperatures near T„aq will be very large since-a /r1

The diffusion rate for a tagged electron, D, will

have a contribution from interstitial diffusion as well
as from two or more particle interchange

D DyPg + calpQpe (5.17)

where pq is the number density of interstitials (see
Table III) and d,„ is the barrier to particle inter-
change. If 4,„ is of the order of the energy of the
twisted bond or triangle, which approximate the bar-
rier heights for exchange (see Sec. II) then particle
diffusion will be dominated by interstitial diffusion,
the first term in Etl. (5.17).

Dislocation motion is of two sorts; motion parallel
to the Burger vector, or glide, and motion perpendic-
ular to the Burger vector, or climb. Glide involves
no change in particle number and hence can proceed
rapidly at microscopic rates characterized by cop.

Dislocation climb, on the other hand, involves a
change in the number of electrons (i.e., addition or
subtraction of an electron in a half row terminating at
the dislocation) and hence must proceed by absorp-
tion or emission of vacancies or interstitials. Assum™
ing that this also is dominated by interstitials at least
at temperatures of the order of T„ the rate for climb-
ing one lattice spacing will be of the order of capp~,

orders of magnitude slower than the rate for glide,
even at relatively high temperatures.

All these estimates of rates of dynamical processes
should be taken as rough, as large phonon fluctua-
tions at moderate temperatures will probably enhance
them considerably.

where cop is a characteristic microscopic vibration fre-
quency

t 3/4

Thus far we have restricted ourselves to static
quantities, we now briefly discuss several dynamic
properties of the electron solid: interstitial diffusion,
particle diffusion, and dislocation motion.

Because of their relatively low energy (see Sec. III)
and hence reasonably high density, interstitials might
be expected to play an important role in dynamical
processes in the signer crystal. In addition, since
the energy of an edge and centered interstitial are
rather close, it'is natural to guess that the barrier for
interstitial motion, hq, is low„possibly only of the or-
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APPENDIX NUMERICAL METHODS

In this appendix we describe the numerical
methods employed for calculating defect energies. In
the first section we present some general considera-
tions about the required system size. Appendix sec-
tion 2 is devoted to a description of the numerical
methods for calculating energies and forces. In Ap-
pendix section 3 we describe the method for generat-
ing defects and we conclude the appendix with a dis-
cussion of the numerical errors of this calculation.

Choice of system size

F. = —X @(r —rj)-gg-
i,j fr; —r, f

(A3)

Here, in order to obtain the proper contribution from
the interaction of an electron with its own images,
the term i =jmust be treated as a limiting value, i.e.,

ror function and x is a parameter which can be ad-
justed for optimal convergence. (Cf. Sec. III above
where we discuss the Ewald method applied to the in-
teraction between a dislocation pair and its images,
mediated by the strain field of the crystal. ) In terms
of qh( r ) the total energy E of our system with N par-
ticles may then be written

Our goal is to calculate the energy of defects in an
infinite system. As has been discussed in Sec. I, we
do this by numerically calculating the energy of a de-
fect in a finite system subject to periodic boundary
conditions and choose the system large enough that
the interaction of the defect w ith its periodic images
can either be neglected or calculated by means of
linear elasticity theory.

In order to be able to study the interactions
between dislocations, we considered a system of
between 20 x 20 and 30 x 30 particles as the
minimum required size. For reasons of simplicity,
we choose a square cell with 26 && 30 particles. This
particular choice is motivated by the fact that the ra-
tio between height and edge length of a symmetrical
triangle is approximated by the rational fraction

15

with an accuracy of 0.07'/o.

2. Calculation of energy and forces

The interaction energy P( r; —r J ) between an
electron at position r; and one at position r

&
togeth-

er with its image at positions r&+4 is given by
~ ( ~ ~ )'9'

y(r; —rg) =- —,—
geo

where L is the system area and g are vectors of the
square lattice reciprocal to the lattice of image points
(tII} = ((I„L,/~L )}. Since the system is in a uniform
positive background, the term g -0 has to be omit-
ted in the summation.

For a numerical calculation Eq. (Al) is not suitable
and we have to make use of the Ewald method. This
leads to

~( )
2&

X
erfc(B K);g. 7

L 9~0 J2 P

X
erfc(

~
r —(R ~/2K) 4~'~'g

g [r —dli

where erfc(x) = I —erf(x) is the complementary er-

1 x
) r,.-Ti+(g(&R

[r, —r, +tnt

N

+ —,
'

X j(r, —r J)

j(r)=p(r) — . (A5)1

ir +(II}
I-+%I«,

Like $( r ), j ( r ) is periodic in the "big" lattice (di}
and apart from its discontinuity at the cutoff radius
8, it is a smooth function of r which can be interpo-
lated While t.he first term in Eq. (A4) which con-
tains O(N) summations will be calculated exactly,
the second (long-range) part, whose numbers of
terms is O(N'), will be treated in an approximate
way, which will involve only 0 (N lnN) operations.
For this purpose, we introduce a square mesh with
M x M points and w'ith a square mesh unit cell of
length /L = L/M (8,. The mesh points will be
denoted by r I (lh, mh).

The idea of this mesh method is as follows. Con-
sider two electrons at positions r1and r2, separated
by a distance greater than 8,. Let us denote the four
mesh points closest to r, by (P; - (x,'"',y, '"')-(k)

( k - I, 2, 3, 4), which are the corners of the square

lim $(r)—
r ~0' lrl,

Even with the use of tabulated values for @( r )
and interpolation for the required separations r; —r &,

the summation in Eq. (A3) requires an extremely
large amount of computation (for 780 particles there
are over 300000 terms). For this reason we make
use of an approximate method. %e use a modified
version of a mesh method described by Hockney
et aI. 17

Let us describe our method in detail. First, we
decompose the sum in Eq. (A3) into two parts: a

contribution from nearby particles and one from fur-
ther distant ones. Introducing a cutoff radius Q„we
write Eq. (A3) in the form
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cell in which electron i lies. We now approximate the
true interaction $( r t

—r 2) by a sum over interac-
tions between suitably chosen partial "charges" e1 at-(k)
positions (P1 . and corresponding ones e2" at posi--(I)
tions 6'2 .

p(r) —r2) = X Xe)'"'e2" @(tpI" -tpI»)+R
(A6)

where 8 stands for the remainder term. By choosing
the partial "charges" e1k) in such a way that their as-
sociated dipole moment p; = $„",e;t"'(tp&'"' —r, )
with respect to the electron position r; vanishes, and
that X„',e "' = 1, the remainder term depends on

A

second- and higher-order derivatives of Q only and is

of order 5'. This condition is satisfied by defining

The approximation for $( r t
—r 2) provided by Eqs.

(A6) and (A7) can be viewed as a linear interpola-
tion formula, written in a form which is symmetrical
under electron interchange.

We now define a mesh charge density

N 4

p(r) =X X e k'g( r —5'; )

which is nonzero on mesh points r I only and which
we can define periodic in the "big lattice", i.e.,

p(r +5) =p(r )

Using the representation (A6) for p( r t
—r 2)) Eq.

(A4) for the energy may be written in the form

2 N 4 M

+ —, X Xe,'"' X p( r, )y(tp, —r,.)+X,+R',
st ~ r, —r&+(R~

' -ik-& l,m-t
~ r,,—r J+Vjt&R

(A9)

where the remainder term R, which will be neglected, is again of order O(h ). The contribution X, arises from

electron pairs whose separation
~
r; —r J +(R~ is close to R„such that some of the "partial charges" are separated

by a distance larger than 8, and others by a distance smaller than R, . It may be written

4 e (k)e (I)
X, =-, e'X X X

'
(k,-) -[O(bt( —R, )O(R, —a)"")—O(R, —bt()8(ay"" —R, )]

(ps-'J y k l 1 ~(J
(A1Oa)

w1th

and

b, =ir, —r, +(Ri (A1Oc)

is required only on mesh points r &. Equation (Al 1)
can be written

y(r, ) = ', Xe
'"" '( p(g) j(-g), (A»)

M2

p( r,, ) = X p( r I ) g( r,~
—r I„) (Al 1)

which may be viewed as the electrostatic potential at

r,j due to the charges ei at mesh points (P; +%,(k) - (k)

By O(x) we denote the Heaviside step function

O(x}=O, x &O,

O(x) =1, x «0

Since only electron pairs whose separations (modulo

tR) lie in the interval [R, —2(2' )6,R, +2(2' )&1

can give rise to a contribution to X„ the number of
individual terms in X, is of O(N) and can be calcu-

lated in an efficient way simultaneously with the first

term in Eq. (A9). The particular advantage of our

approximation (A9) for the energy E lies in the fact

that in this form the long distance contribution can

be calculated efficiently making use of the fast-

Fourier transform method. The convolution sum

(A13)

P(g)=, ge ' 'j(re) .
M

ij

(A14)

For a given mesh size and cutoff R„qh( g ) can be
calculated once and forever. Using the fast-Fourier
transform method, the number of operations re-
quired for the calculation of p( g ) and P( r tl ) is
O(M'( lnM+const)). Since for fixed accuracy of
the energy per particle, the required number of mesh
points M increases like the number of particles %,
we conclude from this that the total number of
operations require& for the computation of E using

~here g are the M' vectors of the lattice reciprocal to
the mesh vectors r ~( and p and Q are the discrete
Fourier transforms of p and $, defined by
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Eqs. (A7) —(A10) and (A12)—(A14) requires
0(N( inner +const)) operations, which was the goal

of this method.
Let us now turn to the calculation of the forces F;

acting on the electrons i in an unrelaxed configura-
tion. By differentiation of Eq. (A4) we get

this order, 0 p can be calculated by means of the
finite difference approximation

ex ~,("

F;=e' X
Jyei ) r,.-r +(R)&R

r; —rj+8
I r, —r, +(%I'

and

+0(~') (A17)

—X '7;j( r, —rj)
j~1
JW1

Using the mesh method, this can be written

(A15) Qy 7('; 2h

+o(~'), (A1g)

F;=F;' —Xe "'Vy((P, )+g, +R", (A16)
k 1

(s)
where the first term in Eq. (A15) is denoted by F;
and X; is the term corresponding to X, in Eq. (A9)
arising from the discontinuity of d ( r ) at the cutoff
R, . The remainder term is again of 0(52), but now
it is determined by the third derivative of $( r ). To

where e„and e„are unit vectors in x and y direction.
If the calculation of the forces is done together

with the calculation of the energy, this method does
not require the computation of additional Fourier,
transforms.

The term X, -(X,'„,X, ), which arises from pairs
of particles with separation close to the cutoff radius
8, is given by

2 Z (k) (i) ~

X,'„= $ X X X '(„,) —[O(R, —bs) O(ajt""(g) R,) —O(b—j —R, ) O(R, —ajt"0(8))}, (A19a)
2~ J-t st ki &a-+a a-J"' (5)

JAi

where

a ""(s)=Imp, -tp, +%+ac„I (A19b)

b, =
I r; r~+rstI—

The subscript n stands for x and y, respectively.

(A19c)

3. Construction of defects

The procedure we adopt is the following: In a first
step we construct an initial configuration which, after
relaxation, will contain the desired defect. For va-
cancies and divacancies, this is easily achieved by re-
moving particles from a perfect triangular system; for
interstitials, by adding a particle.

For dislocations, the situation is a bit more compli-
cated. While dislocation pairs in a square lattice can
be obtained by removing a number of adjacent parti-
cles in a row, in the case of a triangular lattice a 120
degrees "zig zag" of particles has to be removed.
After relaxing the system, one obtains dislocation
pairs whose (antiparallel) Burger's vectors are at ap-
proximately a 90' angle to their separation vector. By
adding particles to this system at suitable positions,
one can then obtain dislocation pairs with an arbitrary
angle between the Burger's and separation vector.

(A21)F~ = —XAJk( r J
—rg )

k

where the equilibrium positions of the particles are
denoted by r j and Ajk is the dynamical matrix. In
this linear regime, the relaxation equation (A20)
takes the form

(i+i ) (i) ~ (i)=yj, ~+~jkh k
k

( i) (i)
where yj = r J

—rj". Denoting the largest eigen-

(A22)

I

In order to obtain initial configurations which, after
relaxation will contain grain boundaries, we take a
perfect lattice and apply suitable symmetry operations
to the positions of a subset of particles.

In order to relax such a given initial configuration
(0)

(r j },one then moves the particles by distances
(0) . (0)

8 r J in proportion to the forces FJ acting on the(i)
particles. This leads to a new configuration (r & }

(&) (0) + F (o)
(A20)

This process is repeated until convergence is ob-
tained. In practice, the convergence can be moni-
tored by calculating the energy for subsequent config-
urations. Clearly, the convergence of this relaxation
scheme depends upon the choice of the parameter e
in Eq. (A20). This can be seen most easily in the
linear regime, where the forces FJ can be represented
in the form
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TABLE IV: Comparison of numerical and analytic results for the energy per particle of a perfect
triangular (E~) and square ('ECl) lattice with various values of the mesh size 4 and the parameter,

N„ the number of particles inside the cutoff radius, R„ in the numerical computations (see the

Appendix).

Nc —E~(g) —E~(ep) E~(ep) —E~(ep)

19
37
37
91

Exact

1/128
1/128
1/256
1/256

1.950 550
1.953 338
1.958 735
1.959 372
1.960 516

1.937 909
1.942 983
1.948 341
1.949006
1.950 132

0.012641
0.0103 55
0.0103 94
0.0103 66
0.0103 84

value of the dynamical matrix by co, we see that the
iteration will converge provided that

/i —a~'f (i (A23)

A 1BSX 2
~

M
(A24)

4. Discussion of numerical errors

As discussed in Appendix section 2, our mesh
method leads to a remainder term of order 6' for
each pair of particles separated by a distance larger
than 8,. For the force it is determined by the third
derivative of the Coulomb interaction at that separa-
tion, for the energy by the second derivative. Sum-
mation over all particles then leads to an error 5E in
the total energy E

5E —5'/R, '(A 25)

and an error SF; in the force F& acting on particle i

(SF, [
—Z'/R ' (A26)

An estimate for the eigenvalue ao' can be obtained
from its value for the perfect crystal, where ao is

given by the frequency of the longitudinal phonon at
the zone boundary. The best convergence is ob-
tained by choosing 0. close below the maximum al-

lowed value

It is however important to note that for systems
whose lattice is commensurate with the mesh, the
mesh method will give exact results if the particles lie
on mesh points; however, it will lead to errors of the
forms (A25) and (A26) if they lie inside the mesh
cells. In this case, the error will thus depend quite
strongly on the position of the system relative- to the
mesh. In order to minimize this position depen-
dence, it is therefore natural to use systems whose
lattice is incommensurate with the mesh size h. For
our calculations we have used a system with 26 x 30

, particles and a mesh with 128' for relaxation and
256 mesh points for the calculation of energies
which satisfies the incommensurability criterion, to
the extent possible in a finite system. In order to
check the quality of our method, we have performed
extensive tests. In Table IV we list one such test in
which the cutoff and mesh size dependence of the
energies obtained for a square and triangular lattice is
shown. For the square lattice a system with 28 x 28
particles is used, for the triangular one, 26 & 30 parti-
cles. For reference, we also list the exact values E
and E~. This comparison shows that while the ener-
gies themselves depend quite strongly on the cutoff
R, and mesh size 5 = 1, /M, the difference between
the energies of the triangular and square lattices is
much less sensitive and approaches the exact value
closely.
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