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Theory of optical absorption in expanded fluid mercury
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A theory is developed of optical absorption in mercury fluid which is correct in the atomic limit and
describes densities up to 4—5 gcm '. The model takes density fluctuations into account explicitly, and shows
that the steep, near-exponential absorption edge observed in mercury can be explained quantitatively in
terms of absorption by excitonic states of large randomly distributed clusters. This removes the discrepancy
between optical-absorption measurements which indicated the band gap closes around 5 gcm ' and transport
and Knight-shift measurements which showed a metal-insulator transition around 8.5 gcm '. The model
predicts, in qualitative agreement with results of recent reflectivity measurements, that the excitonic
absorption is separate at densities even up to -5 gcm

I. INTRODUCTION

Mercury is one of the few metals in which the
transition from a dilute insulating gas to a met-
allic liquid can be studied. As the density is in-
creased in a gas of Hg atoms, the energy required
to ionize a Hg atom or to excite an atomic trans-
ition decreases. Optical-absorption studies by
Hensel et gl. ' and recent absorption and reflec-
tivity measurements by Ikezi and co-workers'
on low-density Hg fluids, raise the possibility of
obtaining direct information on the energy spec-
trum as a function of density. In this paper we
develop a model which we fit to the optical ex-
periments with the aim of extracting spectro-
scopic measurements of the energy levels from
the data.

A striking feature of the data at low densities is
a very abrupt edge in absorption which moves
rapidly to lower energies with increasing density
(Fig. 1). This edge extrapolates to zero energy
at a density p = 5 g cm ', well below the density
at which the energy gap collapses as monitored by
the Knight shift, 4 dc conductivity, ~ ' and other
probes' (p ~8.5 g cm '). (We use p with the
subscript to denote the mass density, while p with
no subscript refers to the number density. The
two are related, of course, by the mass of the
mercury atom. ) We assign the edge to the tail of
the band of exciton states that evolve from the
6s-6P atomic transition in an isolated Hg atom.
Near the edge, the absorption arises from ex-
citon states with relatively large clusters of up
to -15 Hg atoms: With a reasonable paramet-
rization of exciton transfer matrix elements we
find that we can fit both the rapid energy and the
density dependence of the absorption edge using
a cluster model.

A second feature of the experiment is the ob-
servation of a maximum in absorption at ener-

gies =2 eV at densities of p -5 g cm 3. At
higher frequencies ~ 3 eP another broad edge
is seen in ref lectivity. We attribute this higher
edge to transitions to continuum states. Fro~
the analysis of the data we extract the density
dependence of the energies of the center of the
exciton band and the bottom of the continuum
band of states as well as the width of the exciton
band. The presence of a separate exciton band
at densities as high as p =5 g cm ' shows the
importance of electron-hole correlation as the
energy gap collapses.

Finally we point out the advantages of making
similar studies in doped semiconductors. An
absorption and reflection study in the far in-
fared on P- or I.i-doped Si will not only enable
a wider range of reduced energy and density to be
explored, but also has the advantage that the wave
functioris are hydrogenic and hard-core effects on
the probability distribution are absent; thus they
can be more easily handled theoretically.

The outline of the paper is as follows. In Sec.
II we consider first the very low density or atomic
limit and point out the need to consider clustering
at densities as low as 1 g cm 3. Then in Sec. III
we use a general formula for optical absorption
in clusters first from exciton states and later con-
tinuum states. To this end we develop a statisti-
cal model of cluster sizes and of the distribution
of energy levels in clusters. In Sec. IV our mod-
el calculations are shown to successfully fit ex-
periment and the relevant parameters obtained.
Finally the conclusions and comparisons to other
systems are in Sec. V.

II. DILUTE LIMIT: EFFECTS OF LONG-RANGE
INTERACTIONS

Mercury is divalent; in its ground state, the
isolated mercury atom has two electrons in a
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FIG. 1. Low-energy
optical-absorption edge in
mercury as a function of
density (from H. Ikezi,
Ref. 3; and private com-
munication) .
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filled 6s shell. The 6p levels are split by spin-
orbit coupling and the triplet and singlet levels
lie 4.89 and 6.70 eV above the ground state, re-
spectively, while the continuum lies above the
ionization potential of 10.43 eV.

As mercury atoms are brought together in a
dilute gas, the 6p levels shift and broaden into
exciton bands, and the ionization continuum shifts
downward relative to the ground state. At low
densities, the wave-function overlaps are ex-
poriential in the separation of the atoms, and
therefore very small. Consequently the term dom-
inating level shifts and broadening is the so called
"direct" term9 due to the interelectron Coulomb
forces. We may expand the 6p exciton as a linear
combination in the "basis" set in which there is
an excited 6p state on one of the atoms and 6s
states on the rest. Neglecting overlap and "ex-
change" integrals which are exponentially small,
we still obtain matrix elements between states
in which the excited electron is on different atoms
of the form

n.E= -&vpli(, l',

where

(2)

g=W2e f g'r (~~~(F-R)F()„(F-%), ())
is the dipole matrix element between the two states
(the v2 takes care of the fact that there are two
electrons).

l p l

2 is proportional to the total os-
cillator strength of the dipole transition (f=f„,
=f,„=f„the diagonal elements of the tensor os-
cillator strength) . '

levels into exciton bands, as well as a splitting
of the bands into longitudinal and transverse
branches. Both effects are proportional to the
density p. [The effects of overlap and exchange
integrals go as exp [-(po/p)'~~] where po is a
density of the order of the metal-insulator trans-
ition density. ] The transverse k -0 exciton lev-
el, to which the photon couples (in a crystal), is low-
ered by an amount'

d rf d r2 lpga(1 f Rf))1)fg(r, —R2)

Because of the long-range nature of the Coulomb
interaction, this term falls off with a dipolar (1/r')
law, and dominates the modification of the
exciton levels. It produces a dispersion of the

where ~ is the energy of the dipole transition and
m is the electron mass. Using the experimental
values" of the atomic oscillator strengths of the
two transitions f('So- 'P, ) = 1.18 and f('S0-3P,)
=0.037, one obtains

I~ng= 37 ~m

4Et„y ———0.012 p,
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where the energy is in eV, and p is the density
of mercury in g cm . It is immediately clear
that the downward shift of the optical-absorption
edge even at p -1 g cm 3

',when overlaps should
be small) cannot be explained in terms of a uni-
form distribution of atoms with levels modified
by the long-range interaction.

In addition, the "edge" is characterized by ab-
sorption constants K-10 cm, which is three to
four orders of magnitude smaller than typical metal-
lic or broadened atomic absorption at these densi-
ties. Thus we arrive at the conclusion thatdensity
fluctuations must be playing an essential role in de-
termining the position and shape of the absorption
edge at lower densities. " In order to calculate
the optical conductivity and absorption in mercury,
therefore, we must build a model which explicitly
takes into account such fluctuations.

III. CLUSTER EFFECTS ON OPTICAL PROPERTIES

A. Optical absorption and conductivity of a nonuniform
medium

SC((u) = (2w'e'/mcq) pfS((u), (6)

We picture the 6p bound state of an isolated atom
going over to an excitonic band at low densities,
whose energy distribution is determined by (i) the
long-range dipolar interaction with all the atoms
which may be approximated by a uniform back-
ground with the appropriate density p, and (ii)
short-range interactions and adjustments to the
uniform dipolar interactions due to the neighbor-
ing atoms which must explicitly take into account
density fluctuations and clustering phenomena.
Such interactions in mercury are expected to low-
er the energy of the "6P exciton" level relative
to the ground state, and therefore the low-energy
tail of the optical absorption will be due to ex-
citation into exciton levels of relatively dense
clusters (compared to the mean density). At
low densities these can be treated as isolated ex-
cept for an overall energy shift due to the long-
range dipolar interaction mentioned above.

Thus we visualize optical absorption in low-
density mercury to be due to excitonic and con-
tinuum states of isolated clusters of differing
sizes. Such a picture, we believe, not only pro-
vides a quantitative description of the low-ener-
gy-absorption tails of both excitonic and continuum
levels, but should also give a semiquantitative
estimate of the optical conductivity over a rea-
sonably wide range.

When light of frequency co passes through a uni-
form medium of absorbers, the absorption co-
efficient [inverse decay length of the intensity
f„(w) =Io(&u)e '"'"], is given by '3

where p is the density of absorbers, S(e) is the
density of excited states per unit energy at &u, f
is the oscillator strength of the transition, g is
the real part of the refractive index, e and m are
the electronic charge and mass, and e is the
velocity of light.

The optical conductivity is given by

o((u) -=(qc/4w)K((u) = (n.e'/2m) pfS(~),

and satisfies the usual conductivity sum rule'

J mNe'
g((d)d(d =

0 2m '

where N is the number of electrons per unit vol-
ume (= 2p, if core electrons are excluded).

In order to generalize Eq. (7) for the case of
nonuniform density, we define a "clustering vol-
ume" v, whose dimensions are determiried es-
sentially by short-range interactions and screen-
ing effects (in the case of denser clusters) within
which interactions are important, and beyond
which the uniform-density dipolar-interaction
approximation is adequate. Then the statistical
distribution of energy levels of the system will be
determined by density fluctuations within this
clustering volume v, and the result corresponding
to Eq. (7) is easily seen to be

me2 1
o(m) =

2
—g P„(n) [f„"S „'*(e)+f'„S'„(u)), (9)

n

P„(n) is the probability of finding n atoms in the
clustering volume v, f'„*and f„' are the oscillator
strengths for the exciton and continuum levels of
the n-atom cluster, and S„'"(&u) and S'„(~) are the
corresponding densities of states with the appro-
priate normalization, i.e. , the numbers of atoms
in the cluster. (Alternatively, of course, the
number of atoms could be incorporated into f„"
and f„'.) We include only the 6P-exciton (the low-
est bound excited state of the atom with most of
the atomic oscillator strength) and continuum lev-
els in our model. Such a description appears to
be entirely adequate for the range of densities in
which we are interested (1 ~ p s 5 g cm ). We
develop expressions for the various terms enter-
ing Eq. (9) in the next section.

B. Probability distribution of clusters

The probability of n-atom clusters in a volume
v depends on the nature of the interatomic forces
in the ground (6s') state of mercury atoms. Ab
initio calculations' of the electronic state of Zn~
and extended to Hg2 show that two mercury atoms
in the ground state have a repulsive hard-sphere
interaction with a very weak attractive tail. Fur-
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P' "'(n) = [(pv) "/nl]e '" (10)

In the case of a gas with a hard-core repulsion,
taking into account only excluded-volume effects,
the corresponding result turns out to be (see the
Appendix)

(1 —pv)'~' '

where v is the excluded volume per atom. Since
the above formula does not take into account con-
figurational misfits and small voids, the volume
v should be chosen to be somewhat larger than the
actual volume per atom in the close-packed ar-
rangement. We use E(l. (11) for the probability
distribution in mercury.

ther confirmation of the unimportance of the attrac-
tion comes from the experimental determination'6
of the binding energy of Hg2 as 60 + 3 meV, which
is a factor of 3 smaller than the temperatures
(-2000 K) at which the experiments have been car-
ried out. Viscosity and equation-of-state data
are also quite well fit by a hard-sphere gas mod-
el "

For an ideal gas the probability of finding n
atoms in a volume v when the mean density is p„
is given by the usual Poisson distribution:

oscillator strength and are not important for p
&1 g cm . The orbital degeneracy of the (three)
atomic p levels plays an important role by prov-
iding a means of spherically averaging over con-
figurations and allowing statistical methods to
be used. However, the results of this three-or-
bital-per-atom system may be mapped on to a
one-orbital-per-atom system by redefining the
statistical averages of V and ~, and we need con-
sider only a nxnmatrix.

V,.&
and 4, &

have a distribution determined by
the volume g, and to a lesser degree (which we

neglect) by n (because of the dependence on or-
thogonalization of basis states). Effects of con-
figurational restrictions imposed by the hard-
core potential for larger n on V,-& and 4,-,- need not
be taken into account because of the extremely
rapid. drop of the probability of n-atom clusters
with increasing n. The distribution of eigenvalues
A. of H depends in a complicated way on V, &

and

6&&, however, the mean value and the mean-square
deviation are simply calculated by using the in-
varianee properties of the trace and the sum of the
squares of the elements:

(13a)

C. Exciton states of the cluster I: Energy-level distribution ((~, ),
-

(13b)

The excitonic levels of the n-atom cluster will
be given, using a tight-binding linear-eombination-
of-atomic-orbitals (LCAO) description, by the
eigen values of the nxn Hamiltonian matrix H
with elements (no summation unless explicitly
shown):

where a prime in a summation denotes omission of
the i=j terms.

Assuming that each atom in the n-atom cluster
interacts with z others, we may define n-in-
dependent average values

H„=Ep(p) +Q Vgg, (12a)

(12b)

where V,&
and 4,&

are the diagonal and off-diagonal
matrix elements of the Hamiltonian between the
orthogonalized "basis states" with the 6P excited
electron (exciton) on the ith and jth atoms. E,(p)
contains the energy shift due to the long-range
dipolar interactions [E(l. (5)].

Note that we consider in this section only hopping
of excitons between atoms; states in which an elec-
tron alone is transferred from one atom to another
(charge-transfer states) are treated in the context
of continuum states.
%e neglect the 6p triplet levels as they have low

and thus obtain

!(.= Eo + z(V)

and

(15a)

(b.!()'=Z((b. ') + (V') —(V)') -=85'. (15b)

The distribution of eigenvalues of the nxn has
been calculated only for the case of Gaussian-
distributed independent random elements in the
limit of large n. ' The result is a distribution
which is semicircular with tails which are prod-
ucts of a Gaussian and Hermite polynominals.
For elements that are not totally independent, the
task of obtaining the distribution from first prin-
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ciples is clearly impractical. We have there-
fore taken the distribution to be a Gaussian with
the correct mean and width:

(16)

where the normalization has been chosen to give
the correct number of levels, i.e. , n.

The dependence of z, the average number of
interacting neighbors per atom, on n, the num-
ber of atoms in the cluster, is limited by physi-
cal constraints. If each atom interacted with
each other, as would be reasonable for small n
(when the freedom to orient the p orbital could
be taken advantage of ), z=(n-1). However, for
dense clusters, z is essentially the coordination
number and should be 12 at close-packed density.
A simple interpolation is

with

z = (n-1)/[1+ o.'(n-1)], (17)

(18)

(v is the excluded volume per atom), chosen to
satisfy the close-packed constraint. It turns out
that Eq. (17) predicts, for intermediate n, z of
order 2e. This is reasonable because for less
dense clusters, most of the atoms are on the sur-
face and consequently interact with only about
one-half the atoms in the cluster. We therefore
adopt Eq. (17) for our calculations.

D. Exciton states of the cluster II: Oscillator strength

In the dilute limit where only "one-atom clus-
ters" are important the oscillator strength of the

6p exciton is simply the atomic value [Eq. (4)]:

where ~ is the energy of the excited atomic 6p
state and

~
p,

~

the dipole matrix element. As the
density of the cluster is increased, three effects
take place, which cause a decrease in the oscilla-
tor strength of the exciton line. First, there is
a lowering of the 6p level due to attractive inter-
actions in the excited state, ' i.e. , the (g in Eq.
(15a) is negative, which reduces the oscillator
strength. There is also a change in the dipole
matrix element

I p
~

because of modification of the
basis wave functions. Finally, there is a reduc-
tion in the oscillator strength because there is a
finite probability of finding the electron and "hole"
on different atoms due to increasing exciton size.
The last effect is absent in the Frenkel picture
which we have adopted. Also, for the Frenkel

picture to be valid, the matrix element should not
change much, and we would expect the change in
oscillator strength to be dominated by the change
in energy of the transition. We indeed. find that
using (&u)„„„„in Eq. , (4) correctly estimates the
oscillator strength under the exciton peak in the
optical conductivity as deduced 'from ref lectivity
data for p -4 —5 g cm within about 15~/o. This
may be due in part to fortuitous cancellation of
the other two effects; however, we note that the
exact nature of the variation of oscillator strength
has little effect on the absorption edge since the
absorption strength varies over three orders of
magnitude within an energy of 1 eV. Also errors
on the (10-20)% level in the optical conductivity
are not important since the model is itself of
semiquantitative rather than quantitative nature
at higher energies. Therefore we adopt Eq. (4)
for the oscillator strength of the exciton level with
(d replaced by the mean level energy.

E. Absorption by continuum states

In the dilute limit, the continuum states lie above
the ionization potential of 10.4 eV. As the density
increases the continuum states move down in

energy. One estimate of the bottom of the con-
tinuum states E, can be made using the activation
energy for dc conductivity. 1his gives the bottom
of the band of extended one-electron states but
there will be a tail of localized states to lower
energy. We will return to this tail below.

The dc conductivity can be written

o(p .T) =so(p ) exp[-E,(p„)/2ksT],

and the prefactor 00, the conductivity at the mo-
bility edge, has been estimated on dimensional
grounds by Mott' to be oo-250Q ' cm ~.

Unfortunately, because of the limited tempera-
ture range over which experiments can be per-
formed, E, cannot be determined from the tem-
perature variation of o(T). However, o changes
over six orders of magnitude from a density of 3
to 8 g cm, over which range the variation of 00
is expected to be much less since it should scale
roughly inversely with the average separation.
Taking cro(pg to be independent of p may there-
fore provide a reasonable estimate of E,, utiliz-
ing the fact that E,=O for p =8.5 g cm 3. De-
termining E,(p„) as described above from the con-
ductivity data ' ' and the point E,(0) = 10.4 V, we

obtain the following interpolation for the bottom of
the band of extended states

E (p ) —0.6 (8.5 —p ) + 0.0085(8.5 —p )3,

p„&8.5 g cm 3, (20)
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where E, is in eV and p is in g cm . With Eq.
(20) for the gap, we get oo-1000 ' cm ' which is in
good agreement with the estimates of Mott" based
on thermopower, conductivity, and Hall-coeffi-
cient data, and with the estimate of Mott and
Davis' for a mobility edge.

The absorption into the localized states in which
the excited electron is confined to a cluster will
be dominated by states in which the hole is con-
fined to the same cluster (charge-transfer states).
Such states can be important even in the pair spec-
tra in some systems. Capizzi et al." have found
that for P donors in Si the lowest absorption band
from'pairs of donors arises from the D'-D
charge-transfer state. In the present case the .
corresponding Hg'-Hg pair state is not the lowest
pair state. Since Hg is divalent the Hg state is
not bound and scattering experiments' place its
energy at +0.63 eV. A simple estimate neglect-
ing overlaps gives an excitation energy (in eV)

E„g+ „g-(R) = 11.06 —14.4/R,

expressing B, the separation of the Hg atoms in the
pair, in angstrOms. The value of R at which
E„,+ „;crosses the atomic 'P, state is 8=3.3 A.
Unlike in the case of hydrogen, this distance is
close to the hard-core diameter. Further, at that
distance the states derived from Hg('P, ) —Hg('So)
are lower in energy and most of the oscillator
strength is the state 0„[Z„(nonrelativistic)]. which
does not have much admixture of the charge-trans-
fer state. The divalent nature of Hg leads to dim-
inished importance of the charge-transfer states
relative to the monovalent systems.

We expect however that charge-transfer states
in a cluster will give rise to optical absorption
below E„.the energy to the mobility edge. To
take this into account we simply treat the cluster
as though it had a threshold at an energy equal to
E,(p'„), vhere p'. is the density of the cluster, '3

and then convolute the density of states of the
electron and hole to obtain the line shape.

In a random (amorphous) cluster, there are no
restrictions on the absorption of light corres-
ponding to conservation of crystal momentum, and
therefore the convoluted density of states S'(&)
is a reasonable representation ' of the absorption
edge:

aO-Ec

S„'(&u) ~ dEE' '(E+E, —&)' '~(&-E,)
0

&u ~E,. (21)

We assume therefore that S„'(a&) rises in a para-
bolic fashion from E,(p') for 1 eV, and saturates

after that. We take a reasonable density-indepen-
dent bandwidth =5 eV, which suffices for illustrat-
ing the qualitative behavior of the contribution of
continuum of localized and extended levels to the
optical conductivity below 5 g cm . Further, the
tailing of the continuum optical conductivity into
the exciton levels at the low-energy side is rel-
atively insensitive to the choice of shape of S„'(&o)

at the high energy end or the cutoff. We fix the
proportionality factor in Eq. (21) (which must
scale as n, as for the exciton case), and the con-
tinuum oscillator strength f„' by satisfying the
conductivity sum rule [Eq. (8)] for each cluster.
We are now in a position to obtain the parameters
of our' model from a fit to experiment and com-
pare its predictions with other results.

IV. RESULTS AND COMPARISON WITH EXPERIMENT

In order to make comparison with experimental
data, we must first choose the cluster volume n
in which density fluctuations are most relevant,
and beyond which the uniform-density approxima-
tion is adequate. Clearly density fluctuations far
away from an atom do not affect the 6p level even
through the long-range dipolar forces. This is
because density fluctuations in the spherical shell
of atoms at a distance R (N-R') go as N -R
while the potential -1/R' so the net effect of the
entire shell falls off as 1/R'. On the other hand
phase-space factors as well as excluded-volume
effects suppress effects of density fluctuations
very close in. The major effect of fluctuations
occurs in the neighbors up to about two hard-
sphere diameters away, i.e. , about 5 to 6A in
Hg. The same result is obtained on the basis of
the range of the attractive part of the Hg-Hg po-
tential calculated by Hay et al. "

We present results for a cluster having a radius
of 5.4 A which contains on the average 2p atoms
at a mass density p (in g cm 3). Results for
clusters between 5 and 6 A in radius (n,„=1.6p„
to 2.7p ) are essentially the same except for slight
changes in the matrix elements of the cluster
Hamiltonian. For much smaller or much larger
cluster volumes, however, the fits are generally
worse. This is not unexpected, since smaller
cluster volumes neglect. next-neai. est-neighbor
effects, while for too big a cluster volume sub-
eluster effects within the cluster become impor-
tant. For the excluded volume v we must choose
a volume somewhat larger than the volume per
Hg atom at close packing because Eq. (11) does
not incorporate configurational misfits. We have
chosen v such that the maximum cluster density
corresponds to the normal density of mercury
p =14 g cm 3. As in the case of the cluster vol-
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ume„results are not sensitive to variation of v

within reasonable limits, i.e. , +15%. We then
compute the absorption tail [Eq. (6)], using an
estimate of the refractive index q based on an in-
terpolation between the result for Hg low-density
gas and estimates from ref lectivity data3 above
4 g cm 3. However, we reiterate that small er-
rors in the prefactor do not affect the nature and
position of the steep absorption tails and such er-
rors can be offset by a slight (logarithmic) cor-
rection in the matrix elements. We fit the data
at a density of 2 g cm 3 by adjusting the average
diagonal and off diagonal matrix elements, and
obtain V=-0.37 eV, 5=0.18 eV. We then compute
the absorption tail at densities of 1, 1.5, 3, and
4 g cm and the resulting curves are shown on a
semilog plot along with the experimental data of
Hensel and co-workers' and Ikezi et gL in Fig.
2. As can be seen both the steep exponential form
over three orders of magnitude and the density
dependence of the absorption edge are reproduced
very well by the theory. The slight differences
may in fact be due to uncertainties in equation of
state reflected in the experimental densities. We
emphasize that it is not possible to alter the posi-
tion and slope of the absorption edge independently
by adjusting the two average matrix elements,
and therefore both the near-exponential form and

matching slope on the semilog plot constitute a
nontrivial fit.

The experimental data above 3 g cm 3 show a
flat background absorption at low energies (S 1
eV) which is not present in the theoretical curves.
The background absorption rises sharply (expo-
nentially) with increasing density just like the dc
conductivity at a given temperature. This led
Hensel" to the suggestion of identifying the two.
However, the background absorption is at least
two orders of magnitude larger than that obtained
from the dc conductivity, and therefore the iden-
tification is not valid. In fact recent experiments
by Hensel show that the background absorption
for a given density (~3 g cm '

) increases as the
temperature is lowered from 1700 to 1550 C
while the dc conductivity decreases. This sug-
gests that the proximity of the critical point (p,
= 5.3 g cm 3, T, =1500'C) may be important, and
that perhaps a small fraction of the mercury is
actually present in a condensed metallic phase.

In Fig. 3 we plot the optical conductivity o(e)
for three different derisities including both the
"exciton" and "continuum" levels using Eq. (9).
Up to p = 2 g cm 3, there is little overlap of the
exciton and c~~tinuum bands, while for higher
densities the tailing of the continuum and charge-
transfer levels into the excitonic band is evident.

&0&

o He

o Ik

FIG. 2. Fit to the 1ow-
energy optical-absorption
edge on a semilog plot over
three orders of magnitude
as a function of density.
The data are from Befs.
1 and 3.
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The-dashed line for p =5 g cm 3 is the optical
conductivity obtained from reflectivity data. ' While
the lowest band lies lower than the model predicts
(presumably because of neglect of mixing and lev-
el repulsion effects between charge-transfer and
Frenkel excitonic-type states), the qualitative
features with an upper and lower band of states
are quite similar to the experimental results.

Using the results of o(~), we plot in Fig. 4 the
energy-level diagram of the system as a fraction
of inverse average spacing (-p'~~). The figure
shows the shift of the bottom of the continuum
states as given by Eq. (20), and broadening and'

movement of the 6p singlet and triplet excitonic
states. As can be seen the triplet level is not
expected to be relevant for p ~1 g cm 3, while the
stronger singlet level is present, though with
reduced oscillator strength, even at 5 g cm 3, and
contributes both to the absorption edge and the
optical conductivity at lower frequencies.

0.5-

w (ev)
FIG. 3. Predicted form of the optical conductivity

0(fd) for three densities (solid line) along with experi-
mental result of reflectivity measurements (Bef. 3) at
p~= 5 g cm" (dashed line).
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I I
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FIG. 4. Energy-level diagram of mercury showing the

6p excitonic and continuum states as a function of in-
verse spacing (r= p 3) normalized to the result at the
metal-insulator transition (r~= 3.4 A). The widths shown
are the full widths at half maximum in 0(~); there is in
addition a near-exponential tail below that as seen in
Fig. 2 ~

V. DISCUSSION AND CONCLUSIONS

Theoretical interpretations of the optical absorp-
tion in expanded mercury have been given by
Devillers'2 and by Qverhof, Uchtman, and Hen-
sel. " Both works start with the one-electron band
structure at higher densities and continue to base
their discussion on the band structure even down
to densities as low as p -1 g em 3. A correct
description should extrapolate at low densities to
the atomic limit. The gap in the one-electron den-
sity of states extrapolates to the ionization po-
tential of Hg —10.43 eV, while the P, and 'I',
states of Hg which are the lowest absorption bands
are Frenkel excitons below the one-electron en-
ergy gap. Our approach has been to start with
the correct description in the dilute limit and dis-
cuss how it evolves as the density increases.

At low densities, the gap in the optical absorp-
tion will continue to be determined by the behavior
of the exciton which will be broadened and shifted
by clustering effects. If we look at a density p
= 1.5 g cm ', the difference between our theory
and those of Devillers and Qverhof et gl. is read-
ily apparent. Qur value for the exciton energy is
=5 eV and for the one-electron energy gap =7 eV
(see Fig. 4), while Devillers and Overhof et gl.
estimate a band gap of only 3.5 eV. We cannot
reconcile a collapse of a factor of 3 in the one-
electron gap at p = 1.5 g cm 3 with the calculated
energy spectra of Hg pairs. The band structure
obtained by Qverhof et al. at p = 1.5 g cm 3 has
essentially no energy dispersion of the valence
(6s) bands, in agreement with our assertion that
overlap effects are still small at this density and
that a localized picture of the ground Gs state is
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appropriate. Their band structure requires a
diagonal shift of &5 eV relative to free-ion values
and the origin of this large shift is obscure es-
pecially in light of the near-atomic nature of the
valence states argued above. We believe that if
the electron-electron repulsion is properly in-
cluded then the one-electron band gap will be
larger than their value and is as shown in Fig. 4.
If the absorption could be measured to higher ener-
gies then it would be easy to discriminate between
the two theories. Note, however, that Overhof
et al. argue that the activation energy in dc con-
ductivity is not much different from one-half the
optical gap even at this density. Substituting
Overhof's value of

E,(p„=1.5 g cm 3) = 3.5 eV

in Eq. (19) with o'0 -—1000 ' cm

o(p =1.5 g cm ', T=1800 K)

-1.3x10 3 0 ' cm ',

which is over two orders of magnitude larger than
any values in literature even at p = 2 g cm 3.

At densities of the order of 4 to 5 g cm where
ref lectivity data of Ikezi et pl. 3 clearly show
evidence for a broad but reasonably distinct low-
est absorption band centered around 2 eV, Over-
hof et al. estimate an indirect gap of 0.5-1.0 eV
based on a simple-cubic structure, which they
argue is appropriate for these low densities.
While the direct band gap is = 2.5 eV, there is no
reason for any k-selection rule in an amorphous
system to render the indirect transition for-
bidden. Thus even at these densities a descrip-
tion involving clusters with energetics deter-
mined as in atomic and molecular calculations
appears to be more appropriate. In view of the
results shown in Fig. 3, a somewhat more so-
phisticated picture properly taking into account
hybridization and level repulsion effects between
Frenkel exciton and charge-transfer states is
required above p =4 g cm 3;

In conclusion, we have shown that the steep ex-
ponential absorption edge seen in expanded fluid
mercury can be explained quantitatively on the
bases of a model of excitoni. c absorption in clus-
ters. Fitting two parameters to a single edge we
are able to correctly predict the density depen-
dence of the edge. It appears that the exciton
band persists to densities p =5 g cm 3 and is
responsible for the apparent closing of the optical
gap around this density. The transport data,
however, are governed by thermal excitation to
the mobility edge which lies above the one-elec-
tron energy gap, which in turn is larger than the
energy to excite an exciton, and thus lead to a

correct identification of the insulator-metal trans-
ition around p =8.5 g cm . The only feature of
the data we are unable to reproduce is the absorp-
tion plateau at energies below the edge ((1 eV) at
higher densities p &3 g cm 3, but the enhancement
of this feature as the temperature is lowered to-
wards the critical temperature of the gas-liquid
transition suggests that the plateau may be due to
absorption by small drops of Hg liquid which have
condensed in the fluid.

We remark finally on the doped-semiconductor
systems (e.g. , Si:P) where similar studies can
be carried out. The semiconductors have the
added advantages of (i) a wider temperature
range can be studied, thus E,(p) may be deter-
mined directly from o(T), (ii) the complication
due to hard-core repulsion are absent, and (iii)
uncertainties in equation of the state data as in
mercury are not present. There are, of course,
interesting differences such as the importance
of charge-transfer states due tothe monovalent
nature of the impurities, and these differences
have already been observed" in the absorption
structure at densities as low as to two orders of
magnitude below the semiconductor-metal trans-
ition in Si:P. Further work is continuing at
higher doping levels.
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APPENDIX: PROBABILITY OF FINDING n ATOMS IN A
VOLUME v AT A MEAN DENSITY p, WITH EXCLUDED-

VOLUME EFFECTS

Consider a random distribution of N atoms
(with excluded volume v per atom) in a volume Q.
The probability of finding n («N) atoms in a vol-
ume v («A) is proportional to the number of ways
of picking n atoms out of N multiplied by the prod-
uct of the volume available to each successive
atom as it is put within v or outside it:

n=l N-n-i

P„(n) =K"c„][ (v-mv)) ( [ (0-v-Mv))
m=0 x=0

N-1

v=0

(N —n)!n! g"„:~).„(0—v —Mv)

In the limit n/N, v/Q-O, we have
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Nl N"
(N- n)!n! n!

i (Q —v —Mv) - (Q —Nv)".
& h, iL

N=N-n

Thus

n! = exp[n inn-n+ —,
'

ln(2vyg)]

[ (1
— )=exp Q ln (1

—
)

m=0 m=0

~tl
VX.=exp Ch ln 1 ——
vk0

This gives

where
8-1

C =E (Q-u-Mv).
& i& L

M=O

Using N= pQ, where p is the mean density,

p.(n)=—,( ff (1
——),

where

(A1)

xln 1 ——

Evaluating C from the approximate relation (val-
id for pv» 1) f0~" dn P(n) = 1 by the method of
steepest descent, we get finally the result

(pv)" 1-pv "' " e "
n,! 1 —n,v/v (1 —pv)'~' ' (A3)

We emphasize, again, that Eq. (A3) is strictly val-
id only for pv and n large compared to unity, but
is fairly good even down to n = 3. For v-0,

~v /&is determined from the relation Zr„.o P(n) = l.
To simplify further we need to make the assump-

tion pv»1, so we may use large-n limit for nl
and convert sums to integrals to evaluate them.
We use

(
1-pv '" e '"

1 —nv/v e" '

so one recovers the ideal gas form

P.'""(n) = (pv) "e '"/n! (A4)
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