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Intra-atomic correlation energies in cubic metals with canonical d bands
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A calculation of the intra-atomic d-band correlation energies on the basis of a Hubbard in-

teraction between d electrons is presented. The calculations are performed for canonical d bands

in the face-centered and body-centered cubic structures, It is sho~n that using a single-particle

approximation of the ground state, the correlation energy can be represented as a function of
the occupation numbers of the five canonical subbands. The correlation energies are calculated

as a function of the average number of d electrons. It is shown that the results are very dif-

ferent from Friedel's simple model of correlation energies which neglects band-structure effects.

I. INTRODUCTION

There are mainly two methods for dealing with the
problem of correlation energies due to electron-
electron interactions in d-electron metals. The first
one, well known as the density functional (DF) for-
malism and its extension, the spin-density functional
(SDF) formalism2 show that the contribution of
electron-electron interaction to the ground-st'ate ener-

gy of an inhomogeneous electron gas can exactly be
expressed as a functional of the electron density
(spin-density matrix for SDF). In order to make
quantitative calculations, however, one is forced to
assume that the exchange and correlation functional
is local in the density. For nontransition metals this
approach is very successful in explaining the ground-
state properties, For transition metals, with their
highly localized d orbitals and hence strong variations
in the d-electron density, ii is more questionable
whether it represents an equally satisfactory theory.
The second and older method puts more emphasis on
the localized nature of the d electrons' . in the Hub-
bard model' it is assumed that the electronic
Coulomb interaction can be replaced by a "Hubbard"
interaction which contains only interactions of d elec-
trons that occupy Wannier states at the same atomic
site. However, most of the quantitative calculations
in this case have been restricted to unrealistic model
calculations with the d band replaced by a single s
band.

In this work we want a more realistic approach.
We will calculate the intra-atomic correlation energy
of d electrons whose interaction is described by the
Hubbard Hamiltonian and which are assumed to be
in a ground state described by the. canonical d bands
of Andersen et a/. ' ' We present this correlation en-
ergy as a function of the average number of d elec-
trons and for the two cubic structures, the face-
centered (fcc) and the body-centered (bcc) ones.
The assumption of a one-electron ground-state im-

plies that this calculation is meaningful only in the
case where the Hubbard interaction parameter U is
smaller than the d-band width K Our calculations
can be considered as a quantitative extension of
Friedel s old qualitative estimations8 9 of intra-atomic
correlation energies which do not take into account
band-structure effects.

In Sec. II we present a short review of canonical d
bands. Section III defines our model and describes
the caIculation of the correlation energy. In Sec. IV
results are presented and Sec. V gives the conclu-
sions.

II. CANONICAL BANDS AND
DENSITY OF STATES

In our approach to calculate the intra-atomic corre-
lation energy we have to start from single-particle
states for the d electrons. We want to do the calcula-
tion for the complete 3d transition-metal series in a
simplified way so that the correlation energy, except
for a scaling factor U, depends only on the relevant
crystal structure and the number of electrons in the d
band. In order to achieve this we need to have a d-

band structure whose overall shape depends only on
the crystal structure and not on the valence of the
particular element. Tight-binding schemes, like the
one employed by Asdente and collaborators, ' " have
the disadvantage of requiring at least four parameters
(one splitting and three overlaps). Therefore our na-

tural choice is to use the scheme developed by An-
dersen and collaborators ' in which single-parameter
canonical band structures were obtained. In this gen-
eral band theory of transition metals Andersen has
shown that the energy bands in closely packed crys-
tais can be constructed by using canonical bands that
depend only on the structure. They already contain
the main topological features of the real bands which
are easily obtained by specifying certain "potential
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functions" for every type (s,p, d, etc.) of band. In our
calculations we will neglect the effect of the s-d hy-
bridization on the band structure and simply assume
that the presence of a wide s band leads to a nonin-
tegral number of electrons in the narrow and more
correlated d bands.

We describe only the calculations for fcc and bcc
structures, which have only one atom per unit cell
and correspond to symmorphic space groups. The
other common structure in transition metals, the
hexagonal close packed, contains two atoms per cell
and the nonsymmorphic character of the group
makes determination of single-atom occupations
much more difficult.

All the information we need is contained in the
canonical structure matrix for the d band

S (k) = g exp(ik K)S (R)
RWO

(2.1)

where

g ( 1)m+1

Here m, m denote each of the five possible d states, k
is a wave victor in the first Brillouin zone, and the
summation runs over all lattice vectors of the first,
second, and third nearest-neighbor shells. The struc-
ture matrix S in real space is given by

(R) =g (4rr)' 'I'4~ (R)(R/s) ', (2.2)

an average number n of d electrons; and C0 is the
center of gravity for the d band. In the linear ap-
proximation for P(E) these canonical bands can also
be expressed in the familiar tight-binding .

language. ' " In this case the canonical structure
matrix is proportional to an effective tight-binding
Hamiltonian in the two-center approximation. If
U i( k ), considered as a matrix, is the m com-

ponent of the m' eigenvector (m, m'=1, 2, 3, 4, 5),
then the d-band Bloch functions can be expressed as

(k, r) = X U (k)$ (k, r) (2.6)

D„(E)=, , J, , iVE„-„! 'ds, ,
-

vk
(2.7)

where $ (k, r) are suitable linear combinations of
atomic orbitals.

As we will see later on, the calculation of correla-
tion energies requires the knowledge of the occupan-
cy of each individual d spin band v(l ~ v ~10) for a
given Fermi energy. The band index v labels the d
bands according to increasing energy, i.e.,
E,-„E2k -E„0-„for each k in the Brillouin zone,
It is well known that this is identical to the analytical
continuation scheme in which bands are defined by
starting from any k point without degeneracy and
analytically (e.g. , with k p perturbation theory) con-
tinuing to any other k points explicitly avoiding
points or lines of degeneracy. The partial densities of
states (PDOS) of these ordered bands are given by

10 (4 y~)!(4—~)l
(2+ m')! (2 —m')! (2+ m)! (2 —m)!

(2.3)

where Q = N Q~ is the crystal volume and SE a con-
stant energy surface. The total density of states
(DOS) is simply the sum of the individual subband
contributions

10

p, = m —m, R =R/R, and s = (30'/4m)'i' is the
%igner-Seitz radius of the unit cell with A~ the prim-
itive unit-cell volume. From Eq. (2.1) the canonical
d-band energies can be obtained by simple diagonali-
zation. If we denote the eigenvalues of Eq. (2.1) by
S (k), the d-band energies E(k) of a specific transi-
tion metal are obtained by the scaling procedure

S.(k) =P(E) . (2.4)

P (E) = (E —Cp) Sp/ W (n) (2.5)

Here S0 is a dimensionless constant and denotes the
width of the canonical band; W(n) is the actual
bandwidth in eV of a specific metal characterized by

Here P is the potential function for the d band. It is
monotonically increasing and depends on the specific
d metal under consideration. In the case of narrow d
bands, the potential function will vary slowly over the
width of the band and we can approximate it simply
by a linear function of E

D(E) = X D„(E) (2.8)

EF
n„(EF) = J D„(E)dE

*

Q f'F
O~(EF —E -) d3k

(2 )3 J F vk

For every subband v, n„(EF) is a monotonically in-

(2.9)

The PDOS functions for bcc and fcc are shown in
Figs. 1 and 2. Since we are dealing with the
paramagnetic state, the ten spin bands coalesce into
five pairs of subbands.

Main peaks in each of the five d subbands are
clearly visible. For this calculation and all subsequent
similar calculations we sampled the Brillouin zone by
means of the tetrahedron method, described in Refs.
12 and 13, with a mesh of 1111 and 3333 micro-
tetrahedra for bcc and fcc, respectively.

%e also need the integrated PDOS, that is the par-
tial number of states, n„(EF), defined for each sub-
band by
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3C=T+ Vc

T = X Tvij&v(~vg

(3.2)

(3.3)

1

r

(3.4)

Here T is the one-electron band energy in the Wan-
nier representation, which we will not need explicitly
in the following; V, describes the electron repulsion
in Hubbard's approximation, (ij ) denote lattice sites,
(vv') denote one of the ten d-band spin states. The
occupation number operators for these states are de-
fined by

fl„=8„;Qy], tl = ~ Pl„]
V

(3.5)

With this definition and the anticommutation rules
for Fermi operators, the interaction can be written

V, = —, UX n;(n; —I) (3.6)

B. Correlation energy

According to Eq. (3.2), the total ground-state ener-
gy of the d-electron system is given by

Ep, (n) = (T) + (V,) (3.7)

where the angular brackets denote the expectation
value with respect to the ground state. This can be
split into

where R; is the lattice site and P„(k, r ) is the Bloch
function corresponding to the canonical subband
E„(k). Because all the subbands are connected at
points or along lines of degeneracy, the Bloch func-
tions in Eq. (3.1) exhibit singularities at these degen-
eracies. Consequently the Wannier functions will not
decay exponentially around their relevant sites but
rather have tails decaying with a power-law behavior.
Ho~ever this problem can be controlled as shown in
Refs. 14 and 15. Since we need the Wannier func-
tions only for formal arguments, we will not discuss
this further. In general the Wannier states defined
by Eq. (3.1) have no definite symmetry. However it
has been shown" that the freedom in choosing a
phase factor for the Bloch functions can be used to
give the Wannier orbitals a definite symmetry charac-
ter. In fact an appropriate choice for the phase factor
leads to Wannier orbitals which are one-dimensional
representations of the point group of the crystal.

If the creation and destruction operators of Wan™
nier states are denoted by a t, and a„; the Hamiltoni-
an for the d electrons reads

where

Ep(n) = NC—pn + V,p=N(Cpn +
2 Un(n —I)], (3.9)

Ep(rt) = (T) —NCpn

E,(n) = (v, ) —v„.
(3.10)

(3.11)

Therefore the correlation energy is simply proportion-
al to cr, the square of the standard deviation for the
probability distribution of the number of d electrons
at a given site.

From Eq. (3.12) it is obvious that the energy E,(n)
is minimized by choosing a ground state with a fixed
number of electrons per site and allowing no fluctua-
tions. Such a state however cannot minimize the
band energy term (3.10) unless we have a full or
empty d band, or the various subbands, either com-
pletely full or completely empty, are nonoverlapping.

An upper bound for this correlation can be ob-
tained by means of a single determinantqtl wave func-
tion Ipp), which minimizes Eq. (3.10). This will

overestimate the infra-atomic. interaction energy be-
cause of the inherent large fluctuations o(n) at-.
tached to it. We will now prove that the calculation
of E, (n) with Igp) can be easily accomplished if we
know the integrated PDOS functions n„(Eq) defined
in Eq. (2.10). We first write Igp) as a single antisym-
metrized product of single-particle Bloch states

(3.13)

Here Ep(n) denotes the sum of the atomic configura-
tion energies of isolated d atoms: V,p —=

2
NUn(n —I)

is the mean atomic interaction energy and Cp is a
negative constant so that the configuration energy is
described by a quadratic function of n. This parabola
defines our zero energy level for any number of d
electrons, and all energies will be measured relative
to this zero level in what follows. In the other two
terms of Eq. (3.8), Ea(n) is the total band energy
and E,(n) is the total correlation energy in the d
bands. In the atomic limit, when T„,& = Cp5,&

in Eq.
(3.3), both Es(n) and E,(n) vanish. For finite hop-
ping elements T„&, Es(n) will be different from zero
due to the d-band dispersion and E,(n) is nonzero
because hopping processes lead to fluctuations in the
number of d electrons in a given site, i.e., in this case
the number of d electrons on a given site is no longer
equal to a well-defined integral number but has to be
described by a probability distribution around its
mean value X. In fact, the use of Eq. (3.5) and
n = (n;) yield

E,(n) = —U X((n; ) —(n;)2) =
2

NUo2(n) . (3.12)
I

Ep, (n) = Ep(n) +Es(n) + E,(n) (3.g) Here ctk (c„k) are creation (destruction) operators
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for a Bloch state with wave vector k-and band index
v. They are connected to the Wannier operators a t,

(a„,) via transformation (3.1)

Finally, since

(c„k c„&-„+&&)=0 for q &0, 0.18)

a„,= N ' 2 Xexp(-ik K;)c„-„
k

(3.14)
we find

To calculate for any operator A (ri;) the expectation
value (A ) = (goad i@0), we perform a Fourier
transformation for the number operators:

n„„=N 'i' /exp(iq R,)n„;

(ri~) =N 'i'8-0 X (ct-„c„-„)
v, k

In addition

(3.19)

PL

tl~q= Q 5 ~qvq

By means of Eq. (3.14) it is easy to show that

(3.15)

(3.16)

N ' X ( „-„„-„)= N ' Xe(E E„-„)—
k k

= n„(EF)

Consequently

(3.20)

and the use of Eqs. (3.15) and (3.12) yields

E,(n) =
2

U X ((n -n -) —(n-) (ri -)) . (3.17)

(n-, ) = (n -, ) = N' '5~on (EF)

For the first term in Eq. (3.17) we use

(3.21)

q ~ = ~ „q (~) = ~ Cvk Cv(k+q) ~k C (k q)I I~I
vv vk, v k

which, by standard use of anticommutation rules, yields

(3.22)

(n n ) =N ' I (ct-„c„-„)—N t X (ct-„c„-„)(ct&-„&c„&-„+&)+N ' X (ct-„c„k)(ct „ic i~)8 0, (3.23)
vk

from which we finally obtain

E,(n) =
2

NU Xn„(EF)[1 —n„(EF)] (3.24)

E„-„=Ek, n„(Eq) = n/10 for all v

This leads to a correlation energy

(3.26)

r EF
Es(n) =J D(E)(E —Co)dE (3.25)

where the density of states has been defined in Eqs.
(2.7) and (2.8). It is instructive to discuss our funda-
mental formula (3.24) for two especially simple cases.
In the first one let us assume that all ten d subbands
are completely degenerate, i.e.,

Hence we find that the total correlation energy can be
expressed as a sum of individual subband contribu-
tions, each of them having a quadratic dependence as
a function of the integrated PDOS, n„(EF). The con-
tribution of a subband v to E, vanishes if n„=0 or
n„=l, i.e., if the subband is either empty or com-
pletely filled, as one intuitively expects. It reaches a
maximum of

8
NU per spin band in the half-filled

case, i.e., for n„= 2. Because n„(EF) is an implicit

function of n according to Eq. (2.10), E, can be con-
sidered a function of n for the canonical bands. For
completeness we also give the expression for the
band energy Es(n)

This case corresponds essentially to Friedel's
model, and it is characterized by a binomial proba-
bility distribution for the number of d electrons at a
given site. Comparison of Eqs. (3.25) and (3.11)
yields o2i(n) =n(1 —O. ln) This is ind. eed the square
of the standard deviation for a binomial distribution
function; E,I(n) has a simple parabolic shape as func-
tion of n. In the second, complementary case we
consider d subbands that are completely separate in
pairs (subbands which differ only in spin direction
are still considered to be fully degenerate. ) For a
given number of electrons per site define

1R(n) =
2

(n —no) where no is the largest even integer
smaller than n. Then we obtain

E,2(n) NUR (n) [1 —R (n)]

E,2(max) 0.25NU
(3.28)

E, (n1) - , NUn(1 —
—,'0 n—), Ei( mxa) =1.25NU .

(3.27)
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the fcc and bcc structures. The maximum value we
have calculated, E,(max) /W -0.4U, is to be com-
pared with Friedel's maximum value of 1.25U. Real
band-structure effects are thus responsible for
spreading out the d subbands and consequently they
reduce the interaction energy by approximately a fac-
tor of 3.

It is also instructive to look at the difference
EE,(n) in the correlation energy between both cubic
structures (see Fig. 5). In regions with hE, & 0
(hE, (0) the correlation energy by itself would favor
bcc (fcc) structure. We can see that each structure is
favored by the correlation energy in roughly two in-

tervals. For n & 8 the two structures have approxi-
mately the same correlation energy. Of course which
kind of structure is actually preferred for a specific
number of d electrons is not determined by the corre-
lation energy alone but rather by the total ground-
state energy, i.e., the sum of band and correlation en-
ergies

0.15

0.10

0.05

hE/U o

—0.05

—0.10

—0.15
0 6 8

FIG. 5. Difference in the correlation energy of the fcc
and bcc structures. 4F- &,(fcc) —&,, (bcc).

10

E,(n) 8'(n)Es(n) + U(n)E, '(n) (4.I)

V. CONCLUSIONS

In our calculations we have shown that the intra-
atomic correlation energy in a d band with Hubbard
interactions is very different from the prediction'of
the simple Friedel model which neglects band-
structure effects. On one hand the maximum value
of the correlation energy as a function of d-band oc-
cupation is reduced by approximately a factor of 3
with respect to Friedel's value. On the other hand it
has no longer a simple parabolic shape but rather
sho~s a two-peak structure due to the splitting of d
bands in eg and tq~ symmetries of the cubic struc-
tures. Furthermore we have seen that the difference
of correlation energies between fcc and bcc structures
changes sign frequently as a function of d-band occu;

Here E~ and E,' are the band and correlation ener-
gies, in units of bandwidth Ip'(n) and on-site
Coulomb interaction U(n), respectively. For any

specific d metal 8', Ucan be determined by pho-
toelectron and Auger electron spectroscopy. ' The
band energy Es(n) has been already calculated in
Ref. 6. Kith our calculated-correlation energy we
could now in principle discuss the question of relative
stability of the bcc and fcc structures as a function of
n and the parameter U/ W. This is in fact an interest-
ing line for future investigations.

pation and hence the correlation energy alone would
prefer different structures for different d-electron oc-
cupation numbers.

Several extensions of our calculations are possible.
%'ith the band energy calculated in Ref. 6 we can
determine the total ground-state energy and then one
definitely can consider the stability question for the
two cubic structures. Furthermore, by doing spin po-
larized calculations one can discuss th8 possibility of
a ferromagnetic ground state. In order to get rid of
our condition that the Hubbard parameter is appreci-
ably smaller than the bandwidth one could use a vari-
ational ground state for the calculation of band ener-

gy and correlation energy rather than the simple
determinantal state. In such a variational ground
state the components with large charge fluctuations
would be reduced, the reduction depending on a vari-
ational parameter which is determined by mini&izing
the total ground-state energy. Such an approach has
been successfully used in calculations for finite Hub-
bard models" and could be also applicable to our
case.
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