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The effect of a magnetic field on the transition temperature of a spin-Peierls transition and
the wave vector of the lattice distortion is calculated using the theory based on the Luther-
Peschel-type treatment of the spin-correlation functions. Comparison with experiment offers
the prospect of testing the predictions of this theory. A brief discussion of the nature of the
commensurate to incommensurate transition is included.

I. INTRODUCTION

Recently, Cross and Fisher' developed a new
theory of the spin-Peierls transition using a Luther-
Peschel?-type treatment of the spin Hamiltonian that
should be better than the "Hartree" treatments of
previous works.>™ We also showed that the mean-
field nature of the transition observed® in
(TTF)CuS4C4(CF;)4 (TTF is tetrathiafulvalene)
could be understood in terms of a phonon spectrum
already (at high temperatures <200 °K) three dimen-
sionally softened at a wave vector coincidentally on
the plane of wave vectors further softened at low
temperatures by the one-dimensional spin interac-
tions. The theory developed from these two starting
points should, we suggested, give a realistic descrip-
tion of the Heisenberg spin-Peierls transition in
(TTF)CuS4C4(CF;)4. The most serious approxima-
tion is probably that of weak coupling (7, << J with J
the exchange interaction) only moderately well satis-
fied in this compound (7./J ~0.15). The
corresponding gold compound (7,./J ~0.03)% is more
weak coupling, but as yet less experimental informa-
tion is available on it.

Although the underlying microscopic description
we developed for the phase transition was significant-
ly different from the previous works, the manifesta-
tions in most macroscopic quantities were predicted
to be little changed from these works. The point is
that in weak-coupling approximations the ratio of
thermodynamic quantities (e.g., susceptibility X,
specific heat) below T, to those just above T, will
usually turn out to be functions of only 7/7, that do
not look very different for different microscopic
theories, except for small numerical changes (e.g.,
slightly different values for the initial slope of AX/Xy
as a function of T/T,). These however we were not
able to accurately calculate within our theory. The
relationship of 7, to J in our theory is quite different
than in the Hartree theories, but depends on a micro-
scopic coupling constant as yet unmeasured. Experi-
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mental test of the new theory is not easy!

It turns out however that the effect of a magnetic
field on the transition temperature 7, involves only a
ratio of quantities, in which the poorly known multi-
plicative prefactor in our results drops out. The pre-
dictions are only sensitive to the form of certain corre-
lation functions that we explicitly evaluated. In fact
the magnetic field dependence of T, probes rather
directly the wave-vector dependence of the spin-
correlation function II. — a quantity that universality
arguments’ suggest should be exactly given by our
calculation for weak coupling. This behavior of the
field is easily seen from the equivalent pseudofer-
mion representation. There, a magnetic field, by
changing the filling of the fermion bands, moves
twice the Fermi wave vector 2k (where I, is most
divergent) away from the transition wave vector
(where T, effectively measures I1.). An exact probe
would preferably leave the filling unchanged, and
measure I, at nearby wave vectors. For small shifts
it seems reasonable to neglect this difference.

Comparison with magnetic measurements therefore
provides a good prospect of testing the theory. In ad-
dition, the large field behavior may give clearer proof
that the phase transition is truly a spin-Peierls transi-
tion. In this paper I therefore discuss in detail the
predictions of our theory for the transition tempera-
ture in a magnetic field. Bray® and Bulaevskii et al.®
have performed these calculations for the Hartree
theories, and the results presented here should be
compared with these papers. In this comparison it
should be borne in mind that in their approach
results differing by almost 40% in the effective field
(and therefore a factor of 2 in the coefficient of the
quadratic field dependence) may be obtained depend-
ing on the value used for the susceptibility above T,
— the exact susceptibility (as in Ref: 1), or the
larger, approximate Bulaevskii susceptibility (as in
Ref. 8). In our approach we use the exact suscepti-
bility, and the exact spin-wave velocity to define the
coherence length, and no such leeway exists.
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II. THEORETICAL BACKGROUND

In Ref. 1 we calculated the transition temperature,
approaching from above, as the temperature at which
the frequency  of the soft phonon becomes zero.
The frequency is calculated by a random-phase treat-
ment

0%(q) =0=Q}(q) +1I(q) , Q)

where ) is the phonon frequency in the absence of
magnetic interaction [and in (TTF)CuS4C4(CF3), is
assumed to already contain significant "soft" struc-
ture] and II is the relevant linear response function
of the spin system to the particular perturbation
given by the spin-phonon coupling. In Eq. (1) ¢
represents the wave vector along the spin-chain direc-
tion.

The wave vector for which Q(q) first goes to zero
as the temperature is decreased gives the lattice dis-
tortion just below the transition temperature (the
transition is assumed to be second order). Normally
the dominant g dependence of Eq. (1) would be ex-
pected to come from I1(g). Then for the spin-Peierls
transition in zero field a wave vector m/s (with s the
lattice constant) maximizes —ITI(g), and leads to a
lattice dimerization and a spin-singlet ground state.

A magnetic field favors a distortion at some other
wave vector, for which the ground state has a net
magnetization and lower magnetic energy. However,
two effects oppose this. First, since the commen-
surate wave vector is on a zone boundary, umklapp
processes strongly pin the distortion wave vector. In
addition, it is believed that in (TTF)CuS4C4(CF3),
03(q) has a pronounced minimum at ¢ = /s, again
favoring the commensurate state. To calculate this
effect it is convenient to parameterize the bare pho-
non frequency Qo(g) near this minimum as

Qo(1 + £4,09)'2, with Q the deviation of the wave
vector from w/s. Then &, acts as a phonon-induced
correlation length, also important in the discussion of
the mean-field nature of the observed transition (see
Ref. 1). It is the competition between these opposing
effects that I calculate in this paper.

The theory of Ref. 1, and also the Hartree
theories,>™ were developed in terms of an equivalent
pseudofermion representation (see these references
for details). The spin-% chain in no magnetic field

corresponds to a tight-binding pseudofermion band
which is half filled (a Fermi wave vector kr=w/2s).
In this representation, the Heisenberg chain, believed
to describe the experimental systems, differs from
the exactly soluble XY model by the presence of large
four fermion interaction terms. In Refs. 3—5 these
were treated by various Hartree approximations. In
particular, in the approximation used by Pytte’ the
Heisenberg chain in zero field behaves as an XY
chain with a renormalized energy scale. Our calcula-

tion! treats the interactions nonperturbatively, and
finds qualitatively different results for the response
of the spin system to.a lattice distortion.

The effect of a magnetic field on the spin-Peierls ’
transition is readily derived in the pseudofermion
representation. There, a magnetic field changes the
filling i

3(2kp) =2 LH | @
s J

with u the magnetic moment, and where the exact

zero-temperature normal-state susceptibility

Xy =N u?/7*J has been used. The use of the zero-
temperature value is consistent with the weak-
coupling assumption 7, << J used throughout. The
umklapp scattering is included by writing (with
g=m/s+Q)

M(g) =M.Qkr+Q —8) +MI.Qkr—Q-3) , (3)

where II, is the correlation function calculated in
Ref. 1 for linear bands without umklapp processes,
and the second term is the umklapp term. I have
written & for 8(2kr) — not to be confused with the
exponent of Ref. 1. Although the calculation of Il
in Ref. 1 is only strictly correct in the zero-field limit
(e.g., the symmetry argument used to relate z-z to

x -x correlation functions), I again appeal to the
weak-coupling assumption to justify the use of that
result for the fields of interest uH ~ T, << J.

The wave vector at which II, diverges continues to
be 2kr, no longer equal to 7/s in a field. Thus the
individual terms in Eq. (3) are no longer maximized
at Q =0. However, since II, is quadratic in devia-
tions from 2kr, by expansion it is easy to verify that
for small 3, the sum of normal and umklapp terms
remains largest at Q =0: this is the pinning at the
commensurate wave vector by the umklapp
processes.

Equations (1) —(3) completely solve the problem,
including the additional pinning due to the structure
in Q¢(q). They, together with expressions for I,
were derived in Ref. 1. Here I investigate their im-
plications in detail. The calculations are reproduced
in Sec. IIl. Those more interested in the results may
immediately turn to Sec. IV.

III. CALCULATIONS

Equation (1) may be rewritten

T, ‘ T
: = S Q@ - +7(EQ +8D1- 756007 .

(4)

where T2 is the transition temperature in zero field
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(Q =5=0). The function fis defined by

HC(2kp + 8q)

f(£8q) = TS

_ll‘(%-&-if&q)/I‘(i—) 2 )

TG +igs) T(3)

where the explicit result for II, calculated in Ref. 1 is
introduced. Here £ is a coherence length,
£=c/4nT,, and for c the exactly known long-
wavelength spin-wave velocity ¢ = %nls should be
used. It is also convenient to introduce a coherence
length & which is ¢ evaluated at 7. This is then re-
lated to the ¢, of Ref. 1 by numerical factors. A
convenient form for computational purposes is

- = . (n -+-%)x2
S = G + D

(6)

The function f(£Q) is plotted in Fig. 1.

To continue one essentially follows Leung’s!® cal-
culations for the Peierls system, except the functional
dependence here is different and we have an addi-
tional pinning term given by £,, #0. Thus Eq. (4) is
an implicit equation for 7,(Q,H) — note f depends
on T, through ¢. This must be maximized with
respect to Q, to give T.(H) and the optimum wave
vector for the transition ¢ =#/s + Q(H). As in
Leung’s work, I neglect any energy tending to pin the
wave vector at other commensurate wave vectors.
These much smaller energies may superimpose a step
structure onto the trend for the incommensurate
transition temperature that I calculate.

FIG. 1. Function f(£8), which gives T,/T2 implicitly for
the undistorted-commensurate transition (heavy line). The
dashed lines are the undistorted-incommensurate transition
lines, together with the distortion wave vector, which rapidly
approaches Q =3 (dotted line).

IV. RESULTS

Let us first suppose the transition occurs at the
commensurate wave vector (Q =0). This is always
true for small fields, and remains true in larger fields
if &,y is large compared with &, the intrinsic coher-
ence length. Then Eq. (4) reduces to’

T

_ | uH T
TO

a7T) T,

f ) )]

where the function fis plotted in Fig. 1. From these
results the direct dependence of the commensurate
T./TQ on H is easily calculated numerically (Fig. 2).

For small H the depression of T, is quadratic in the
field

AT,
79

_uH | ®
axT2|

=—144

Using the values for (TTF)CuS4C4(CF;)4, T.=12 K
and pu=1.9 x 1072 ergs/G, leads to the prediction
AT,/H*=-1.3 x10~* K/kG2. It should be em-
phasized that the depression of 7, quadratic in the
applied field immediately follows from the original
observation® of the decrease in magnetic susceptibility
below T,, together with the measured specific-heat
change,!! and does not give new information or addi-
tional evidence for the phase transition being truly a
spin-Peierls transition. Nevertheless, this may pro-
vide a more accurate measurement of these parame-
ters by which the theory may be tested.

For large fields the commensurate T, shows an
unusual reentrant behavior, that can ultimately be

FIG. 2. Explicit field dependence of undistorted-
commensurate (heavy line) and undistorted-
incommensurate (dashed line) transition temperatures. The
direct commensurate-incommensurate line is not shown.
Points are from experiments (Ref. 12) on
(TTF)CuS,C4(CF3)4: full circle with error bar, neutron
scattering; ® magnetization (no errors given). The fields
quoted are for this compound.
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traced to the increase of the intrinsic correlation
length as T~!. There is a maximum field in which
the commensurate spin-Peierls transition may occur,
given by uH /47 T2 =0.138, corresponding to a field
of about 157 kG in (TTF)CUS4C4(CF3)4

If the assumption Q =0 is relaxed Eq. (4) for
T./T2? must first be maximized to find the optimum
Q. As H is increased from zero Q remains zero (i.e.,
the transition is to the commensurate state) until a
critical field given by (cf. Leung)

2
EAN
Tc0

First considering the case where the additional pin-
ning is small, &,, —0, the critical field is defined by

£

9
3 -9

f " EH
47T,

f"(x) =0,

which, as can be seen from Fig. 1 is at x =0.145,
corresponding to 7./T%=0.77 and uH /47w T2=0.11
[a field of 125 kG in (TTF)CuS4C4(CF;)4. As the
field is increased beyond this value the wave vector
of the transition moves rapidly to the value of 2ky
for the field as shown in Fig. 1, where also the transi-
tion temperature to this incommensurate state is
shown (and see Fig. 2). This description is qualita-
tively the same as the analysis of Bray and Bulaevskii

for the Hartree approximation: the numerical values -

are changed however due to the different functional -
form of II. The predictions are however quite dif-
ferent for large fields (still assuming &, =0). As 2kg
and the transition wave vector move away from /s
with increasing field, the umklapp scattering term in
Eq. (3) involves II. well away from 2kr, and be-
comes much smaller than the normal term. Thus,
the effective coupling constant is decreased by a fac-
tor of 2. (This, of course, is the reason for the
strong pinning at the commensurate wave vector for
the half-filled band.) In the calculations of Bray® and
Bulaevskii® where a BCS-like exp(—1/)) dependence
on the spin-phonon coupling constant A is assumed,
T./T? decreases rapidly to the order of T2/J. On the
other hand our theory gives a linear dependence of
T. on A, and T,./T2 will only decrease to % Clearly

observation of this behavior would dramatically con-
firm this unusual dependence on the coupling con-
stant.

Unfortunately, the additional pinning effect of the
already soft phonon will tend to mask this behavior.
Equation (4) provides the formalism for including
this pinning, once £, is known. The detailed results
for T./T2 depend sensitively on &on, but the ratio will
no longer saturate at %, although a slower decrease

for an incommensurate 7, than predicted by the Har-
tree theories may be expected. At first sight we
might expect saturation to occur instead at T,/ Tc°
about Q3(w/s)/Q4, where ( is the phonon frequen-

cy away from w/s. However as the wave vector
leaves the neighborhood of the already softened pho-
non, fluctuation effects will probably further reduce
T,.

In Ref. 1 we estimated for (TTF)CuS4C4(CF3), a
value of &, ~1.5¢; from the diffuse x-ray scattering
measurements.!! This is probably a lowest reason-
able estimate of £, For this value we estimated the
critical field and temperature for transition to the in-
commensurate state to be changed only by a small
amount. Larger values of &, will change the picture
significantly. For example, increasing &, to only
about 6§ raises the critical field to the maximum
field in which the commensurate transition occurs.

V. COMPARISON WITH EXPERIMENT TO DATE

The effect of magnetic fields up to about 80 kG on
the transition temperature of (TTF)CuS,C4(CF3),,
together with neutron scattering measurement of the
transition wave vector, has been studied by Bray
et al.® As expected no transition away from the
commensurate wave vector was observed. The
depression of 7, observed is significantly faster than
predicted by either our theory (see Fig. 2), or the
Hartree theory. It is possible that this is a conse-
quence of the weak-coupling approximation 7, < < J.
For example, the zero-temperature susceptibility used
to derive Eq. (1) is about 16% too small for
T =12 K. Using Xy(12 K) would increase the effec-
tive field by this amount, and bring theory into better
agreement with experiment. The required correction
is more like 30% in the effective field, however. As
pointed out in Ref. 1, the measured coefficient of the
quadratic dependence of 7, on H is also larger than
would be estimated from specific-heat and suscepti-
bility measurements.

In addition these authors!? have attempted to in-
dentify T, in higher fields from steps or knees in
magnetization curves. Although less confidence can
be placed in these estimates, they apparently continue
the trend of the neutron scattering measurements:
again T is seen to be depressed more than expected.
No evidence for a change in dependence of T, on
field corresponding to the transition to an incommen-
surate state is seen up to 150 kG. Note however that
since the incommensurate phase should have a mag-
netization very close to that of the undistorted phase
in the same field, these authors may be observing the
commensurate-incommensurate transition rather than
the commensurate-undistorted transition (see Sec. VI).

The prospect of performing such experiments on
the similar gold compound (TTF) AuS4C4(CF3),
offers hope of more stringently testing the theories,
largely due to the lower T, (about 2 K) for a similar
exchange constant. Then, the weak-coupling approx-
imation is much better satisfied, and comparison with
theory can be made with more confidence. Also, the
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fields needed uH ~ T, are reduced by a factor of 6
from those in (TTF)CuS4C4(CF3)4 and are more ac-
cessible experimentally. In addition the lower T,/J
suggests a less dramatically softened bare phonon and
so a smaller £y, a result also suggested by the ap-
.parent greater rounding of the transition. In any case
£« T7! is larger and so &on/ & is smaller in the gold
compound, making any additional pinning less impor-
tant [the factor on the right of Eq. (8) is 36 times
smaller, even if &, is unchanged]. The exciting pos-
sibility of observing the transition away from the
commensurate phase looks very promising. This
would not only be the first observation of such a
driven commensurate-incommensurate transition, but
also, as we have seen, provides a clear discrimination
between rival theories.

VI. COMMENSURATE-INCOMMENSURATE
TRANSITION

This paper has dealt so far with the transition from
the undistorted phase as the temperature is reduced
in a fixed magnetic field. An alternative experimen-
tal approach would be to study the commensurate to
incommensurate transition as the field is increased at
fixed temperature below 7,. The question then na-
turally arises whether the transition is first order or
continuous. This has not been discussed before in
detail for the spin-Peierls system, although the for-
malism is readily available from work on other sys-
tems. The answer is probably not sensitive to details
of the microscopic theory — the main interest of this
paper — but the analysis is relevant to the experi-
mental signature of the incommensurate state to be
expected, and seems worth including here.

At first sight a commensurate to incommensurate
transition might be thought necessarily first order,
and indeed this is true if the incommensurate state is
a single Fourier component at the wave vector
minimizing the distortion energy. However an alter-
native scheme was realized long ago,!* in which the
transition occurs continuously as a continuously in-
creasing number of domain walls separating commen-
surate regions. The scattering by these two states is,
of course, quite different. The latter transition has
been calculated in detail for the usual Ginzburg-
Landau description of a charge-density wave transi-
tion in terms of an array of sine-Gordon solitons.!> !¢
The smoothness of the transition as the chemical po-
tential is raised is then easily understood: although
formation of a domain boundary eventually becomes
energetically favorable, the mutual repulsion of like
sine-Gordon solitons makes the growth of their
number a continuous function of the driving field.

For the spin-Peierls system (and the similar case of
the one-dimensional charge-density wave in a half-
filled band) the description of the distorted state, and

the resulting phenomenological Ginzburg-Landau
theory, show two new features. First, in zero-field
the order parameter has only a + degeneracy, and
may be taken to be real. Second, even in an applied
magnetic field the distortion energy is an even func-
tion about the commensurate zone-boundary wave
vector. In fact the Ginzburg-Landau free energy is

_T
T,

F=afdx ¥(x) +2b¢7(x)

+G(=iVIle(x) , (10)

where —G (Q) is the right-hand side of Eq. (4) less
its Q =0 limit, explicitly an even function of Q, and
a and b may be taken as the parameters of Ref. 1.
The transition temperature T, is that to the commen-
surate state and §(x) is a real order parameter, such
that the lattice displacement at x = ns is proportional
to (—=1)"y(x). As we have seen, for £5 > 0.145 the
distortion energy G (Q) is minimized for nonzero
0 = Q,, say.

Bruce et a have analyzed a free-energy func-
tional equivalent to Eq. (10) with G expanded up to
order Q% so that

G(Q) =y*Q¥c++0) , 1)

I 17

where y(8) and ¢ (8) are expansion parameters with
v nonzero and c going linearly through zero for
£56=0.145, and Q¢ =—%c for ¢ negative above this

critical 8. Their numerical analysis then shows that
although a domain boundary stationary solution to
Eq. (10) exists, it becomes energetically favorable
only for y2Q¢ >0.987(1 — T/T,)"2. On the other
hand a single Fourier component with wave vector
Qo ansatz for the incommensurate state becomes of
lower energy than the commensurate state for

y*Q¢ >0.821(1 = T/T,)'”2, corresponding to a small-
er 8 and magnetic field. Their more complete
analysis predicts that as the field is increased, there is
indeed a first-order transition to an incommensurate
state rather well described by a single Fourier com-
ponent at a wave vector close to Q. It is tempting to
suppose that the difference from the sine-Gordon
case is that here the domain boundaries must attract,
and coalesce to give the plane-wave distortion and a
first-order transition at a lower driving field.

A similar conclusion arises comparing two calcula-
tions of the zero-temperature behavior of half-filled
Peierls systems. These therefore apply directly to the
XY spin-Peierls system, and perhaps qualitatively to
the Heisenberg spin-Peierls system. Both calculations
take particular values for the zero-temperature gap
and bandwidth. However, in the weak-coupling limit
the bandwidth should not be involved in calculating
the nature of the commensurate-incommensurate
transition (merely setting a length scale, and a cutoff)
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and energy differences calculated should scale with
the zero-temperature gap. I use their calculations to
estimate this weak-coupling limit.

Kotani'® has numerically calculated the energy of
the incommensurate state assuming the wave vector
of the distortion to be 2kr = m/s (together with har-
monics). This must be compared with the energy of
the commensurate state for the same chemical poten-
tial (magnetic field), and not for the same number
which is Kotani’s interest. (This point was, I believe,
overlooked by Refs. 8 and 9, changing completely the
conclusions.) On the other hand, Su et al.!° have
numerically calculated the energy of formation of a
single-domain boundary for a particular half-filled
Peierls system.

A comparison of these results shows that the an-
satz of a distortion at the wave vector corresponding
to the chemical potential (Kotani) leads to a lower
energy than the ansatz of a single-domain wall (Su
et al.) — the transition is therefore suggested to be
first order.

VII. CONCLUSIONS

I have considered in detail the effect of a magnetic
field on a mean-field spin-Peierls transition, using the
spin-correlation functions calculated in Ref. 1 by a
Luther-Peschel-type treatment. This is a particularly
interesting question, since it probes rather directly
the wave-vector dependence of the correlation func-
tions. As in previous calculations using the Hartree
approximation for the spin-correlation functions, I
find the transition temperature to be depressed by
the field, and above a critical field, the transition is
no longer to the dimerized state. I have calculated
the transition temperature to the incommensurate

state above this field. Additional pinning energies
may add a step structure at other commensurate
wave vectors.

Although the numerical details differ a little
between the theories below and just above the critical
field, qualitatively the results are similar. Well above
the critical field however the predictions are quite dif-
ferent, and measurements in this region may provide
a good test of the new theory. For large fields the ef-
fective coupling constant is reduced by a factor of 2;
the dependence of 7, on the coupling constant is
thereby tested. An extra pinning effect of an already
soft phonon, as expected in (TTF)CuS4C4(CF3)s,
may however complicate the prediction.

Measurements of 7, in a magnetic field for
(TTF)CuS4C4(CF3)4 do not agree well with either
theory. It is to be hoped that, if confirmed by fur-
ther experiment, this disagreement may be explained
as a consequence of the breakdown of the weak-
coupling approximation, 7, < < J. Then experiments
on the similar gold compound, 7,/J =0.03, are to be
eagerly awaited. Another possibility is that the lack
of agreement may rather arise from the "random-
phase"-type approximation common to all present
theories. If this approximation is not adequate, then
an accurate description of the spin-Peierls transition
in these compounds will be much harder to calculate.
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