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Magnetism of iron. II
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A previously developed theory of the magnetism of iron, based upon the notion of a random-

ized exchange field, is modified and extended. It is shown that Coulomb fields arise in associa-

tion with the randomized exchange field; the modification allows one to take into account these

fields, which are found to change the details of the previous results without affecting the main

conclusions. The theory has been extended to calculate the properties of the model at finite

temperatures: the Curie temperature (1840 K), the magnetization curve, the paramagnetic sus-

ceptibility (a Curie-gneiss law), and the effective interatomic exchange coupling are calculated

for iron. The magnitudes of the atomic spin moments were found to vary little up to 1.5 times

the Curie temperature.

I. INTRODUCTION

In a previous paper' (which will be referred to as I)
we discussed a type of theory which unifies the lo-
calized and itinerant models of ferromagnetic metals.
In particular, we reported results which indicate that
such a theory could explain simultaneously both the
moment and Curie temperature T~ of iron. It is the
purpose of this paper to describe calculations which
give a more complete account of the predictions of
the model for iron. In addition, we discuss a modifi-
cation of the theory to take into account an important
physical effect omitted in the work of I.

The physical effect alluded to is the appearance of
Coulomb fields in association with the randomized
exchange field. The action of the randomized ex-
change field on the electrons may cause substantial
departures from electrical neutrality; these departures
then give rise to Coulomb fields tending to restore
neutrality. For example, in I we calculated the ener-

gy difference between the exchange-field configura-
tions Vp and V~ shown schematically in Figs. 1(a)
and 1(b); Vp is the ground-state configuration, but in

V~ the exchange field at one atom (labeled 0) has
been changed. Investigation showed that a consider-
able charge shift might occur in Vt (relative to Vp);
when the exchange field at atom 0 is reversed the
number of electrons at that site is decreased by about
1.5. Clearly, there must exist in V~ a strong
Coulomb field tending to restore neutrality. In Sec.
II and Appendix A we discuss how the theory may be
modified to allow for these effects. This modification
changes significantly the results of I; these changes
provided a strong stimulus to investigate the predic-
tions of the model at elevated temperatures. The
finite-temperature calculations (which incorporate the
Coulomb-field effects) showed, however, that the
general conclusions of I were unchanged.

where N is a normalization constant and P = I/ks T,
'

k~ is the Boltzmann constant, T is the absolute tem-
perature. In Appendix 8 we outline the approxima-
tion leading to the definition of E( v ) and Eq. (1)
and show, using the Feynman variation principle, '

that it is the "best" of a certain class of mean-
field —type approximations'.

The calculation of E( v ) involves the estimation of
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FIG. 1. Some exchange-field configurations (see text).

In I we calculated the energy increase d,E(hv ) on
passing from the ground-state configuration Vo to the
configuration V~ in which the field at atom 0 is
changed by Av from its ground-state value. It turns
out (see Sec. III) that at finite temperatures, one can
define a related quantity E( v ) which measures the
average energy of an atom with exchange field v.
The probability of finding an atom with exchange
field v is just

f ( v ) = N exp[ —PE( v )],
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electronic energies in a random field, for which pur-
pose we employed the coherent-potential approxima-
tion (CPA)" ", in Appendix C some details of this
application of the CPA are outlined. These calcula-
tions may be regarded either as a generalization of
the theory of I to finite temperatures, or, alternative-
ly, as a generalization of Hasegawa's calculation' to a
case with spin-rotational invariance.

The remainder of the paper is devoted to a discus-
sion of the finite-temperature results for iron. The
calculations were again based upon Tamil and
Callaway's band structure' and have no adjustable
parameters. It was found that at all temperatures stu-
died (0—3000K), the energy E( v) was well fitted
by the formula

E(v) =Ep(v)+Av,

over the important range of v (v ( 1.5 eV), where
Ep(v) is a function of the magnitude v =

~
v { alone

and A is independent of v ( the magnetization is as-
sumed to be in the z direction). Ep and A are both
temperature dependent; above 1840 K, which we
identify with Tc, one finds A =0. The result given
by Eq. (2) is consistent with a cluster expansion of
the type suggested by Cyrot, ' so the failure to obtain
it in I must be an artefact due to the omission of
Coulomb-field effects.

In Sec. IV the ferromagnetic regime and, in partic-
ular, the magnetization curve are discussed. The
latter follows closely an S = ~ Brillouin function, the
mean-field result for classical spins; it is in poor
agreement with experiment, which is much closer to
an S =

2
Brillouin function. This failure may in part

be attributed to the use of a particular approximation
which tends to lead to a classical spin description of
localized behavior (see Sec. VI). It is possible to
deduce an effective interatomic exchange coupling
J,„(T), which was found to increase significantly
with temperature.

In Sec. V the paramagnetic regime is discussed.
The susceptibility was found to obey a Curie-Weiss
law throughout the temperature range studied,
T = rc —1.6', the effective moment was somewhat
larger than the ground-state moment. We also calcu-
lated at a number of temperatures the function giving
the distribution of the magnitudes of the atomic
spins; while this distribution broadens with increasing
temperature, it is still not very broad at 1.6Tc, and
the mean value of the spin magnitude changes little
with temperature, indicating that the atomic spins
tend to rotate rather than alter their lengths. The in-
crease in J,„(T) with T was found to continue into
the paramagnetic regime.

Finally, in Sec. VI we discuss these results, draw
some tentative conclusions and point out some of the
problems to which they lead.

II. COULOMB-FIELD EFFECTS

nI - c,,~c;,~, (5)

In I each exchange-field configuration
V = {vt, v2, ... } was prescribed by giving the exchange
field v; at each site i; we now adjoin to this prescrip-
tion a set of Coulomb potentials IV = {wt,w2, ... },
where ~; is the Coulomb potential at site I. In the
ground-state configuration all the ~t have the same
value, which we may make zero by a suitable choice
of origin; the e; then represent the deviations of the
Coulomb potentials from their ground-state values.
How are the fields 8'to be related to the configura-
tion V? We shall, in fact, choose the w; in such a
way that the fields V and 8 together just maintain
charge neutrality, i.e., the correct number nq of d
electrons at each site. This prescription determines
the fields W once the configuration Vis given. It is
an approximation which corresponds physically to as-
suming that the Coulomb-field effects are sufficiently
strong to force charge neutrality. This is an overesti-
mate of their effectiveness, but represents, we be-
lieve, a much better approximation than the omission
of Coulomb effects altogether (as in I). A more
complete discussion of the incorporation of Coulomb
effects into the functional integral formalism and of
the above approximation is given in Appendix A.

When the Coulomb fields are introduced in the
manner described, one must modify the expression
for the energy of a configuration, E( V~, v 2, ...), used
in I; it is replaced by (see Appendix A)

E(v~, v2, ... ) =—Xv; —nq X w;+F( V, IV) (3)
1 -2

I l

(we have changed the notation from I, E now being
written for the parameter denoted there by J);
F( V, IV) is now the thermodynamic potential of elec-
trons moving in the combined fields Vand 8', and
the additional term nq X,. w; has ap—peared. It is un-

derstood that the Coulomb potentials ~; have been
chosen to ensure the charge neutrality condition

(n;) =nq,

where nI is the electron number operator for the
atom at site i, given by Eq. (5).

We have repeated the hE( hv ) calculations of I
taking into account the Coulomb-field effects accord-
ing to the above prescription, i.e., have recalculated
the difference in energy of the configuration Vi and
Vp of Figs. 1(a) and l(b) as a function of the charge
Lkv in the exchange field at site 0. The model used
was the tight-binding model described in Secs. III and
IV of Paper I (with the same approximations), to
which we refer the reader for details and notation.
The one additional quantity required is the electron
number operator
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III. EKTENSION OF THE THEORY TO
HIGHER TEMPERATURES

%e now wish to extend the previous theory to
temperatures T )0. The strategy will be to try to
define at finite T a function E(v) which is a mea-
sure of the energy of an atom with exchange field v.
It is analogous to the AE(hv) discussed earlier apart
from a change of origin; it is now natural to choose
an origin so that E(v =0) =0 [the relation at T =0
between Eand b,Eis AE(hv) =E(u+hv)
—E(u)]. We previously defined b,E(hv) to be, in
effect, the energy of the configuration V] shown in
Fig. 1(b) (apart from the constant energy of the
ground-state configuration). For r & 0 we shall have
to define E(v ) to be the energy of a configuration of
the type shown in Fig. 1(c), where the exchange field
at site 0 is v, but the exchange fields at other sites
are variable because of thermal disorder. In these
circumstances, the energy of the configuration
depends not only upon v but also upon the exchange
fields at other sites. Thus, one may only define
E(v ) in an average sense as

E(v) E(vp v, vt, v2, ... )

It is, in fact, shown in Appendix B that, once the as-
sumption (9) is made, Eqs. (10) and (11) follow and
E(v) has the form

E(v ) =(I/E)v2 —ngw(v) + (F)-„

where w ( v ) is chosen so that

((np))v-n, .

Here, (X)v means that X is to be calculated for the
configuration with fields vp v, wp w(v) at site 0
and the fields [v,}, (w( v&)} at other sites, and is
then to be averaged over the v~, v~, ... at sites other
than 0 with the distribution function (9). One now
has an involved self-consistent problem; the defini-
tions of E(V) and w(v) depend upon f(v)
through the ( )~ averaging process and f(v)
depends upon E( v) through Eq. (10).

There remains an additional problem that has not
been solved exactly, namely the calculation of the
averages ((np)) v and (F)-„. The Hamiltonian for
electrons moving in the fields described above is

H-XXXc-'„, ckg~+w(v)np+2v Sp
k

f(v;». v2 ) f(v1 )f(v2) (9)

which neglects detailed correlations between the
fields at different atoms, but allows the distribution
f( v ) at each atom to depend upon the angle
between v and the magnetization direction. How
should one choose f( v )? The most obvious choice
1s

x f(v;vt, v2, ... ) dvtdv2, (8)

where E( vp, v~, v2, .. . ) is the energy of a configura-
tion, given by Eq. (3), and the average is over all the
configurations V~, v~, ... of the fields at sites other
than 0 with some appropriate distribution function

f( v; v ~, v2, ... ), giving the probability of the config-
uration v~, v~, ... at sites other than 0 when vo= v.
It is to be understood that E( v p, v 2, v2, ... ) contains
the Coulomb-field effects in the approximation dis-
cussed in Sec. II.

The definition (8) is purely formal. To make fur-
ther progress it is necessary to estimate the distribu-
tion function f. At this stage, approximations of
varying degrees of sophistication (and difficulty)
could be introduced. In this paper we shall use the
simplest of all such approximations, one which, from
the point of view of the localized model, corresponds
closely to mean-field theory. In fact, we shall write

where

V(v) =w(v)I+v A, (16)

+ X [w(v;)n, +2v; S,]
ISO

in the notation of I. This has the character of a
Hamiltonian describing the motion of electrons in a
random alloy; the ( )-„averages correspond to
the configurational averages used in alloy theory ex-
cept for the restriction on the fields at site 0. In fact,
the problem in hand lends itself quite naturally to a
treatment by the coherent-potential approximation
(CPA) method" '4 which automatically provides
averages of the ( )-„kind (at least in the formu-
lation of Ref. 14).

Since the application of the CPA in this context is
nonstandard, we have outlined some of the details in
Appendix C; here we quote only the salient results
needed. A central quantity in the CPA method is the
self-energy X(z) which is a function of the complex
frequency z. In the present application it has the
form of a 2 x 2 diagonal matrix X(z) in spin space.
It is determined by the self-consistency condition

X(z) = J f( V) dv (I —[V( v) —X(z)]G(z)} ' V( v ),
(15)

f( V) -N exp[-PE( v )]

where N is a normalization constant such that

J f(v) dv=1

(10)

(17)

I is the unit matrix and A a vector matrix with com-
ponents equal to the Pauli matrices A", A», A*; G(z)
is the diagonal 2 x 2 matrix

G(z)--,' J [(z co)I —X(—z)] 'p(o)) dro,
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where p(co) is the total density of states for the d
band (for one spin, see Sec. III of Paper I); G is an
approximation for the average single-site electron
Green's function.

The E(v) given by Eq. (12) may be obtained by

integrating the equation

'7„E(v) (2/E) v —2((Sp))-„

[obtained by differentiating Eq. (12)] and using the
condition E(v 0) 0, where ((Sp))-„ is the aver-

age spin at a site with field v, given by

((Sp)) v, =s trA G(z)

x {I—[V(v) —X(z)]G(z)] ', (l9)

where tr means the trace over the 2 x 2 matrix and C
is a contour encircling in an anticlockwise direction
that part of the real axis on which the real part of z is
less than the Fermi energy p, (we have here assumed
that ks T « d-band width, see Appendix C).

Finally, in order to determine w ( v ) from the con-
dition (13), one needs the quantity ((np))-„„,which

has the same meaning as ((np))-„except that wp = w

is now free [i.e., is not fixed at the value w( v )]; it is
given by

((n.)) „=S,' trG(z)

&& [I —[II'(v, w) —X(z)]G(z)} ',
(20)

IV. FERROMAGNETIC REGIME

The function E( v) is symmetric under rotations
about the magnetization direction (which we take to
be the z direction). In Fig. 3 we have plotted the
contours of E( v ) in the (v„,v, ) plane. As will be
seen, as T increases there gradually develops a ring-
shaped valley like that found in Sec. IV of I, until, at
T -1840 K, the contours become spherically sym-
metric. We therefore identify T~ =1840 K for the
model (for fur'ther comment on the magnitude of Tc,
see Sec. VI).

It was found that at all the temperatures studied
(up to T =3000K=I.63 Tc) E(v) could be well
fitted for the important v (those with v & 1.5 eV) by
the formula

E(v) =Ep(v) +Av, , (23)

where v =
~
v ~, A is a temperature-dependent coeffi-

cient which goes to zero above Tc, and Ep(v) is a
temperature-dependent function. Ep(v) changes
somewhat with temperature; it is plotted in Fig. 4 at
T =0 and in the paramagnetic region. As T increases
towards T~, Ep(v) develops a more definite
minimum around v = 1 eV; above T~ it changes little
up to 1.6T~. It was found, surprisingly, that the
coefficient A increases initially with temperature,
passing through a maximum at T =0.3 T~ and then
decreasing to zero at T = T~.

In the course of calculating E(V), we also evaluat-
ed the average inoment ((S))-„ofan atom with field
v [see Eq. (19)], from which one may obtain the
average moment per atom according to

where

W(v w)=wI+v A (21)

9 = J ((S))„f(v) dv

Alternatively, it may be calculated as

(24)

'Given a X(z), the Eqs. (16)—(21) together with
Eqs. (13), (10), and (11) enable one to calculate the
right-hand side of Eq, (15). If the result of this cal-
culation is denoted by g [z;X], then Eq. (15) may be
written

X(z) =Q[z;X] . (22)

This equation (or, rather, a slight rearrangement of it
to improve convergence) was solved numerically by
iteration at selected temperatures, starting from an
estimate of X(z). It suffices to calculate X(z) along
the contour C, which was suitably chosen to avoid so
far as possible the singularities on the real axis in the
z plane. Beginning at T =0, where X is known, we
proceeded by steps to higher temperatures in the fer-
romagnetic regime, obtaining the results reported in
Sec. IV. The method of calculation in the paramag-
netic region is discussed in Sec. V.

9=—
J vf(v)dvE (2s)

according to the theory of Ref. 3 (which holds good
in the present context). Numerical calculation by
both methods agreed within one or two parts in a
thousand and gave the magnetization curve shown in
Fig. 5, where it is compared with the classical spin
mean-field theory result and the observed curve for
Fe, Co, and Ni (all of which have more or less the
same magnetization curve). As will be seen, the fit
to experiment is not very good. In fact, our calculat-
ed M( T) follows fairly closely the classical spin
result, which is not unexpected in view of certain of
the approximations introduced (see Sec. VI).

The coefficient A( T) in Eq. (23) is evidently a
measure of the strength of the effective field tending
to align the moment in the magnetization direction.
It may be thought of as due to an effective exchange
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1.0— perature, almost doubling over the range T 0 to
T -1.5 Tc. It is this increase which leads to the max-
imum in A( T) in spite of the falling M( T). We
have no simple physical explanation of this effect.

V. PARAMAGNETIC RRfzIMR

0.0
0.0

I

0.5
T, TC

I

1.0

FIG. 5, Calculated magnetization curve M( T) vs T (solid
curve) together with the corresponding classical spin result
(dotted curve) and the experimental curve for iron
(dashed).

In the paramagnetic regime E( v ) depends only
upon v =

~
v

~
and the coefficient A vamshes. In this

region we were mainly interested in calculating the
paramagnetic susceptibility. For this purpose it is
necessary to extend the theory of Sec. III and Appen-
dices 8 and C to allow for the presence of an applied
magnetic field, i.e., an additional term

—h XS,

J,„(T)=RA (T)/SM( T) (26)

This quantity is plotted in Fig. 6; the calculations .

were extended into the paramagnetic region by con-
sideration of cases in which a moment is induced by
the application of a small magnetic field (see Sec. V).
J,„(T) was found to increase significantly with tem-

0.06-
eV

coupling with neighboring atoms which have, on the
average, their moments aligned in this direction to an
extent measured by M( T). Thus, the ratio
A ( T)/M( T) is a measure of the strength of this ef-
fective exchange coupling. We may convert this di-

mensionless measure of the coupling to an exchange
energy in a rough and ready way by multiplying it by
the energy E, a choice recommended by the
equivalence of the formulas (24) and (25). If one
supposes the coupling is to the eight nearest neigh-
bors only (this assumption is a convenience, there is

nothing in our results which necessarily leads to such
a conclusion), then one obtains an effective exchange
coupling between nearest neighbors given by

in the Hamiltonian. The extension is straightforward
and we give no details. In the limit h 0 the Eq.
(22) for X(z) is replaced by

Xg(z) -Q[z;X„]+hF(z) (2g)

where Xq(z) is the self-energy in the presence of a
magnetic field of magnitude h in the z direction, and
F(z) is given by

2F(z) == (I-[V(V) -X(z))G(z)I-'

x V(v)v, f(v) dv (29)

calculated using the X and 6 appropriate in the ab-
sence of the magnetic field [Vand G are given by
Eqs. (16) and (17)].

F(z) was calculated via Eq. (29) from the solutions
in zero field, a small value of h taken and Eq. (28)
was solved numerically by iteration to obtain X I, and
E(v ), from which M was calculated using Eq. (24)
or (25) and the susceptibility X obtained. These cal-
culations also supplied the data used to extend the
calculation of J,„ into the paramagnetic region.

The susceptibility thus calculated folio~ed very
closely a Curie-gneiss law

X
3 m,zrf/( T —Tc) (30)

0.03—

0.0
0.0

I I I I

0.5 1.0
T/TC

FIG. 6, Effective interatomic exchange coupling
(represented as a nearest-neighbor exchange interaction, see
Sec. IV) vs the temperature T.

over the range T Tc to T-1.6T~ studied. The
value of the effective moment was m, ff 2.7p,g

(where IM,a is the Bohr magneton), somewhat greater
than the ground-state moment but not as great as is
observed, namely m,«-3.12@,&.

"
The fact that a Curie-Weiss law was obtained with

so large an m, ff leads one to enquire the magnitudes
of the atomic moments predicted by the theory.
Since one has the distribution f ( v ) of the fields,
and for each field the corresponding average moment
((S))-„[seeEq. (19)), it was possible to evaluate at
each temperature the distribution function f,(S) giv-
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FIG. 7. Distribution function f,(S), giving the probabili-
ty of finding an atom with atomic moment S, plotted at vari-
ous temperatures T.

ing the probability that an atom has a moment of
magnitude S. These distributions are plotted at
several temperatures in Fig.-7. Even at the highest
temperatures studied, the distributions are not very
wide, and the mean value changes little with tem-
perature, indicating that over this temperature range
the principal change is a disordering of the atomic
spin directions rather than a change in their magni-
tudes.

VI, CONCLUSIONS AND COMMENTS

The results discussed in Sec. II show that there is a
strong coupling between the exchange and Coulomb
fields, at least in the ferromagnetic regime, so the
latter must be taken into account. In fact, the results
of I are to some degree invalidated by the neglect of
these effects. Nevertheless, the finite-temperature
calculations show the general conclusions of I, name-
ly that this kind of theory can simultaneously explain
both the moment and the Curie temperature of iron,
still stands. One interesting effect of the introduction
of the Coulomb-field effects is to restore the cluster-
expansion type of result represented by Eq. (2).

The finite-temperature calculations gave the esti-
mate Tc -1840 K, about 75'lo greater than the ob-
served value, but of the right order of magnitude.
Various approximations have been made, most of
which will lead to an overestimate of T~. The treat-
ment of the Coulomb effects overestimates their ef-
fectiveness (by requiring complete neutrality) which,
in turn, leads to an overestimate of Tc. The approxi-
mation introduced in I, and used here, of assuming
that the density of states in each d subband is one
fifth of the total d-band density of states p causes one
to overestimate Tc. A more proper treatment would
introduce the densities of states p, and p, for the
band states with e, and t2, symmetry; each of these
densities of states is somewhat more compact than p,

reducing the effective interatomic exchange coupling
and hence Tc. Another important effect tending to
reduce T~ is associated with renormalizations brought
about by Coulomb correlations. These correlations
are neglected in the treatment given here (when, in
the discussion of Appendix A, the time fluctuating
part of the Coulomb field was dropped); our calcula-
tions were based upon Tawil and Callaway's'
Hartree-Fock band structure. We expect that when
these renormalizations are taken into account, the
essence of the theory described above will remain,
but that all energy parameters, including T~, will be
scaled down. This scaling effect on the bandwidth is
recognizable, perhaps, in the photoemission results of
Eastman et af. ' on nickel, which show a bandwidth
reduced by 40% compared to Hartree-Fock predic-
tions. In our treatment such a reduction would entail
a corresponding reduction in E and Tq.

The magnetization curve obtained was not in very
good accord with experiment. It is, in fact, very close
to the classical spin result. This is not unexpected
since we have made use of an approximation (the re-
placement of the functional integral over time-
dependent fields by the ordinary integral over static
fields in Appendix A) which prevents one from see-
ing the proper quantum statistics for the "spins" of
the localized aspects of the model. It is not clear
whether a more correct treatment of this point would
explain the near "universal" character of the observed
magnetization curves (in spite of the wide variation
in moment between nickel and iron).

The paramagnetic susceptibility obtained obeys
closely a Curie-Weiss law, a result in good accord
with experiment; in fact, the value of m, ff found is
quite good considering the many approximations.

Finally we may note that, in spite of the fact that
the formulation of the theory allowed ample oppor---
tunity for one to find a wide distribution of the mag-
nitudes of the atomic moments, the calculations actu-
ally showed rather little spread, a result we take to in-
dicate behavior markedly similar to that of a Heisen-
berg model (in iron, at least).

A number of obvious problems remain. First, how
large are the Coulomb renormalization effects~
Second, how does one formulate and calculate with
the theory in order to obtain proper quantum statis-
tics (or whatever is appropriate)? Third, how does
one explain the "universal" character of the magneti-
zation curve~

APPENDIX A: THE INTRODUCTION
OF COULOMB FIELDS

The material of this appendix represents an exten-
sion of that of Appendix A of I, to which the reader
is referred for some details and notation. It was
remarked there that in the case of the narrow energy
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band model' a useful factorization of the interaction is

Un, tn, t- 4 Un( —U(e( S() (AI)
where n&

= n&~+ n&~ is the total electron operator and S& the total spin operator of atom i; e& is an arbitrary unit
vector. Using this factorization one may obtain by the functional integral method" " and the procedure of
averaging the e; over all directions, discussed in I, the expression

Z ~ „g[Dv;(r)D@(r)]exp ——X I [v&'(r) +4[(r)] dr
i

wP

x Trexp+ —
&

Ho(t) dt —X)l [yah, (t)n, (t) +2v;(t) S,(t)] dt (A2)

for the partition function Z, where i labels sites, v, ( r) and $;( t) are exchange and Coulomb "fields", DV&( t)
and Dp, ( t) indicate functional integration over the v, ( t) and p;( r) on the range t = (0, p), Tr means the
quantum-mechanical trace, exp+ the time-ordered exponential, and Ho= h —p, N, where H is the Hamiltonian
describing the band motion of noninteracting electrons, p, is the Fermi energy, and N, is the total electron
number operator.

Simplifying Eq. (A2) by neglecting the time fluctuating parts of the v, and $; fields, one obtains the approxi-
mation

Z = Q (d v; d$;) exp ——X (v~+Pf) PF( V 4—)
I l

(A3)

where

V= {v&, vz, ... }, 4 = {@&,Qz, .. . }

and

1F( V, 4) = ——lnTrexp PHD —Px(—ag;n;+2v; S;) (A4)

It is this approximation which leads to the classical spin description of the localized aspects of the model and to
the loss of renormalization effects associated with Coulomb correlations.

In Appendix A of I we now proceeded by (a) neglecting altogether the Coulomb fields Q& in Eqs. (A3) and (A4),
and (b) passing from the narrow energy band model to the degenerate d-band case by interpreting S, as the total
spin of the atom and replacing Uby some appropriate parameter E (called J in I) measuring the strength of the
intra-atomic exchange interation. Here, we shall abandon the approximation (a) and pass to the degenerate band
case by interpreting n& and S

&
as the total electron number operator arid spin operator of the atom at i, rewriting

Eq. (A3) as

1

Z = g (dv&d$~) exp — Xp& ——Xv~ PF( V, 4)—J 2C, K
(A5)

where C and K now measure the strength of the
intra-atomic Coulomb and exchange interactions.

The theory of I could be recovered from Eq. (A5)
by simply dropping the Coulomb fields $. Here, our
treatment will be just one degee less cavalier: we
shall evaluate the $; integrals in Eq. (AS) by steepest
descents for each configuration V, deflecting the con-
tours of the @; integration through the values

@;=$;( V) which maximize the exponent in Eq.
(AS); these $ ( V) are, in fact, pure imaginary. Set-
ting to zero the derivatives of the exponent with

respect to the $&, one obtains for the $&( V) the

equations

@,
'= —~C (n, ) (A6)

BF(V, C)/ay, = iP(n, ),, (A7)

In the case of the ground-state configuration Vo,
translational symmetry dictates that the P'( V0) have

where (n;) i is the expectation of n; calculated in

the fields V, 4 =—{@;,Qq, ... }. These equations deter-
mine the $~( V) for each V; the expectation of n; ap-
pears because from Eq. (A4)
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the same value Qp for all i E. quation (A6) then gives

Qp = (—Cn, g (Ag)

~here n~ is the number of d electrons per site. It is
convenient to introduce in place of the pure ima-
ginary P ( V) the real fields w; defined by

w;= —s[y ( V) —yp]

Then Eq. (A6) may be written

(n;) v, w
—(IIC) w, = n, ,

(A9)

where (n&) y a is the expectation of n; calculated in
the fields V, W =—{w&,w2, ... }, i.e., with the electron
Hamiltonian

H( V, W) = Hp + X ( w; n; + 2 v; S;) (AI I)

Z gdv;exp ——Xv; +Pnd Xw;
I i i

X w2 —PF( V, W)
2C

where F( V, W) is the thermodynamic potential of
electrons moving in the fields V, 8'according to Eq.
(Al 1).

Our final approximation is to assume that the
intra-atomic Coulomb interaction is much stronger
than the exchange interaction; this is equivalent to
taking the limit C ~ in the above theory. When
this is done, the Eqs. (A10) determining the w; as
functions of Vreduce to Eq. (4) of the main text,
representing the maintenance of charge neutrality,
and Eq. (A12) assumes the form

Z =& Qdv, exp[ PE( V)1— (A13)

with F. ( V) given by Eq. (3) of the main text.

APPENDIX B: DERIVATION OF THE
FINITE-TEMPERATURE THEORY

In this appendix we explain how the "mean-
field" —type approximation represented by Eqs.
(8)—(13) of Sec. III may be deri'ved as an approxima-
tion in the functional-integral formalism.

The derivation is based upon the Feynman varia-
tion principle. ' We will first explain the manner of
its application in rather general terms. Let the sym-

derived by using Eq. (A9) in Eq. (A4).
The Eqs. (A10) now determine the w;, and hence,

through Eq. (A9), the 4 to be used in evaluating Eq.
(AS) by steepest descents. When this evaluation is
carried out one obtains, using Eqs. (AS) and (A9),

bol Jr indicate an integration over some space the
points of which we label x. The Feynman variation
principle is based upon the inequality

ln " eD'"'~In ' eD'"' +{D D') — (BlJ,J
where D(x), D'(x) are real functions defined on the
space and the averages (X) are defined relative to
the distribution function

f '(x) =exp {D'(x)}/J"exp(D'),

(X) = J X(x) exp(D')/J exp(D') (82)

D'(xt, x,, ... ) = Xd(x;)
I

where di(x; ) is an arbitrary function of the single
variable x;. Then, maximization of the right-hand
side of Eq. (81) with respect to the d, with D given
by Eq. (83) yields the equations

d;(x) =J D(x)}„„gfi(xi) Q dx,
J gs'-i JAi

(83)

(84)

for the best choice of the d;, ~here

f (x) =exp[d;(x)]/J exp[d, (x')] dx'

is an effective distribution function for x;. Equation
(84) asserts that d, (x) is just D(x) with x; fixed at
the value x and averaged over all the other xJ, each

(85)

with the appropriate distribution function fj. Fur-
ther, the corresponding approximation to the distri-
bution function f is

f =f'(x, ,x,, . . . ) = ff f;(x;) (86)
I

To obtain the reslts described in Sec. III, we will
now apply the above theory to the case in which ea is
the integral in Eq. (A3). It is convenient, however,
to first rewrite this integral in terms of the new vari-
ables

}

yi =—~(0; —4p) (87)

Suppose now one wishes to approximate the distribu-

tion f(x) = xep{D( x)}/J exp(D) by the "best" of
the distribution functions
f'(x) =exp {D'(x)}/Jl exp(D'), where the D' are re-
stricted to a certain class R of functions. Then Eq.
(Bl) shows that the best choice is D -Dp, where Dp.
is the function of the class R which maximizes the

right-hand side of Eq. (81); furthermore, J exp(Dp)
is the best approximation to J exp(D) available re-
stricting the D to R.

The case at hand is one in which x stands for a set
of vectors x~,x2, ... [in our application each x, will be
a vector with the four components x; = ( $,, v;) in
the notation of Appendix A]; then,
D(x) =D(x~,x2, ...—) and likewise for D, Dp. Sup-
pose now one takes for the class R all the functions
D' of the form
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which will replace the $;; $o is defined at Eq. (AS)
[cf. Eq. (A9)]. In terms of these variables, the in-

tegral in Eq. (A3) can be written „exp(D) (apart .

from an unimportant factor), with interpreted as4

P,. (dv;d$;), and D = PEr'(—V, Y), where

Then, using Eq. (814) in Eq. (Bll), one finds that
E( v ) satisfies

E( )=„E( V)~„„gf(;)Qd
& WO &WO

where

Er'( V, Y) =—Xv~' —nqxy, + Xy,'+F'( V, Y)K, , 2C I

(BS)

Ystanding for Y—= {y~,y2, ... } and

F ( V, Y) and

Er( V) =—$vt —n~xw(v;)K

+ gw'(v;) +F( V)
I

(817)

~r1=——ln Tr exp~ PHa —PX( y—&n;+2v S;) . (89)

A type of mean-field theory can now be obtained
employing the Feynman variation principle in the
manner described above, taking for the class R of
functions D all those functions of the form

D(VY)= —PXE(v;,y) (810)

[The translational symmetry of our problem enables
one to infer that the d; of Eq. (83) are all the same
function E ( v,y).] Then Eq. (84) becomes in our
application

E'( V,y ) =
&

Er( V, Y) (,, „-„,-„

"IIf'(v~y)IId v dy (811)

where

iWO i&0

rf'(v, y) =exp[—PE'(v, y)1 „~~ exp[ —PE'(v, y')]

x dv'dy' (812)

The corresponding approximation for the distribution

function exp[ —PEr( V, Y)]/J~ exp( PEr) is—
j(V, Y) =Qf'(v, ,y, ) .

I

Finally, we graft onto this theory the approximate
treatment of the Coulomb fields described in Appen-
dix A. To do this we use what is again essentially the
method of steepest descents. %'e assume that
f'(v, y ) is, for each v, so sharply a peaked function
of y that we may write

f(v,y) =5(y —w(v)}f(v, w(v))

F( v)

1

1=-—ln Tr exp PHo PX—[n;w (—V, ) +2v S;] ' .

((no})v
—(1/C) w( v ) = nq (819)

where (( ))-„ is defined~after Eq. (13) of Sec. III.
If one now lets C ~, as discussed in Appendix A,
Eq. (819) becomes Eq. (13) of Sec. III, and Eq.
(816) becomes Eq. (12) of Sec. III when use is made
of Eq. (817).

APPENDIX C: THE APPLICATION OF THE CPA

In this appendix we outline the derivation of Eqs.
(15)—(21) of Sec. III. The method is a straightfor-
ward adaptation of the derivation of the CPA given
by Brouers et al. '4 [This paper will be referred to as
Ref. A; use is made only to Eqs. (I)—(8) of this
reference, not of the further developments described
there. ]

The basic problem is to calculate averages like the
((So))-„over all configurations in which the ex-
change potential at site 0 is fixed at v. The Hamil-
tonian describing the electronic motion in a particular
field configuration has the form shown in Eq. (14).
It will be convenient to first consider the case of a
nondegenerate band and to rearrange the Hamiltoni-
an in the form

(818)

To find w ( v ), one must use
0 = [8E'( v,y )/By] „&-„&. Carrying out the variation
with respect to y in Eq. (811) with the aid of the de-
finition (BS) of Er, and using the approximation
(814) for f, one obtains for w( v ) the equation

—= 8(y —w(v)) f(v) (814) H = X X roc,
' cj.+ X X ( V ) c,.'.c

crcr & cr
(Cl)

where w ( v ) is the value of y which minimizes
E'(v,y). Defining E(v) =E'(v, w(v)), one has

f(v) =exp[—PE(v)]/J exp[ —PE(v')] dv . (815)
where ~V is a 2 & 2 matrix of the form
~V - w&I + v& A representing the field at site i, and
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gij( z) g//o(z) Sij + Xgiio( z) rikgkj( z)

where

(C2)

(C3)

the tj are the transfer integrals giving rise to the band
motion. Because of the variable direction in spin
space of the exchange potentials it is necessary to
consider all four spin components of the electron

r

Green's functions gj (z) (z is a complex frequen-
cy); it is therefore convenient to introduce the 2 x 2
matrix Green's functions gj(z) with components

(gj) i=gj . Following Ref. A, we note that these

Green's functions will satisfy the equations

(g;;)-„-„[given by Eq. (C7)] over all v with the ap-
I

propriate weight f ( v ). This leads, using Eq. (C7),
to the equation

G(z) =g [G '+X —V(v)] 'f(v) dv . (Cg)

This equation may be rearranged into the form of Eq.
(15) of Sec. III, while Eq. (C6) is the same as Eq.
(17) when allowance is made for the d-band degen-
eracy [the factor 5 in Eq. (17), derived using the ap-
proximation of identical densities of states for all d
subbands, as in I].

Next, we consider the derivation of Eq. (19). For
any configuration of the field, one has

Iteration of Eq. (C2) yields (see Ref. A)

g;;(z) = [z —V —5;(z)] '

where

A;(z) = X 4j2jgjo(z)

+ X 1jgjj(z) ljkgkk(z) rkl + ' ' ' . (C4)
j,/F

jwikwi

The method of Ref. A develops the CPA by the ap-
proximation of replacing the gkk(z) appearing in Eq.
(C4) by the quantity [z —X(z&l ', X(z) representing
some average effect of the variable potentials ~V.
Then, the series in Eq. (C4) may be summed to give

I;(z) =z —X(z) —[G(z)] ' (CS)

where

G(z) = JI [(z —~)l —X(z)] 'p(~) d~, (C6)

in which p(&s) is the density of states corresponding
to the band structure determined by the tj, 6 is an
approximation to (g;;&, where the average is over all
field configurations.

Substituting the approximation (CS) into Eq. (C3)
gives the approximation

(g;;(z)) „-„=[6 '+X —V(v)] ',
where V( v ) is defined at Eq. (16) and (g;;&-, -„ is

i

the average over all configurations in which v; is
held at the value v. Following Ref. A, we now ob-
tain the CPA by choosing X(z) so that the Cr(z)
given by Eq. (C6) agrees with the average of

(So& = —" gtrAgoo(oi. )

(So) =
J

- trAgoo(z)
C 2m&

(Cl 1)

where C is a contour encircling in an anticlockwise
direction that part of the real axis on which cu & p, ,
i.e., is the contour used in Eq. (19). If we now carry
out the ( &-„average in Eq. (Cl1), we obtain

I

((So)&-„=JI
— — trX( goo(z) &-„

trA 6 [1+[1—V(v)]G} ' (C12)

using Eq. (C7), reproducing Eq. (19) of Sec. III when
allowance is made for the d-band degeneracy. Equa-
tion (20) of Sec. III is similarly derived.

where the sum is over all co„of the form
oi„=&mv/P+ p„v=+1, +3, +5, ..., and p, is the Fer-
mi energy. One may in the usual way convert this to
a contour integral

(So& = Jt, —' f o(z) «Agoo(z) ~c 2' c

where C is a contour encircling the real axis in an
anticlockwise direction and fFo(z) = (exp[P(z
—p, ) ] + I} ' is the Fermi-Dirac distribution function.
At the temperatures we consider k~ Tis much less
than the d-band width, so one may approximate
fFo(oi) on the real axis by fFo(oi) = I if oi ( jk„=0
otherwise. Correspondingly, one may approximate
Eq. (C10) in this case by
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