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In strong magnetic fields, most metals have highly anisotropic transport coefficients, and these have long
been known to be much influenced by sample inhomogeneities. This paper reports a detailed theoretical study
of such effects. Various approximations for calculating the effective transport coefficients of inhomogeneous
solids are rederived from a unified point of view; these are then used for a variety of model calculations
appropriate to metals with open Fermi surfaces. A small concentration of crystallites with open orbits
embedded in a free-electron metal is shown to give rise to a strictly linear transverse magnetoresistance
(TMR) at strong magnetic fields. The linear coefficient is strongly dependent on the orientation of the open
orbit in the plane perpendicular to the magnetic field k Extended-orbit crystallites in a free-electron metal
produce a TMR which is initially linear, but saturates at sufficiently strong field. The Hall coefficient RH is
unchanged from its free-electron value to first order in the concentration of defects. A striking geometrical
effect is predicted, the TMR from open-orbit crystallites saturating in geometries such that current
distortions are unable to propagate parallel to A. The TMR and Hall coefficient of a free-electron metal
containing a larger concentration of open-orbit crystallites is calculated in the effective-medium theory
(EMT). The TMR is found to saturate at strong. fields, in agreement with previous results of Stachowiak,
while the Hall coefiicient falls off as 1/H' at strong fields, except in fiat-plate samples with *perpendicular
to the plate, in which case it is predicted to saturate at its free-electron value for a sufficiently large
concentration of open-orbit crystallites, but to fall off quadratically for lower concentrations. In contrast,
calculations within a non-self-consistent approximation give-a strictly linear TMR and a Hall coefficient
which saturates at a value below the free-electron coefficient. Possible explanations for the discrepancy are
discussed. Calculations in the EMT for a model polycrystal with extended-orbit crystallites reveal a broad
field region of quasi-linear magnetoresistance, as found previously by Stachowiak, and a reduced Hall
coefficient, as well as a conspicuous geometrical effect. The possible relation of these model calculations to
experiments of polycrystalline noble metals is examined, but no quantitative theory for these metals is given.

I. INTRODUCTION

According to the symmetry relations of Onsager, '
the resistance of a metal in an applied transverse
magnetic field must be an even function of field
strength H. Thus it is generally expected that the
resistivity at high magnetic fields should vary as
an integral power of H . But this expectation is
violated in a number of metals, in which, in a
strong field, the resistivity is found to vary rough-
ly as H". This behavior occurs in several free-
electron metals with a closed Fermi surface,
such as K, In, and Al, '~ and, in much more con-
spicuous fashion, in polycrystalline samples of
Qu, Ag, and Au. ' The linear behavior in free-elec-
tron metals violates the standard Lifshitz-Azbel-
Kaganov (LAK)s semiclassical theory of high-field
transport, which predicts saturation (resistance
approaching a constant value at strong fields) for
metals with a closed Fermi surface. This discre-
pancy has been variously attributed to charge-den-
sity waves, ' Fermi-surface hot spots, ' and sample
inhomogeneities or voids. ' The linear magneto-
resistance seen in the polycrystalline noble metals
is less remarkable because of the open Fermi
surface that is known to characterize these met-

als." The open Fermi surface, in single-crystal
samples, leads to highly anisotropic resistance
in the presence of a strong magnetic field, the re-
sistivity increasing as H' for some field directions
but saturating for others. " The linear increase
observed in polycrystalline samples is thought,
therefore, to represent some kind of averaged
behavior, resulting from the random orientations
of the crystallites in a polycrystal.

In this paper, we present a detailed theoretical
study of the galvanomagnetic properties of poly-
crystalline or otherwise inhomogeneous metals.
The principal motivation has been to investigate
under what circumstances a linear magnetoresis-
tance could result from inhomogeneities. The
present work is a sequel to an earlier publication, "
in which a formula was given for the effect of in-
homogeneities in the low-concentration limit.
Here we are concerned particularly with inhomo-
geneities characterize/ by open Fermi surfaces.
We consider such defects both in the low-concen-
tration regime and at larger densities, and treat
not only the magnetoresistance but also the high-
field Hall coefficient, which also behaves anom-
alously"'" in numerous metals with a linear mag-
netoresistance. We also show that the results de-
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pend strongly on the shape of the defect, and, in
particular, its orientation relative to the magnetic
field.

The essence of the present problem is to calcu-
late the effective conductivity of an inhomogeneous
metal, given those of the constituents. In the
present context, the eonductivities are tensors
which may be highly anisotropic in strong mag-
netic fields. The result is a very complicated
situation which has beenof necessity treated, in
general by simplified approaches. For example,
Ziman" showed that the experimentally observed
transverse magnetoresistance (TMR) and high-
field Hall coefficient in polycrystalline Cu could
be roughly reproduced by a model in which the
Fermi surface of Cu was treated as four cylinders
oriented in [111jdirections. However, the effec-
tive conductivity of the polycrystal was taken sim-
ply as the average of the crystallite conductivities.
This approximation is valid only when fluctuations
in the conductivity are smaLL, a situation that does
not prevail in Cu. Shortly after Ziman's work
Herring" derived the leading term in a perturba-
tion expansion for the effective conductivity tensor
in powers of the spatial fluctuations in conductivity.
His work demonstrates the possibility of a nonsat-
urating magnetoresistance even in a metal with a
closed Fermi surface, provided the metal is in-
homogeneous. However, the results are still
limited in validity to small fluctuations. Stroud
and Pan" obtained exact results at low concentra-
tions but strong scattering (i.e., large conductivity
fluctuations), and demonstrated that a small con-
centration of voids in a free-electron metal would
lead to a strictly linear transverse magnetoresis-
tance at strong fields. Similar results were ob-
tained contemporaneously by Sampsell and Gar-
land" via direct integration of the power dissi-
pated in the vicinity of a void, and the predictions
have, in fact, been experimentally confirmed by
implantation of voids in In."

The most extensive previous work involving
open Fermi surfaces was carried out by Stacho-
wiak'9 "using a self-consistent embedding appro-
ximation invented by Bruggeman, " and later stud-
ied by Landauer, '4 who christened it the effective-
medium theory (EMT) 2"26 This approach is not
necessarily limited to small concentrations of de-
fects or smaLL fluctuations, although its exact
realm of validity is very difficult to ascertain.
Stachowiak found, using this approximation in
conjunction with several models for the magneto-
conductivity tensor of single crystals, that a quasi-
linear magnetoresistance could persist over ex-
tended ranges of magnetic field strength, but ul-
timately the resistance deviated from strict lin-
earity. Similar results were found by Dreizin and

Dykhne, ' using qualitative arguments based on a
analogies between high-field current flow in metals
and convective transport in fluids.

That part of the present work which deals with
large concentrations of defects is in many respects
an extension of Staehowiak's work. New features
include treatment of the high-field Hall coefficient
and of various geometrical effects, and the appli-
cation of a formalism rather simpler and more
flexible from a mathematical point of view, than
Stachowiak's. We shall also compare the predic-
tions of the EMT with those of a non-self-consis-
tent approach known in optical problems as the
Maxwell-Garnett theory (MGT) 2' These turn out
to be surprisingly different, ' and the reason for
this will be speculated upon.

We turn now to the body of the paper. Section
II presents a brief review, and a new, physically
transparent, derivation of the various approxima-
tions to be used for the effective conductivity ten-
sor. In Sec. III we give results for small concen-
trations of open Fermi-surface defects embedded
in a free-electron host. Sections IV and V are
concerned with model polycrystalline metals at
larger concentrations of defects, and Sec. VI is
a summary and discussion of the calculations.

II. APPROXIMATIONS FOR THE EFFECTIVE
CONDUCTIVITY

E,„=[1—r(o, —o,)]' E, ,

where 1 is the 3 x 3 unit tensor and F is an effec-
tive "depolarization tensor. " The elements of I"
are

(2.1)

sG(x')

s BX
(2.2)

with S' the surface of a defect centered at the ori-
gin, n& a Cartesian component of an outward nor-
mal to S', and G a Green's function satisfying

V ~ oo ~ VQ(x —x') = —6(x —x'),
G(x —x')-0 as ~x-x'~- (2.3)

The problem discussed here involves calculating
the effective conductivity tensor 0,«of an inhomo-
geneous metal characterized by a spatially varying
tensor o(x). In this section we shal review several
approximations for 0,«, each of which is approp-
riate under different circumstances.

We suppose first that the metal consists of iso-
lated ellipsoidal inclusions of conductivity tensor
o, embedded in a background matrix of conductivity
o,. In the presence of an applied field E„ the
field inside one of the inclusions can be computed,
for a sufficiently low density of inclusions, as if
the defect were isolated. The interior field is then
uniform and given by"
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where

t=(V, —e,)[7. —I"(o, o,)]-', (2.5a)

and f is the volume fraction of the inhomogeneous
metal which is made up of defects. In writing Eq.
(2.5) we have used the fact that (E)= E„which
follows from the boundary conditions at infinity
and which can be proved rigorously by imagining
the system to be bounded by a closed surface on
which the potential is specified. It follows from
Eq. (2.4) that

o,ff=o, +jt, (2.6)

a result expected to be valid at low concentrations
(f«1). Inverting Eq. (2.6) to get p, « =—o,~«and
keeping terms up to first order in f gives Eq.
(2.V) of Ref. 12.

At larger concentrations of defects, Eq. (2.6)
ceases to be valid and one must resort to approxi-
mations. Suppose that the inhomogeneous sample
is, in fact, present in the form of a polycrystal,
such that the ith grain has conductivity tensor o,
The effective conductivity tensor of the polycrys-
tal can still be calculated in principle by imagining
an external field ED applied to the sample and using
definition (2.4). Now, however, the random nature
of the polycrystal prevents (J) from being calcu-
lated exactly. We therefore make a mean-fieLd
assumption' "and calculate the fields and cur-
rents inside the ith grain as if the grain were (i)
ellipsoidal in shape and (ii) embedded in a uniform
medium of conductivity o,„„.Assumption (i) is, of
course, not achievable in a polycrystal, since
space cannot be filled by a packing of ellipsoids.
However, it is still a reasonable hope that the
space-averaged fields inside a grain may be given
with fair accuracy by the ellipsoidal approxima-
tion. Assumption (ii) defines the mean-field nature
of the approximation.

With the above assumptions, the fields and cur-
rents inside the ith grain are

E,', = [1 —I';(o; —o',„,)] ' E, ,

(2.7)

where I',. is given by Eq. (2.2) with the replacement
cro- cr,„„provided S' is understood to be the surface
of the ith grain (assumed centered at the origin).

In like manner the current density within a grain
is uniform and satisfies J,„=o, 'E,

The effective conductivity cr,«may be defined by

(~}-=o.„«), (2.4)

the angular brackets denoting volume averages.
In the situation described above

(i)=(5 E)=o, (E)+f(~,-o,).E„=o,E,+ft E,
(2.5)

The effective conductivity is found" from Eq. (2.4),
using (E)=E,:

o,«=o,„,+(5o,(1 —I";5o,) ')((1 —I;5o,.) ')-', (2.8)

where 6o, =o,. —o,„,.
Expression (2.8) depends on the choice of cr,„„

and this may be guided by the specific geometry
of the material under consideration. If the system
is a volume fraction f of ellipsoids of conductivity
cr, embedded in a matrix cr„ then a reasonable
choice is

+ext jeff &

which leads to the self-consistency condition

(5o,.(1 r,.5o,.}-')=0, (2.10)

where 5cr,. = o,- -'5,«. This is the EMT for aniso-
tropic media, also previously derived in Ref. 26.
For spherical inclusions, it reduces to a result
found earlier by Stachowiak. Equation (2.10}is in
general a matrix equation, and if o,. is a function
of some continuously varying 'parameter, such as
crystallite orientation in an applied magnetic
field, it may be an integral equation.

III. ISOLATED OPEN-ORBIT AND EXTENDED-ORBIT
CRYSTALLITES IN FREE-ELECTRON METAL

As a first application of the formalism of Sec.
II, we consider a sample of a free-electron metal
containing a volume fraction f of anomalous crys-
tallites which have open or extended orbits along
some direction in k space. In this case, the effec-
tive conductivity tensor is given by Eq. (2.6},
with t given by Eq. (2.5a}. The resistivity tensor,
obtained by expanding p =cr-' and keeping only terms
linear in f, is

Li= P fP,otPO (3.1)

with p, =cr,- . The host conductivity tensor o, =- cr„
has nonzero elements":

credit
=o'o

~

which gives

cr„,= o, +f(5o)(1- I'5a)-'[1 f+f(1—r5o)-'—]-', (2.9)

where 6o =o, —o', . This may be viewed as the ma-
trix generalization of the Maxwell - Garnett appro-
ximation for optical properties and has, in fact,
0een previously derived by other means. '

If, on the other hand, the system is a true poly-
crystal, with no constituent easily interpreted as
the host, then an appropriate choice in Eq. (2.8)
is the self-consistent one,
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(o„)„=o, ,

(o„)„„=(o„)„,= ~,/[1 + (Jdp)'],

(o„)„,=-(o„),„=o, (u,r/[1+ (~p)'],
(3 2)

(2.2) and are found to be as follows:

1 —$1 —& go
(3.4a)

where o, is the zero-field conductivity, ~, =eH/rnc
is the cyclotron frequency, 7 is a characteristic
relaxation time, and the magnetic field H is taken
in the z direction. The conductivity of a defect
with an open orbit depends on the orientation of
the open orbit in k space, or, equivalently, the
direction in which it would carry current in x
space. If the open orbit carries current in the x-y
plane at an angle P to the x axis, we take the con-
ductivity o, of the defect to be

-1
o'~ = o'f, + R 0'ppR,

(o, ),, =5,,5,.„s (1-1/[1+(Jd,7)'g,

R„„=R =cosP,

R„=-R„„=sing,
(3 3)

a,=1, ,

with the other components of Rvanishing. " Here
sp is a constant, and we are assuming that the
open orbit carries current in parallel with the
free-electron conductivity. The term ff ensures
the proper (quadratic) limiting behavior as H-0.

We consider p, «resulting from this model in
three geometries: (a) spherical inclusions, (b)
cylindrical inclusions with axes in the y direction,
perpendicular to the magnetic field, and (c) cylin-.
drical inclusions with axes in the z direction. Fig-
ure 1 shows the current flow patterns, magnetic
field directions, and crystallite shapes associated
with these three geometries. The resulting ma-
trices I are readily calculated from definition

r„„=r =- 1
1 1 Bin-V~

)( ( )

r„=-(1—&1 —e)/eo„)„,

1— 1

&1 —&

r„=0,
I„=O,

/~(o„)... (3.4b)

(3.4c)
r„„=r„=-1/2(o„)„„.

Here e =1 —(o„)„„/(o„)„is the "anisotropy" of the
background medium.

Figure 2 shows the TMR for a sample of a free-
electron metal containing a volume fraction f=0.01
of open orbits, as calculated from Eq. (3.1). (The
TMR is defined as &p„„=[p„„(H)—p„„(0)]/p„„(0). The
angle Q characterizing the direction in the x-y
plane is taken to be 45, and results are shown for
all three geometries (a), (b), and (c). The strength
sp of the open- orbit conduction has been arbitrarily
chosen- as 0.1. After an initial quadratic rise, the
TMR is seen to increase linearly in H for cases
(a) and (b), but in case (c) the TMR saturates at
a relatively low value of field. The asymptotic
behavior is readily found, both analytically and
numerically, to be strictly linear in field; the
asymptotic slopes are, however, strongly depen-
dent on P. This anisotropy is illustrated in Fig.
3, which shows ap (u&p) for &d,T =200 (correspond-
ing to a field of 10 -10' G in a pure metal at low
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FIG. 1. Crystallite shapes in relation to direction of

magnetic fieM and current flow for calculations de-
scribed in the text. Configurations (a), (b), and (c)
represent a spherical crystallite, a cylindrical one with
axis perpendicular to H, and a cylinder with axis
parallel to H, respectively.

FIG. 2. Transverse magnetoresistance 4p (H)
= [p~(H) —p~(0)]/p~(0) for a free-electron metal con-
taining a volume fraction f= 0.01 of open-orbit crystal-
lites oriented so as to carry current at an angle /=45
to the x axis in the x-y plane. Cases (a), (b), and (c)
correspond to the geometries shown in Fig. 1.
= (eH/mc)7 is a dimensionless measure of magnetic
field strength. Also shown is the TMR for extended-
orbit defects in geometry (a).
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orbit for fields sufficiently low that an electron
cannot complete a full circuit without being scat-
tered out of the orbit, but it will act like a closed
orbit at very high fields." We have computed

Ap„, for extended orbits described by Eq. (3.3)
with 0'oo replaced by a,o with

Ip

7T/4 7r/2

FIG. 3. &p»{~~7'=200) for a volume fraction f=0. 01
of open-orbit crystallites embedded in a free-electron
metal. The azimuthal angle is described in the text,
and configurations {a) and {b) are exhibited in Fig. 1.
The remainder of the "rotation" diagram can be ob-
tained from the figure by means of the symmetry rela-
tions &p (cu, 7, $) =&p»(cu &, Q+vr) =&p {co, &, x —Q).

temperatures) in cases (a) and (b). In both in-
stances, the largest TMR &p„„occurs at an angle
corresponding to maximum open-orbit conduction
in the y direction.

We have also computed the Hall coefficients R„
for the three geometries described above. R~ is
defined by the relation

R„=[p„,(H) —p„,(-H)]/2H, (3.6)

and for the present case, is found to be identical,
through first order in f, with the corresponding
free electron Hall -coefficient defined by

R '= [p"(H) —p"(-H)]/2H . (3.6a)

Deviations of the ratios R„/R„" from unity occur in
second order of f, as discussed below

The linear TMR in cases (a) and (b) are the di-
rect result of current distortion around each anom-
alous crystallite. As discussed previously by
other authors, "'"an applied magnetic field is ex-
pected to produce, in the vicinity of each anoma-
lous crystallite, a "current shadow" and hence
an extra dissipation extending from the defect a
distance of order a(v, r) parallel to the field, a
being a linear dimension of the defect (the radius
of the sphere or cylinder). In case (c), the axis
of the cylinder is parallel to the defect, the cur-
rent distortion cannot propagate, and there is no
linear TMR.

Equation (3.1) can also be used to calculate

p, f, and n.p„„(H) of a sample of a free-electron
metal containing extended orbit crystallites. An

extended orbit is an orbit which spans many Bril-
louin zones; it is expected to behave like an open

where x =(v/2)(dk/~, r'0). This is a model intro-
duced by Stachowiak to describe extended orbits
occurring near [111]directions in Cu. The model
assumes a "crimped cylindrical" Fermi surface
consisting of sections of spheres strung together
like beads but attached at the periodic extensions
of [111]Brillouin-zone faces. Equation (3.6) re-
sults from an evaluation of the Shockley tube in-
tegral formula at sufficiently high fields. The
model parameters are 0, the angle between the
cylinder axis and the plane perpendicular to H (the
"colatitude"); v', the relaxation time characteriz-
ing electrons on this cylinder; and dI|, the ratio
of the diameter of the [111]Fermi-surface "neck"
in Cu to the Brillouin-zone "diameter", i.e., the
distance between opposite hexagonal faces of the
Brillouin zone.

Figure 2 shows the TMR in geometry (i) for an
extended orbit described by Eq. (3.6). The pa-
rameters chosen are 7'=v, 9=0.045 rad, dk
=0.18, and so= 0.1. The value of dk' is that which
describes the Fermi-surface necks in Cu, but

our calculations are not intended to describe
polycrystalline Cu but rather to illustrate the gen-
eral effects to be anticipated from defects with
extended orbits. As may be seen from Fig. 2, . the
TMR associated with the extended orbit does in-
deed rise linearly with H to about &,T =60; above
this field the slope decreases and at sufficiently
high fields (not shown) ap„„saturates, as is to be
expected of closed orbits. The Hall coefficient,
as in the open-orbit case, is identical, to first
order in f, with the free-electron value of R„.

IV. POLYCRYSTALLINE METAL %PITH OPEN-ORBIT

,CRYSTALLITES

We turn next to the study of a model polycrystal-
line metal with an open Fermi surface. The poly-
crystal is regarded as consisting of two kinds of
crystallites. Those of the first kind are oriented
in such a way that no open orbits lie in the k„-k,
plane. These are assumed to have a free-electron
conductivity tensor of the form (3.2). The crystal-
lites of the second kind do have open orbits in the
k„-k, plane which therefore contribute to the con-
ductivity. A crystallite of this kind having an open
orbit which makes an angle P to the k, axis is as-
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sumed to have conductivity of the form (3.3). We
calculate the effective conductivity for this model
within the EMT and, for a particular geometry,
also in the MGT.

If f is the volume fraction of open-orbit crystal-
lites, and these point with equal probability in any
direction in the x-y plane, the EMT self-consis-
tency condition (2.10) takes the form

(1-f)(a„-o„,)[1—I'(a„- a.„)]-'

112

80—
O

48—
X

l6

with I" defined by Eqs. (2.2) and (2.3), provided
o=—o„f in Eq. (2.3). We consider Eq. (4.1) for
the three geometries discussed in Sec. III, namely,
(a) spherical crystallites, (b) cylinders parallel
to the y axis, and (c) cylinders in the z direction
(H ([ z in all three cases). The three configurations
may be thought of as idealizations of sample geo-
metries attainable in a real polycrystal. For ex-
ample, a thick wire, the diameter of which is
much larger than that of a typical crystallite, may
be approximated as consisting of spherical crys-
tallites (the grains are certainly spherical on the
average), while a flat plate which is thin in com-
parison with a crystallite diameter can be viewed
as a section of a larger sample made up of right
circular cylinders perpendicular [case (b)] or
parallel [case (c)] to the field. In writing Eq.
(4.1), we are, of course, assuming that all crys-
tallites have the same shape (though not necessar-
ily the same size}, so that I" is the same for all.

For the three sample. configurations considered
here, Eq. (4.3) must be solved numerically. It
is found in cases (a) and (c) that cr,«has the sym-
metry of o„, so that the expression given in Sec.
III for l in these cases applies equally to the
present calculations, provided o„ is replaced by
o' « in those expressions. In case (c) (o', «)„„and
(a,«)„,are unequal, but expression (3.4c}for I'
still holds with the replacement g„-o,«. In all
three cases it is found that

(a„,)„=(a„)„=a. , (4.2a)

(4.2b)

Result (4.2b) can in fact be shown to hold exactly
for the model stated, not just within the EMT;
this follows from the result of Qreizin and Dykhne"
that if the antisymmetric part of cr is position in-
dependent and equal 'to o then the antisymmetric
part of a,«also equals o'. The remaining ele-
ments, (a„,)„„and (o'„,)„„,differ from their free-
electron values, and can be shown to satisfy com-
plicated algebraic equations in each case, which
we have solved numerically. 3'

In Figs. 4 and 5 we plot &p„„and R„/R~s', as cal-
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FIG. 4. p~(H)/p~(0) for a volume fraction f of open-
orbit crystallites embedded in a free-electron metal, as
calculated in the EMT. Configurations (a), (b), and (c)
are as in Fig. 1.
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e ' r R -const) predicted bythe saturating behavior R
tais with closestandard theory' for most meta

i surfaces. The reason why RH must go to
zero at large fields is c ear on
If t J=Jx is injected into theIf a current densi y

d H =He), then HR„ is the voltage dif-
ference which must be applied in e y

Because of the peculiar "hopping" met o y
the current progresses in ' - ' it
this voltage must asymptotically approach zero,

e ' ' tel different in case (c).
ence 8 must also.

The situation is comple e y i
with a quasi-two-dimensionaHere we are dealing wi a q

attern of e ec ric1 t fields and current flow. ep
arallel to the field lines, socurrent cannot flow para e

ntm for transverse currenthe "hopping" mechanism fo
not ossible. What we have instead, in

this somewhat arbitrary mo e, is
'

d of ercolation conduction" in twoa novel kin o p
free-electron)The closed-orbit i.e., re-dimensions. ,

onductivities whichcrystallites have transverse con uc i
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+sf f +!a 6a, (Q) t.i —I 6a, (4) j ' d 4

x 1- I'5o~ d (4.3)

drop off as 1/H' at large fields. The anomalous
(open-orbit) crystallites have field-independent
conductivities. The percolation limit is f= , in-
this model (in the EMT), not f= ,' as—inmore usual
two-dimensional (2-D) percolation problems, be-
cause the open-orbit crystallites each carry cur-
rent only in one of the two transverse directions,
and thus in a sense the effective fraction of anom-
alous crystallites is less than f, reduced, in fact,
by a factor of 2 in the EMT.

It is of interest to compare these results, all
found within the same approximation, to analogous
results found within the non-self-consistent MGT.
We have made such a comparison for geometry
(a). If the free-electron metal is regarded as the
host, then Eq. (2.8) takes the form

I.O

4Q

O
Q

20

4}

CC—0.6 ~z
CC

Q4

0
0 IOO

(d T

FIG. 6. p {H)/p~{0) and R&/RH for a free-electron
metal containing a volume fraction f=0.4 of open
orbits, as calculated within the MGT. Crystallites
are assumed spherical [configuration {a}].

with 5o, (p) =a, (&f&) —a„. Equation (4.3) is easily
solved for 5,«and the resulting &p„„(H) and R„/R„
are shown in Fig. 6 for f=0.4, with other param-
eters as before. Both curves are remarkably dif-
ferent from the analogous results in the EMT. The
magnetoresistance is seen to rise in a strictly
linear fashion with magnetic field, just as in the
low-concentration regime discussed in Sec. III,
and R»/R» rapidly saturates at a value of -0.9.
This behavior is typical of that we obtain within
the MGT at any value of f. The asymptotic slope
of hp„„ is found to rise roughly linearly with f;
1 —R„/R„" rises nearly quad~atically with f, con-
firming the low-concentration result of Sec. III
that asymptotically R„/Rf'=1 to first order in f.
While it is not claimed that the present calcula-
tion is an adequate model for polycrystalline Cu,
the results of Fig. 6 are rather similar to those
characteristically seen in that metal (the asymp-
totic Hall coefficient is generally smaller than
0.9 but seems to vary from sample to sample, as
discussed below).

The very large discrepancy between the EMT and
MGT results is cause for some concern. While
the latter seems more in accord with experiment,
the EMT agrees better with intuitive pictures of
current-flow patterns in a random composite. It
is possible that the resolution of the discrepancy
lies in the short-range order within the composite.
In analogous studies of the optical properties of
composites it is found, in materials which consist
of metal grains entirely surrounded by dielectric,
that the MGT does a superior job of describing
the principal absorption peak." This is attributed
to the nonrandom nature of the composite. '" Thus

one might sPeculate that the MGT, Fig. 6, is better
suited to composites in which the open-orbit crys-
tallites are really embedded in a free-electron
matrix, while the EMT is most applicable to a
more random medium (possibly not achieved in
practice).

V. POLYCRYSTALLINE METAL: EXTENDED ORBITS

We next consider briefly a model proposed by
Stachowiak to describe the galvanomagnetic prop-
erties of noble metals, which takes into account
the contributions of extended, orbits, as described
in Sec. III. In this model, the crystallites are
again divided into two classes: (i) free-electron
crystallites, with conductivities described by Eq.
(3.2), and (ii) extended-orbit grains, with conduc-
tivities

a, (e, y) =a,.+a (y)v„(9)gy), (6.1)

where o~(8) and R are defined in Eqs. (3.6) and

(3.3) and a„ in Eq. (3.2). Crystallites (i) are as-
sumed present in volume fraction 1-f; those of
type (ii) in volume fraction f. If there are four
identical cylindrical Fermi-surface sections (as
in the noble metals) oriented in [ill] directions,
and if we neglect the (small) probability that two
such cylindrical sections contribute to the conduc-
tivity of a given crystallite, then the self-consis-
ten«y condition (2.10) can be written in the explicit
form

0 =(1-f)5a„(1—I'5a„) '

+ d d85o, 8, ' 1 —I'5o, 8,&0 -dk

(5;2)
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where 5a„'=d„-o,«, 5o;(8, Q) = o, (8, P) —o,«, and

240—

I

o

x
l20

60

0
0 80 160

4ucT'
240

FIG. 7. &p~(H) = [p»(H) —p„„(0)]/p»(0) for the poly-
crystal with extended orbits, as described in the text.
The calculations are carried out in the EMT for geo-
metries (a) and (b), as shown in Fig.- 1. 7'/7 is the
ratio of the relaxation time for small angle scattering
to that for scattering from spherical sections of the
Fermi surface. For each value of v/v'', results for .

geometry (b) lie above those for (a).

4Q = d d9 cos8-4mdk,
dk

and f=4n, A/4v 4d-k is the probability that one of
the four necks will contribute to the conductivity
of a randomly oriented crystallite. Equation (5.2)
is a matrix integral equation, but the matrix as-
pect can readily be eliminated and the problem
reduced to one of solving a scalar integral equa-
tion. We have carried out such a solution for the
three geometries discussed previously, using
Stachowiak's values dk =0.18, which would be ap-
propriate if the model were to apply to the Fermi
surface of Cu." We have also arbitrarily taken
s, =0.27, and have considered several choices of
v'/v. The resulting values of np„„are shown in
Fig. V for geometries (a) and (b). As may be seen,
the TMR varies nearly linearly with field in both
cases, and depends rather strongly on the ratio
&'/&. The results in case (a) are nearly identical
with those of Stachowiak, a fact which gives us
confidence that our formalism reduces to his in
the special case of spherical crystallites. In case
(c) (cf. Fig. 8), b.p„„saturates at a very low value
of about 4, irrespective of v'/w This .result in-
dicates that the model is indeed too simple to ap-
ply to polycrystalline Cu —the particular oversim-

1

300

I.O

O
R

H

T/T'=30~ r&r'=10
TIT'= 20

Geometry
(c)

I

240
0 I

0 80 ]60
c

FIG. 8. &p»(„v') and Rz/RH for the extended-orbit
model of Sec. V, as calculated within the EMT for
geometry (c). The strong field dependence at ~ 7 ~ 40
results from the fact that the model is based on an
asymptotic, high-field evaluation of the Shockley tube
integral formal for the magnetoconductivity tensor.

04
320

plification lying in its neglect of all magnetoresis-
tance in closed-orbit directions. In reality, single
crystals of Cu generally exhibit a ~p„„which sat-
urates at a value of at least 10, even in closed-
orbit directions, "and such an effect would have
to be included in a realistic model of polycrystal-
line noble metals.

The asymptotic behavior of hp„„at large fields
can also be obtained analytically: we find '
cr„-H ' ' and nj„„-H' ' in case (a) and Ap„„
-(A+B lnH)H' ' in (b), withe and 8 constants
(the former result in agreement with Ref. 22).
The field at which &p» changes from a linear be-
havior to its asymptotic sublinear form seems to
be roughly that at which a substantial fraction of
the contributing extended orbits behave as closed
orbits. The effect of choosing a large value of
r'/v is simply to postpone this asymptotic regime,
resulting in a larger' range of fields in, which most
of the extended-orbit crystallites behave simply
like open-orbit crystallites.

Solution of Eq. (5.2) also gives values of R„/R'„'.
Results for geometries (a) and (c) are shown in
Figs. 8 and 9. [R„cannot be measured in geometry
(b).] At high fields Rz approaches the free-elec-
tron value RHf' ——ao'(u&, v)/H. At "intermediate"
fields (40 ~ roy ~ 200) in geometry (a) R„ is slowly
varying and smaller than RH'. At "low" fields
((d 'r —80) RH exhibits spurious behavior resulting
from the oversimplified nature of the model,
which is based on high-field evaluation of the
Shockley tube integral formula. In geometry (c),
R~ is field independent for (d,v ~ 40 and nearly
equal to R~.
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