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Binding of spin-polarized hydrogen to the free surface of liquid helium
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The binding energy of a single H, D, or T atom to the free surface of liquid 4He has been cil-
culated by a variational method. The calculation is of the Feynman-Lekner form, generalized to
include the difference between the H-He and He-He interatomic potentials. The results depend

on various properties of the pure 4He surface: the density and kinetic energy distribution, and

the two body correlation function. These have been obtained partly from data on atomic

scattering at the surface, and partly from a theoretical model which emphasizes the asymytotic

behavior far above the surface. It is believed that the assumptions about the 4He surface lead

to genuine lower limits for the H, D, and T binding energies. The binding of H to the surface

is at least 0.6 K, which is large enough to be important for low-temperature experiments on
spin-polarized hydrogen.

I. INTRODUCTION

The possibility of studying the low-temperature
properties of the hydrogen isotopes condensed as
atoms, rather than molecules, has attracted some in-

terest in recent years. ' ' Combination into
molecules will not occur if the hydrogen is completely
spin polarized (Ht) and if it is stabilized against spin
flips. A recent estimate" is that a magnetic field 8,
and temperature T, such that 8/T ) 106 G/K should
achieve this, provided there are no impurities and the
density is sufficiently low. The interaction potential
between polarized Ht is very weak" and it is predict-
ed "that even at 0 K it will form a gas rather than
a liquid up to a solidification pressure of perhaps 50
atmospheres. " Since Ht obeys Bose statistics it is

clearly of great interest to study the Bose-Einstein
condensation and superfluidity in Ht gas. ' s " In the
analogous case of D t, which obeys Fermi statistics, it
may form a gas2 3 at low pressure condensing into a
Fermi liquid at higher pressures. Spin-polarized tri-

tium, Tt, is predicted, to have a ground state which is

liquid at zero pressure.
The problem of finding a completely neutral, non-

magnetic container for spin-polarized hydrogen has
received some attention, and a vessel lined with a
thick film of superfluid He seems to be a good possi-
bility. Recently Miller' has calculated that a single
H atom dissolved in liquid 4He at zero pressure has a

positive energy of -40 K compared to the energy of
H in vacuum. This constitutes an ample barrier to
the penetration of Ht through the helium film, at
least from Hi gas at low density and temperature.
Using values for the volume, pressure, and energy of
solid O'I from Refs. 4 and 5, the chemical potential at
0 K of H t near solidification appears to be about 60
K. Even in this case, a vessel lined with a 4He film
might still be an adequate container since the 4He

film would then be denser than at zero pressure (and
presumably crystalline). However, even with an ade-
quate container, it may not be possible to produce
solid or very dense H t since recent calculations" '2

indicate that stability against spin flips at high density
requires a very large magnetic field, even at 0 K. In
early experiments then, the H t concentration is likely
to be very low. The fact that Ht can be adsorbed on
the surface of the containing helium film is therefore
of some practical interest and importance. If the con-
centration of H t adsorbed on the surface becomes
large enough, the formation of H2 molecules might
begin, with disastrous results!

The possibility of a bound state for hydrogen on
the surface of 'He, analogous to the binding of 'He
on He, was pointed out by Stwalley, who estimated
the-binding energy to be about 1.5 K. No details of
the calculation were given. A second unpublished
calculation by Stwalley gave 0.6 K for the binding en-
ergy. " Another unpublished estimate was made by
Miller, '6 using a variational method with a very sim-
ple trial function, one in which correlations between
the H atom and the He atoms in the liquid were
completely neglected. The calculation indicated that
the binding of Ht to 4He was less than 0.01 K and
therefore of no practical consequence. In the present
paper we also use a variationa1 method, with a wave
function which includes correlations, to calculate the
binding energies for Ht, Dt, and Tt. We obtain a
value for the binding energy for Ht which is compar-
able to those found by Stwalley. Since it is variation-
al, the theory should give reliable lower limits for the
binding energies. However, the calculation requires
knowledge of the ground-state properties of the 4He

surface: the density profile (one-particle density
function), the two-particle density function, and the
kinetic energy density, all in the surface region. At
present none of these quantities is known very pre-
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cisely, although we have tried to use, whenever pos-
sible, "conservative" assumptions about them so that
the resulting estimates for the binding energies are
genuine lower limits. We have also used information
from 4He scattering data to supplement theoretical
calculations. If and when it becomes possible to
study the adsorption of the hydrogen isotopes on
4He, the measurement of the binding energy should
give some useful information about the properties of
the ground-state He surface. It will also be interest-
ing to study finite concentrations of adsorbed H],
Dt, or T], since these will form quasi-two-
dimensional Bose and Fermi fluids. "

impurity potential minus the He-He potential

v, (r) = v(r) —vo(r) . (5)

To find an approximation to the ground state of
the impurity atom-liquid 4He system the expection
value of the energy

(E) =J Q'Hpdr) . drN J Q'fdrt dr~

(6)

is minimized with respect to variations in f (r ~). The
resulting Euler-Lagrange equation can be written in
the form of a single-particle Schrodinger equation if
the following substitution is made:

II. THEORY f(r)) =$(rt)/a(rt) (7)

To calculate the binding of a foreign particle of
mass m at the surface of liquid helium we use an ex-
tension of the Feynman-Lekner"' variational
method. This has been very successful in calcula-
tions of the binding of He to the He surface.
The Feynman trial wave function for a single-
impurity atom (at r ~) and N —1 He atoms (at
r2, . . . , fy) is

4(«rw) =f(r&)Po(rt, . . . , r~)

Here f(r t) is to be varied so as to minimize the en-

ergy, and i/to(r ~, . . . , r &) is the wave function for N
helium atoms in their ground state at zero pressure
and with a free liquid surface. The wave function Q

defined by Eq. (1) has the same correlations between
the impurity atom and the He atoms as between 4He

in the ground state Qo. The 4He ground-state wave
function Po is real and symmetric, and it is the lowest
eigenstate of the Hamiltonian Hp

&o4o = Eolo

N N

X p,2+ —,
' g uo(l r; —r, l) .

2m4 ? ] 1+J

Here uo(r) is the interatomic potential between two

helium atoms. The He ground-state energy Ep is ap-

proximately —NL4, where L4 is the latent heat at ab-

solute zero, but it also contains the surface energy.
The experimental value of L4 is L4/ktt =7.16 K. The
Hamiltonian for the trial wave function (1), which
has particle 1 replaced by a foreign atom of mass m,

1s

where the "amplitude" a (r t) is related to the particle
density in the original 4He ground state

a'(r, ) = p(r, )/po,
(g)

p(r~) =N J Aodr2 ' ' dry J 4odri ' ' ' drtt

The bulk density po is the value of p(r ~) with r ~

deep inside the liquid. With the substitution (7) the
Euler-Lagrange equation becomes

2

'7~$(r ~) + V,ff(r ~)P(r ~) =(E Eo L )@4(r t)
2m

—= e$(r ))

The "effective potential" V,tt(r ~) is related to prop-
erties of the 'He ground state Po. For convenience,
it includes a term —L4 so that the impurity energy e
is referred to the state in which the impurity is in the
vacuum above the liquid. The probability density for
the impurity particle in the state P is given by

„tlyl2dr2 drN J lpl dry ' ' ' dry

ld(r, )l'dr, , (10)

so that Q(r ~) is truly analogous to a single-particle
wave function with the impurity atom in a potential
Ve

The expression for V,ff contains terms related to
the one-particle, two-particle, and kinetic energy den-
sities in the He ground state

H =Hp+hH)

where

(g '/2m) ['vr2ta (r ~)] m4
eff r 1 4+ + —1 t ri

a(r )) m

2 N

hH)= — —1 Vt+ X g(lrg —rtl)
m4

2m4 Nl

and the "difference potential" wq(r) is the He-

(4) +„p(r 2) g ( r t, r 2) vz(l r
~

—r ql) d r 2 . (11)

Here g(rt, r2) is the He two-particle correlation func-
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tion defined by

p(r&)p(r2)g(rr, r2) p( rl r2)

where the two-particle density function is

TABLE I. Lennard-Jones parameters for the helium-helium,
helium-hydrogen, and the "difference" potential (see text).

N(X —1) „pod r 2 d r z
p(rr. r2) =- Jl�fpdrr'''

dry
He-He
He-H
Difference

10.22
6.57
2.56

2.556
3.19
3.42

The function t( r r) is the local kinetic energy density
divided by the local density, i.e., the kinetic. energy
per particle in the He ground state

(it /2m4) „tQoVrQo d r 2 d r ~
(14)

Qpdr2 dr~

For the special case of a helium impurity vq =0
and Eq. (11) reduces to the effective potential used
by Saam 20 Shih and Woo, ' and Chang and Cohen
to calculate the binding of 'He to the surface.

We shall assume the free surface of the liquid to
be planar and situated near z =0 with the liquid occu-
pying the region z & 0. From symmetry it is clear
that a, t, and V,ff depend only on z~, the z coordinate
of r~, and that

r(r, ) =

p(r r, r2) = p(zr z2. I
r r

—r 21) (is)
With the appropriate choice of x axis, the impurity
effective wave function @ can be written

@(r,) = e' " y(zr) so that

e = e +it ir /2m

where e, is the energy from the solution of

q2 dzy(z, ) + V,rr(zr) g(zr) = e, P(zr) . (17)
dz I

If the lowest eigenstate of this one-dimensional
equation is lower than the continuum of states in the
vacuum (z ~) and in the interior of the liquid
(z —~), then we have one or more surface bound
states. The problem of calculating V,fq so that the
binding energy (if any) can be determined is dis-
cussed in Sec. III. We note that the theory outlined
here does not include "backflow" effects and that,
from Eq. (16), the effective mass of the impurity
quasiparticle is the same as its real mass. For ad-
sorbed 'He the experimental effective mass2' is 1.45m3
(compared to about 2.3m2 in bulk 'He). However,
for adsorbed H the effect of back flow should be very
weak since, as we shall see, the wave function of the
bound state has its maximum much further above
the liquid where the 4He density is very low.

nies, Welz, and Wolf' from the scattering of an H or
D atomic beam by He together with theoretical calcu-
lations. In what follows we assume for simplicity that
both u(f) and the He-He potential" up(f) are of the
Lennard- Jones form

u, (f) =4.o(~p2/f" ~op/f'),

u(f) =4m(o' /f' —rT /f )
(18)

One advantage of this assumption, apart from its
simplicity, is that we get a good approximation to the
Van der %sais potential, which varies as 1/fe, at
large distances. This is important if the impurity par-
ticle binds at a large distance above the liquid sur-
face, as we expect for hydrogen. If v and vo are
Lennard-Jones, then the "difference potential" uq(f)
defined in Eq. (5), is also of the Lennard-Jones form
(although, in principle, neither rfq nor eq need be po-
sitive)

—|0-

ud(f) =4ed(iTd /f re/f )

rfg = (erf eprrp )/(e0' Corfu)

"=(e~' eo~o)/~d —.

The data for u(f) have been fitted to the Lennard-
Jones form by Miller. ' The parameters for U, Up, Ud

are given in Table I. For hydrogen-helium the differ-

III. CALCULATIONS OF THE EFFECTIVE
POTENTIAL

The interatomic potential between a hydrogen and
a helium atom u(f) has been determined by Toen-

FIG. 1. Lennard-Jones potentials between two helium
atoms (labeled He-He}, and between a helium and a hydro-
gen atom (He-H}. The "difference" potential is the He-He
potential subtracted from the He-H potential.
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ence potential is of the conventional type with eq and

hard positive. Figure 1 shows the He-He, He-H, and
the. difference potential.

A. Effective potential for He e(z)/Po

0.5—

V„(z)
(K)

Ig calculating the various terms in the effective po-.

tential V,rr [see Eq. (11)j it is important in the sur-
face hydrogen problem to get the asymptotic behavior
in the vacuum (z ~) as nearly correct as possible.
As we have mentioned before, this is because the hy-
drogen isotopes are expected to bind rather far above
the surface where the 'He density p(z) is very small.

If we consider the terms in V,ff in turn, only the
first two are nonzero if we apply the theory to a He
atom (m = m4, ]]d =0) treated as an "impurity". In
this case

V rf(z]) (g /2m4) a "(z])/a (z]) —L4 —= V4(z]) . (20)

In the interior of the liquid (z —~), where the
density is uniform, a"=0 and V,ff —L4. The
asymptotic behavior of V4(z) above the liquid, as
z ~, has been discussed by Edwards and Fa-
touroszP (EF) who have used the form

a(z) = I/(e~ ' +1)

p(z) =pz+7+(~/4p)/(z'+S') .
(21)

tt 2P /2m4=L4 (22)

The length ]].=20 A is such that the I/z] Van der
Waals attraction between the liquid and a He atom
above the liquid is given by

2

3 1rppepcr)

Z3 Z3

—h A,

2 m4z
(23)

The standard values2' for ep and o.p (Table I ) give
A. =21.5 A. In common with Ref. 26 we have used
A. =20 A as a rough compromise between this and
the theoretical" Van der Waals potential at large dis-
tances which gives X =19.2 A. The other parameters

y = —2.5, 5 =8.5 A, were adjusted by EF to give a
good fit to the elastic scattering probability for 4He

atoms striking the liquid surface.
The amplitude a (z) in Eq. (21) is constructed to

give the correct asymptotic behavior deep in and far
above the liquid

a(z —~) =1, V4(z —oo) =—L4,
a(z oo) =e a*, V4(z oo) = np/z3—(24)

Since it gives a good fit to the elastic scattering of
He, which takes place mainly above the liquid sur-

face, we believe that the term in a "/a in V,rr is very

In this equation the various parameters are defined as
follows: The inverse length p =1.087 A ' is defined
so that

0-5
z (A)

FIG. 2. Density profile p(z)/po for the 4He surface, and
the corresponding effective potential for a He atom V4(z)
according to the model of Edwards and Fatouros (Ref. 26).
The effective potential fits the elastic scattering of 4He from
the surface.

B. Effective potential for 3He

%e next consider the term in V,f[ proportional to
the kinetic energy t (z]) in the liquid- He ground
state. This term is important in the binding of He to
the surface; from Eq. (11) the effective potential for
3He is

(g /2m3)a ~(z]) m4
VCA(z]) = —.L4+ —I t(z])a(z) I,

m4 m4
V4(z]) + —1 [r(z]) +L4]

m3 m3

-=V, (z,) . (25)

The asymptotic behavior of t(z]) can be deter-
mined as follows. Far above the liquid surface (z]
large), V](z]) must be the same as the real Van der
%aals attraction for a helium atom above the liquid

V3 (z]) V4(z]) IRp/z]3 ~ (z] large)

Substitution from Eq. (26) into Eq. (25) yields

r(z, ) = —V4(z]) —L4

(26)

= —(gz/2m4)a "(z])/a(z]), (z] large) . (27)

well determined as far as the hydrogen problem is
concerned. A discussion of the use of the unsym-
metrized wave function (1) to describe 4He scattering
is given in EF. However we remark here that
although V4(z), shown in Fig. 2, has a shallow
minimum near the surface there is no surface bound
state. Moreover the "single-particle" Schrodinger
equation (9) gives the exact result for the ground
state of a 4He "impurity". This is e = —L4,
$(r ]) =a(r ]) which corresponds to f ( r ]) = I, ]i] =]l]p.
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Deep inside the liquid, V4(z& —~) = L—4 and l5

1

Pp 6tp

tp dPp

(po/ro) ]d ( L4 —E3)/" po]

( m4/m3 —I )

(pp/tp) m4s ]d(L4 —E3)/dp]

(m4/m3 —1)

(m4s'/tp) nq

(m4/m, —1)
(30)

In this equation we have used the fact that
dp/d po = m4sz, where s is the velocity of sound in
~He at 0 K, and we have written the volume occupied
by a He atom in solution as (1+u3)/pp. Experimen-
tally a3=0.284, zp and m4s /ks ——27.0 K, so that the
coefficient n is 1.76. In the region just below the sur-
face of the liquid we shall assume that
t (zt) ~ [p(zt)]" which leads to the equation

t (zt) = tpa'"(z~), (—z, large) (31)

To obtain an interpolation formula between Eqs.
(27) and (31) which is valid for both positive and
negative z~ is rather. simple. Both expressions for
t(zt) become very smail outside their approximate
range of validity, so it is only necessary to add them
together

r(z)) = tpa'"(z, ) —V, (z, ) L4, (all zt) . (—32)

Values for t(z~) from the expression are shown in
Fig. 3, which also gives the two asymptotic contribu-
tions separately.

With the kinetic energy r(z~) determined by Eq.
(32) we can substitute in Eq. (25) to obtain the 'He

Here —E3 is the energy. of the lowest-'He quasiparti-
cle state in bulk 4He (at zero pressure). Experimen-
tally E3/ks =2.785 K. Substituting in Eq. (25) gives

r (z} oo) = tp = (L4 E3)/(m4/m3 —1) . (29)

Substituting L4/ks =7.16 K, we find rp/ks =13.34 K.
Since Eq. (29) represents a variational calculation of
E3 in terms of tp, the results should properly be ex-
pressed as to/k& ~ 13.34 K. This agrees very well re-
cent accurate theoretical calculations3o of tp (which
give tp/ks =13.6+0.12 K). In what follows however
we shall use the equality tp =13.34 K in order that
Eq. (28) be consistent with the experimental value of
E3.

To obtain a formula for the dependence of t(z~) on
z~ as we approach the surface from below, we follow
Saam' and note that the change in the kinetic energy
per particle will be due mainly to the change in the
local density. Thus t(zt) can be found from the pres-
sure variation of L4 —E3 in the bulk liquid, which is
related to the volume occupied by a 'He atom in
solution in bulk He

t(z) 5-
(K)

-5-

z (A)

FIG. 3. Kinetic energy per atom t (z) in the surface of
4He as a function of height z. As explained in the text, the
curve for i(z) is interpolated as the sum of two contribu-
tions, one appropriate to variations in the density of the
bulk liquid a "tp, and one appropriate to the region above
the liquid where the density is very small,
—(0 /2m4)(a "/a). The origin for z is the same as in Fig. 2.

effective potential in the following simple form:

3( t) 4(zf) + (m4/m3 1) rpa (z&) . (33)

This is shown in Fig. 4(b). The one-dimensional
Schrodinger equation (17) with V3(z~) from Eq. (33)
has been solved numerically to find the He bound
states. We find only one bound state for which the
binding energy (referred to vacuum) is 4.64 K. The
wave function for the 'He bound state is illustrated in
Fig. 4(a). The experimental value'3 of the surface
binding for 'He is E3/ks+(2. 22 +0.03) K
= (5.00 +0.03) K so that our calculation can be re-
garded as quite satisfactory.

It is interesting to compare our results for 'He with
other calculations based on the Feynman-Lekner
theory. Although this is a variational method, the
calculated values of the energy are not necessarily
above the true, experimental energy. This is caused
by the uncertainty in the functions V4(z~) and t(z~).
Only if we had precise knowledge of V4(z~) and t(z~)
would we be sure that the calculated energy is an
upper bound to the true energy. The earliest calcula-
tion of the 'He bound-state energy was that of
Saam, 2 who interpolated between the asymptotic
behavior of a (z~) and t(zt) to obtain V3(z~), just as
we have done. However he did not include the
—np/z3 Van der Waals attraction in the asymptotic
behavior of either a(z~) or t(z~) at large z~. This
may partly explain why his result for the binding en-
ergy, which is 4.05 K compared to vacuum, is not, as
close to experiment as ours. In addition we have the
advantage of using the semiempirical Edwards-
Fatouros expression for V4(z~) which has been fitted

. to 4He surface scattering data.
Completely microscopic calculations of a(z~) and
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0.3

p(z)/g
0.2
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O. I

V, (z)
+L~ 4
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vef f(z)
(K)
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z (A)
20

FIG. 4. Binding of the hydrogen isotopes to the surface
of 4He. The lower graph shows the effective potential

Veff(z) for hydrogen in the vicinity of the surface, with the
effective potential for 3He shown for comparison. The ef-
fective potentials for deuterium D and tritium T are the
same as for H in the region which can be shown in the fig-

ure, although they are different in the region where

p/pe —1. The upper graph shows the density profile p(z)/ps
for the 4He surface (shaded, left-hand axis), and the nor-
malized probability densities $2(z) for the surface bound
states. The hydrogen isotopes are bound above the surface
where the 4He density is very low.

t(zt) ha've been made by Shih and Woo, "who ob-
tained 4.4 K for the binding energy, and Chang and
Cohen, who found 5.1 K, which is very near, but
slightly above the experimental value. Comparison
with the calculation of Chang and Cohen is compli-
cated by the fact that their theoretical value of the
binding energy of the 4He ground state L4 is 7.43 K,
larger than the experimental value 7.16 K. This is
because they increased the He-He Lennard-Jones
parameter eo to 1.09~0 so that the theoretical equili-
brium density of the liquid would be close to the ex-
perimental value. " If we express the results in terms
of e, -=~+L4, the difference in binding energy
between 3He in the lowest surface state and 4He in
the ground state, then their result is ~, -2.347 K,
compared to our value of 7.16 —4.64 =2.52 K and
experiment a =2.15 K.

A detailed comparison between our He effective
potential, expressed as V3(z) + L4, and that of Chang
and Cohen is shown in Fig. 5. It is very satisfactory
that the two potentials agree very well in the region
of the minimum, where we have relied on our inter-
polation formula (32) for t(zt). Near the minimum
our curve is very slightly eider and not quite so deep,
but this is more than compensated by the differences

I

0
z (A)

FIG. 5. Comparison between the density profiles (p/po,
with arbitrary vertical scale) and the 3He effective potential
V3(z) in the present work and those calculated by Chang
and Cohen (shown dashed and labeled CC). The effective
potential has been plotted with respect to the 4He ground-
state energy, i.e., as V3(z) + L4, since this is the quantity
directly predicted by theory. The Chang and Cohen value of
L4 is substantially higher than ours, which has been fitted to
experiment. The orgin of the z axis for the Chang and
Cohen curves has been shifted upward by 1.33 A, to make
comparison easier. The Chang and Cohen effective poten-
tial is not correct at large z since it does not asymptotically

approach their value of L4=7.43 K as z c.

just below and just above the surface. Below the sur-
face the Chang and Cohen t(zt) follows the relation
expressed in Eq. (33) quite well, although their den-
sity profile is different from ours. Our profile is
probably not very accurate in this region. Above the
surface the large difference in V3(z) is due to the fact
that the Chang and Cohen calculation is not asymp-
totically correct as zi becomes large. They estimated
that if this were corrected it would cause a 0.15 K de-
crease in the binding, corresponding to ~, 2.50 K
which is close to our value.

C. Effective potential for the
hydrogen isotopes

With the preceding results for V4(z) and t(zt), the
effective potential for an impurity, such as a hydro-
gen atom, of mass m with a nonzero difference po-
tential eq becomes

V,ff(zt) = V (zt) +(m /m —l) tsaz"(zt)

+ p(zz) g (zt, z2, ( r t
—r z ()

(34)

The main problem in evaluating this expression
stems from uncertainties in the correlation function.
We shall use the approximation employed by Shih
and Woo,"Chang and Cohen, "and others by substi-
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tuting for the two-particle correlation function in the
surface region the correlation function in the horno-
genous liquid at a density p intermediate between the
densities at z~ and z2

g(zlfz2 Ir( r21) =g(p Ir( —r21)

-O.OI

-O, l—
Ve

Here

p = [p(z() + p(Z2)]/2 (36)

(2 fr/3) a-Pp o'/z(' (39)

We examine this point in more detail in Fig. 6
which compares the hydrogen V,ff with two calcula-
tions of the Lennard-Jones potential energy between
a hydrogen atom and the helium liquid. For the first
calculation we have assumed a density profile p'(z)
which falls linearly with z between zp —b and zp+ b

r

Pp, Z ~~zp
)

1 Z Zpp(z)= —
pp 1—

2 b
( )

0, z ~zp+b

z() —b & z (zp+b, (40)

and g(p, r) is the correlation function in homogene-
ous 4He of density p. Substituting Eq. (35) into Eq.
(34) the effective potential becomes

V,ff(z)) = V4(zf) + (m4/m —1) tpa2"(z))

+ J3 a2(.,)1(P, I., —., I) d.,
where

l(p lfl z21) sfp~ j
p(p)p (p r)2 r (

1 2

(3g)

To evaluate I numerically we have employed the
correlation functions g(p, r) between p =0 and

p = pp, in steps of 0.1pp, calculated by Chang and
Cohen, ' ' and used for their calculation of the den-
sity profile and t(z) For th. e density profile
a (z2) —= p(z2)/pp which appears in the integral in Eq.
(36) we have used Eq. (21) in order to be consistent
with the calculation of a "/a, which appears in V4(z)).
As discussed in EF, 6 although the density profile
(21) has been adjusted to fit elastic scattering data it
is probably not very accurate in the region where a2

is not small compared to one. This is because the
scattering of 4He atoms from the surface is not sensi-
tive to a "/a in this region. However, it is much
more important in thc present context that the for-
mula be asymptotically correct for large z~ where we
expect the hydrogen surface state to be. With our
choice of a (z), it is easy to see that the effective po-
tential at large z is equal, as it should be, to the Van
der Waals attractive potential between the impurity
and the liquid

Veff(z f ~) = —a/Z f

101

2
I

. IO 20

FIG. 6. Effective potential for H, off(z), compared ~ith
two calculations of the potential energy outside the liquid,
V'(z) and V(z) from Eqs. (41) and (42).

v'(z, ) = J p'(Z2) v(1 r, —r 21) d r,
Psp+b fl) oo

p (Z2) dz2 J~, 2)(r»7r«r (41)

The second version of the potential was calculated
from the EF profile directly, using the correlation
function

v(z)) = J p(Z2) g (p 111 1 21) 2)(l r (
—r 21) "r 2

goo oo

= pp J a (z2) dzz J ~ ~

g(p, r)u(r)2frr dr

(42)

This expression is actually the expectation value of
the potential energy of the hydrogen atom at r ~ in
our trial wave function (1). The two forms for the
potential, Eqs. (41) and (42), are nearly the same for
z~ & 8 A. As shown. in Fig. 6 the effective potential
V,ff(z)) approaches Eqs. (41) and (42) quite closely
for large z, although the agreement is not quite per-
fect. This is partly because of the value A. = 20 A
used in the a "/a term in the effective potential
which, as remarked earlier, is not quite consistent
with the value from the Lennard-Jones parameters.
The discrepancy should have no effect on the accura-
cy of the hydrogen binding energy.

Figure 6 illustrates another point of greater interest
and importance: The V(z) and V,ff(z) would ap-
proach each other much more rapidly if the origin of

0
z for V,«(z) were moved approximately 1 A higher.
This effect can probably be traced to the problem dis-

The width of the profile 2b was set at 4.4 A, deter-
mined by fitting to the EF profile (21) at p/pp =0.9
and p/pp =0.1. The position of the dividing surface
was made the same as for the EF profile at zp =1.0
A. The He-H interatomic potential 2)(r) was then in-
tegrated over the liquid
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cussed in EF, that their profile is not "self-
consistent. " This means that, although their a (z)
gives an effective potential V4(z) which fits the elas-
tic scattering data very well, Vq(z) does not approach
sufficiently closely to V(z), as calculated from the
He-He interatomic potential uo(z) with Eq. (42). If
their profile could be modified to be self-consistent in
this sense, while still retaining the fit to the scattering
data, it might then be a good approximation to the
real profile. For the purpose at hand, the calculation
of the binding of hydrogen to the surface, the effect
of such a modification would be to enhance the bind-

ing energy. This is easily seen from Eq. (34). The
term V4(z) in V,ff would be displaced upward in z,
producing a more attractive well. Modification of the
profile would also affect the potential for 3He and,
from Eq. (33), the binding would probabiy be
enhanced in this case too. In the present work since
we are making a variational calculation of a lower
bound on the hydrogen binding, it is not necessary to
try to make the EF profile more nearly self-consistent.

IV. DISCUSSION

The bound state wave functions for H, D, and T
that result from V,rf(zt) are illustrated in Fig. 4. The
binding energies, which are lower bounds to the true
energies, are given in Table II. There are second,
weakly bound states for both T and D. As expected,
the bound states are situated well above the liquid-
helium surface. In this region the contribution to
V ff fmm the term in ra in Eq. (34) is small, so that
the differences between V,ff for H, D, and T are in-

significant. The binding energies should be regarded
strictly as lower bounds since we believe that the ac-
tual binding energies for the hydrogen isotopes will

be substantially larger. %e have already discussed
one reason for this: . the fact that the EF profile is
not "self-consistent. " Other reasons which may be
more important are as follows.

First, the correlation functions g (p, r) that we have
used are those calculated by Chang and Cohen ' us-

ing a modified Lennard-Jones parameter 1.09eo for
the He-He interatomic potential. This has the effect
of making the contribution from the repulsive part of
the difference potential substantially too large. One
way to demonstrate this is to calculate V,ff, that is

V ff(zt) deep inside the liquid, where one needs only
the bulk correlation function g (pa, r) T. able III gives
values for Vbff'" calculated with the Chang and Cohen
g(r), and also those of Miller, "and Massey and
Woo." Of these the Massey-Woo correlation func-
tion agrees best with experiment.

An additional error in our calculation is caused by
the use of the approximation embodied in Eq. (35)
rather than the true correlation function g(zt, zz. r).
Liu et al. ' have criticized this approximation, since it
gives different results for the density profile than
their Monte Carlo calculations. The error introduced
in the present calculation is very hard to assess. It
may be helpful that the region of interest for the H
isotopes is one of low- He density. However if V,ff is
calculated using g(0, r) rather than g (p, r), the bind-
ing energies are increased substantially so that the ap-
proximation is necessary.

Of course the most fundamental reason why the
calculated binding energies are only lower limits is
because we are using a variational wave function. In
particular the trial function that we have employed
forces the hydrogen impurity to have the same corre-
lations as a He atom. The true correlation function
g(r t, r &) for the hydrogen atom should have a larger
nearest-neighbor distance than for the helium atoms,
because the H-He interatomic potential has a repul-

0
sive core which is larger by about 0.8 A. The lower
mass and larger zero-point energy of H should also
have some effect. Miller has calculated the He-H
correlation function for a hydrogen atom dissolved in
bulk He. His. calculation of V,ff for the interior of
the liquid, given in Table III, is much lo~er than cal-
culations using the He-He g(r) There is l.ittle doubt
that if the true He-H correlation function in the sur-
face region could be taken into account it would
greatly increase the binding of surface-adsorbed H.
A variational calculation along these lines has recent-
ly been carried out by Guyer and Miller. However
their value for the binding energy of H (0.1 K) is
much smaller than ours. This is because they were
forced to make some restrictive approximations in
solving their Euler-Lagrange equation. Iri particular,
they assumed that the H-He correlation function in

TABLE III. V«r/ks for a hydrogen atom in bulk "He, cal-

culated with different correlation functions g(l ).

TABLE II. Lower bounds for the binding of 3He, H, D,
and T to the surface of liquid 4He (in kelvin).

3He D

Lowest state 4.64 1.83 1.39 0.63
Second bound state none -0.015 10~—10

Correlation function

He-He
Chang and Cohen, Refs. 31 and 32
Massey and oo, Ref. 33
Miller, Ref. 14
He-H
Miller, Ref. 14

Veff/k~ (K)

205
126
138„

37
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the surface region is exactly the same as in the interi-
or of the liquid. Until more accurate calculations of
the Guyer-Miller type are available, we believe the
present approximation to be a useful one. It has con-
vincingly demonstrated that all three H isotopes are .

bound to the surface and with substantial binding en-
ergies, of the order of, 1 K. This fact should be taken
into account in designing and interpreting ultralow
temperature experiments on spin-polaf'ized hydrogen.
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