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Superconductivity and charge-density waves
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A theory of two competing order parameters —superconductivity and charge-density waves
—as applied to layered compounds is presented. Both effects are caused by the phonon-

mediated attractive interaction between itinerant electrons in narrow-band materials. The inter-

play between superconductivity and charge-density waves is analyzed. The main results of our
model calculation are: (i) all metallic charge-density systems should be superconducting at low

temperatures; (ii) the presence of superconductivity tends to reduce the charge-density wave

and vice versa; (iii) under some conditions it is possible to have a charge-density-wave —induced

semiconductor which, at low temperatures, makes a transition to a superconducting state. This
last case is examined in detail.

I. INTRODUCTION

Among the states of broken symmetry in a solid,
charge-density waves (CDW) and superconductivity
(SC) are the two most prominent ones which require
an effective attractive electron-electron interaction'
mediated by phonons. It is therefore not surprising
that systems in which CDW's have been experimen-
tally observed4 are also superconducting at very low
temperatures. 7

The tendencies toward the formation of SC and
CDW are to a certain degree opposing one another:
While the SC -state has infinite conductivity and a

Meissner effect, the CDW state, for large enough in-
teractions, produces a semiconductor gap in the spec-
trum and a nonconducting state. From the micro-
scopic point of view on the other hand the SC state
arises from electron-electron coupling into Cooper
pairs, the CDW state from electron-hole coupling and
charge redistribution: two effects which are in princi-
ple independent of one another.

Although considerable uncertainty exists, it has
been mentioned in the literature' that some CDW
layered compounds, e.g. , 1T-TaS2, despite the ap-
parent lack of metallic properties are reported to be
superconducting below a given temperature
Tsc (Tsc —0.8 K for 1 T-TaSz).

It is the purpose of this work to study the inter-
dependence of the SC and CDW states. In particular
we are interested in setting up a model Hamiltonian
which allo~s us to test both effects on the same foot-
ing. We thus expect to clarify several points: (a) the
difference in order of magnitude of T&Dw, the CDW
transition temperature, and Tsc, the SC transition
temperature; (b) the range of relevant parameters
over which a CDW exists; (c) the nature of the com-
petition between SC and CDW's; and (d) the possi-
bility of coexistence of both effects, i.e., a nonuni-

II. THE MODEL HAMILTONIAN

Our starting point is a collection of crystalline elec-
trons moving in a single band and interacting with
lattice phonons

Hp=H, +Hp+H p (2.1)

where

+~e ~ Kk Okra Okra
ko

(2.2)

~k is the band energy of a state k in the Brillouin
zone, o is the spin index, and ak~ (ak~) is the fer-
mion creation (destruction) operator. The phonon
Hamiltonian

H~ = X ga)qbqtbq (2.3)

corresponds to a single-branch phonon spectrum, the
phonons being identified by a wave vector q and a
creation (destruction) operator bqt (bq). Finally Hq

form charge distribution with its attendant CDW gap
and a superconducting state also with its characteristic
gap. A similar study for one-dimensional systems is
reported in the work of Levin et al. and similarities
can also be found in the article by Bilbro and McMil-
lan. '

In Sec. II we set a model Hamiltonian and discuss
its validity. Section III studies the existence and
properties of the CDW state within this model. Sec-
tion IV is concerned with the competition and coex-
istence of CDW and SC states. Section V examines
in more detail the semiconductor-to-superconductor
transition. Section VI contains a discussion and con-
clusions.
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describes the electron-phonon interaction

HeF = i X Dqa(k+0)&ak&(b0 b 0)-
kq sr

(2.4)

with an interaction D, which, for convenience, we
take to be a constant D.

The standard procedure in studying the SC state' at
this point is to produce an effective electron-electron
interaction mediated by phonons, and replace it by an
approximate expression which leads to the BCS re-
duced Hamiltonian. The well-known canonical
transformation leads to an effective Hamiltonian

leak
—kFI & fo)D, and ( ) indicates thermodynam-

ic mean values.
The terms in Eq. (2.6) responsibie for the forma-

tion of a CDW are completely different. We restrict
ourselves to the case of a single wave vector Q and
choose a commensurable Q of special value such that
2Q is a vector of the reciprocal lattice, i.e.,
k+2Q =k. The terms in Eq. (2.6) which contribute
to this CDW are those for which q = Q, i.e.,

H; = ~ 4 ( VkQ+ V Q)a(k+Q) ak a,a, ,
CDW

k Q (k+Q)~ k ~
kk

H,ff=H, +H; (2.5) (2.12)

where H, is given by Eq. (2.2) and the interaction
term is

H, = ,'O' X [-(t -krak, -h 0))

kk q

—(0 —a +lro) ) ']
k k+q

where VkQ is given by Eq. (2.8).
In the same spirit of the BCS model we replace Vkg

by the simpler form (2.9). The use of the mean-field
approximation now yields

HCDW Hg Gp Xa (k+Q) ak

xa ra r ra t ak(k+q) a k e (k -q) o
(2.6) —G) X a(k+Q) ak +GOG, /X . (2.13)-

Among the many terms in Eq. (2.6), the relevant
ones for the SC state are those which scatter
coherently a pair [k [,—k [] into another pair
[(k+q) 'f, (—k —q) t], i.e., only those terms for
which k = —k and o- =—o.. The retention of only
those terms yields

(2.i4)

In Eq. (2.13) the doubly primed summation is over
states which satisfy the two conditions
I kk CFI ( AQlD and I ek+Q —aFI ( )tp)D, and

GO )( X (a(k+Q)lakt)

HI ~ ~k (k+ ) fa(-k-q))a-kiakt
kq

(2.7) Gl = )( X (a(k+Q)tak))
k

(2.1S)

where

2D k coq

(ak = ak+,)' —( g~, )' (2.8)

In addition we have assumed that there are no
unusual spin arrangements and

(a (k+Q) takl) (a (k+Q) tak I) (a (k+Q) l k I)

In the BCS reduced Hamiltonian the matrix element
Vkq is replaced by a simpler form

(

)f Iak —aFI &b o)D,

Vk0
'= 10k+0-aFI «~D,

0, otherwise, (2.9)

where the superconducting order parameter 5 is de-
fined by

~here ~q is the Fermi energy and AD is a characteris-
tic (Debye) frequency. The use of the mean-field ap-
proximation now yields

Hacs = H, —6 X (akta kt +a—ktaki) + 5'/k
k

(2.iO)

(2.i6)

Finally our total Hamiltonian which includes both
SC and COW states is now given by'

H =Hgcs +HcDw —Hg (2.i7)

The values of the SC parameter 4 and the CDW
parameters Go and G~, as we11 as all the transition
temperatures and stability conditions, depend crucially
on the details of the band structure and-Fermi sur-
face of the electronic system, i.e., on the form of ek
and the number of electrons. For the sake of defin-
iteness we now restrict ourselves to a well-defined
model. We choose a two-dimensional structure in a
square lattice of constant a with first- and second-
neighbor couplings, where the band energies are
given byI=—)). X (a ktaki)

k
(2.1 i)

the primed summation is over all states k such that

0k = 2rp(cosk a +co—skFa)

—4ti cosk„a costa (2.18)
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Band structures and Fermi surfaces for this model
for a half-filled band and various values of (r~/to) are
shown in Fig. 1. The structure given by Eq. (2.18)
has two degenerate saddle points of energy e„=4t1
and located at the X points of the square Brillouin
zone. For t1-0 the saddle-point energy coincides
with the Fermi level of the half-filled band. %'e

choose our Q vector to be that which connects the
two saddle points, i.e., Q =M = (m/a, n /a)

III. CD% INSTABILITY

%e first study the CD% instability in the absence
of superconductivity, i.e. , we study Eq. (2.13) or
equivalently set 5 0 in Eq. (2.17). In particular if
t& =0 in Eq. (2.18), most of the calculation can be
carried out analytically. For t1 =0 we have

Gp+ G~. tf I ak ~F 1 & &~D,
Gk =.

Gp, otherwise . (3.3)

Evaluation of the relevant expectation values in

Eqs. (2.14) and (2.15) yields, in terms of the usual
Fermi-Dirac functions f(E),

G =—X(G +G) X' '" ' (34)
1k 2k

f(Elk) f(E2k)
1 ~ k

k Elk E2k
(3.5)

and the quasiparticle energies of Eq. (2.17) for d =0
are given by

Etk = —(ek + Gk) '; Eqk =+(ak + Gk) ' '; (3.2)

where

~k+g = —~k (3.1)
which are the self-consistent equations for Gp and
G~. A CDW instability sets in whenever Eqs. (3.4)
and (3.5) yield nonvanishing values for Go and Gt.
The onset of this instability can be obtained from the
linearized form of these equations

G re ~ol

1 = X I + p(e) x(~) d~,
Gp 4 folD

(3.6)

t

G ra-tosD p4t p=I+X J +„p(e)x(a)de; (3.7)
p Mtp aJ ttouD

X

here p(a) is the electronic density of states, and the
temperature-dependent susceptibility X(a) is defined
by

X(e) = {tanh[(a —aq)/2ksT]

+tanh[(e+ eF)/2ks T ]]/4c (3.8)

X

FIG. 1. (a) Band structure of the two-dimensional square
lattice for t1/tp=0. 25. (b) The Fermi surface for the two-

dimensional square lattice and a half-filled band. The
dashed line is for t1/tp =0, the full line for t1/tp 0.125, and
the dotted line for t1/tp 0.25.

At T =0 and half-band occupation, eF 4 p 0, the
integral (3.6) diverges, indicating a stable CDW at all
positive values of A, . This is easily understood in
terms of the features of the Fermi surface'. for t1 =0
and ~F =0, as seen in Fig. 1, the Fermi surface is a
perfect square with perfect nesting, " "and even an
infinitesimal perturbation is sufficient to open a com-
plete gap in the spectrum and stabilize the CDW.

For t1 =O, eF ~0 a minimum value of A. is required
to stabilize the CD%. This value is shown in Fig. 2.

Equations (3.6) and (3.7) also yield the transition
temperature Tcow at which the CD% becomes un-
stable. In the particular case of a half-filled band the
expression for TcDw becomes identical to the expres-
sion of Bardeen, Cooper, and Schrieffer for the SC
transition temperature

Tcow(tt =0, ~F ——0) =1.14 t~D exp(-I/&, rrpo)

(3.9)
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FIG. 2. Phase diagrams (interaction strength A, versus
Fermi energy ~~) for CD formation. Various values of
t~/to are shown. For eF at the saddle point of the band

structure (point X) a CD is stable at any value of X.

0
0

l ~

Xc 2to X* 3 to

where, to a very good approximation,

pp=(grp) ' (3.10)

/

)L ff —= X[2 —Xppln(2ppf &AD)] (3.11)

This is to be compared with the ordinary SC transi-
tion temperature Tsc

Tsc =1.14 t«)D exp( —

1/happ)

(3.12)

6k+g =—Ek —8t~ cosk„a coskya (3.i4)

An examination of Eqs. (3.9) and (3.12) gives us a
clear understanding of orders of magnitude. If in
temperature-energy units we choose tp =1500 K (a
bandwidth of 1.2»0 K —1 eV), taboo = 300 K, and
A, =2000 K we obtain Tcow —31 K, Tsc -0.8 K. If
we increase A. to 3000 K we obtain TcDw —80 K and
Ts& -6.3 K. In both cases Tcow is more than one
order of magnitude larger than Tsc.

For the general case t~ ~ 0 the Fermi surface
changes shape and even for the half-filled band situa-
tion there is no perfect nesting (see Fig. 1). Even
though the Fermi surface is no 1onger a perfect
square, there are large regions of good if not perfect
nesting, and CDW's may occur. However in this
case, and for low enough values of Go+ G~, the sys-
tem is always metallic. It is therefore a much better
model to describe the physical properties of layered
compounds to consider the general case of t~ &0.
The expressions for the CDW order parameters Go
and G' are still given by Eqs. (3.4) and (3.5), but the
expression for the quasiparticle energies E~k and E2k
are now given by

E„k=
2 (pk+ pk+Q) + 2 [(Ek pk+Q) + Gk ~

(3.i3)
where the negative (positive) sign corresponds to
v=1(v=2), and

0.5

0.3—

0.1

h, it,
——(G. + G, )it.

t

l
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I
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0
0

0.3

Xc 2to X**kc, 3to

OQ2
C4

w Q.1—

0
0 "c, 2to "~« "c, 3to

FIG. 3. Various order parameters for the square lattice
and a half-filled band as a function of the interaction
strength A. for t~/to=0. 125. (a) The CD% parameter
(Gp+ G~) in the absence of SC for A, & A,, (dashed line); the
semiconducting half-gap for A. & X (dotted line); and the
SC order parameter h, in the absence of CD%'s (full line).
(b) The COW order parameter (Go+ G)) (dashed line) and
the SC order parameter 5 (full line) when the two effects
are considered; Go+ G~ 0 for A, & A.,~ and 5 =0 for
A, ) A,,2. Coexistence occurs for A,,&

& A, ( A,,z. (c) The ex-
citation half-gap (half the excitation energy of a pair) for the
case shown in (b). All order parameters are energies in
units of to.



20 SUPERCONDUCTIVITY AND CHARGE-DENSITY WAVES 4461

The results for this model can now be summarized
as follows: (i) If the Fermi level is at the saddle
point 6F = ~ p 4t1, the CD% is stable for any posi-
tive value of h, (see Fig. 2). (ii) For t~ & 0, there is
no stable CDW state if the Fermi level falls outside of
the interval —keoa ( eF «„+WED, for ~F outside
this interval there are no states such that
(tk 'aF~ & g00D and ( ak+g —aF( & gcoD simultaneous-
ly, and therefore there is no effective interaction.

The solution of Eqs. (3.4) and (3.5) must be
found, in the general case, numerically. In Fig. 3(a)
we show the value of G -Gp+G1as a function of A.

for T-O, t~/t0-0. 125, gsua/t0= 3
and a half-filled

1

band (the bandwidth is in this case Sr0, independent
of t~). The CDW is stable only for values of X & h.,;
in our e/xample X, 1.67tp. As A. increases beyond

A,„Gincreases rapidly. For A., ( A. (X, ~here
h.

"=2.23t0 in the example of.Fig. 3(a), a CDW state
is stable, but the system exhibits no gap in the quasi-

particle spectrum, i.e., we have a metallic CD% state.
For A. ) A, , the two quasiparticle bands, E1» and

E2», have no overlap and a gap appears in the spec-
trum; for a half-filled band the system now becomes
a semiconductor. The value of the gap in the spec-

trum is also shown in Fig. 3(a) for A, & X . For the
sake of completeness we also show in Fig. 3(a) the
value of the SC parameter 5 corresponding to the
same model and to the Hamiltonian (2.10). It should
be noted that 5 & 0 for any value of A, , and that the
SC and CD%' gaps are of the same order of magni-

tude for A. —A, .

IV. SUPERCONDUCTIVITY
AND CHARGE-DENSITY %AVES

The self-consistent solution of Eqs. (2.17), (2.11),
(2.14), and (2.15) involves as a first step the solution
of a (4 x 4) secular equation. "

—G»

k+Q
—~F —E
0 k++F

~k+Q

Gk

k+Q + 6F

=0, (4.1)

where Gk is given by Eq. (3.3) and hk is defined by

tf lkk aFI & +~D ~

k
0, otherwise .

The four roots of Eq. (4.1), labeled E„k(v =1,2, 3, 4) in order of increasing energy, are such that

E1» E4kk E2k E3k

(4.2)

(4.3)

When the eigenstates of Eq. (4.1) are determined and inciuded in Eqs. (2.11), (2.14), and (2.15), three integral
equations are obtained for 6,, -G1, and G2. These are

k E4» —E3»

E4» —
&k+Q

2 -2

2E4»

E3k &k+Q
2 2

2E3»

„h~ + (G0+ G() ~

E —E2 2

1 1

2E4» 2E3»
(4.4)

G0= lt(60+ Gi) X
k E4k . E3k

E4k + kkkk+g ~ (Go+ Gl) E3k + «kkk+g ~ (Go+ Gl)
2E4k 2E3»

(4.5)

and

GkGt=xx-,
k E4k E3k

k+ kek+Q —b,»
—Gk E3»+ k k+Q

—hk —Gk

2E4» 2E3»
(4.6)

These equations must be solved numerically. Some
results follow.

(a) If t~ =0 and aF = a,0 =0 the summations in Eqs.
(4.4) and (4.5) become identical. This implies three
possibilities b =0; Gp = G1 =0; or 5 = Gp and G1 =0,

However it can be easily seen that Eq. (4.6) [or
equivalently Eqs. (2.14) and (2.15)] requires that if
Gp & 0 then G1 ~ 0. Therefore the third possibility is
unacceptable and there can be no coexistence of SC
and CD%. It can be seen in addition that the stable
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solution is 5 =0 at all temperatures, i.e., the semi-
conductor CDW state is the stable phase for
T & Tc~w and the results of Sec. III apply.

(b) For t) W 0, even when CDW's are stable, if the
nonsuperconducting state is metallic then a SC state
is always present and stable at low enough tempera-
tures.

(c) In Fig. 3(b) we show the results for the same
parameters of Fig. 3(a), i.e., T =0, t)/tp =0.125,
h p)t&/tp =

3
and a half-filled band.

1

(d) For h. & )).,) (h.,) =1.75tp in the example of Fig.
3) the CDW is not stable and an ordinary BCS super-
conductor' appears, with its characteristic gap param-
eter 5 and transition temperature Ts~. It should be
noted that A.,~ is larger than the value A., obtained in

'

Sec. III when SC correlations were not included.

(e) For k, ) & )(& A. (X —h, -2.23tp in Fig.
3) the ground state of the system is a state in which
SC and CDW coexist, i.e., both order parameters are
nonvanishing; the value of 5 remains practically un-

changed throughout the interval because of the com-
peting effects of increasing X and decreasing density
of states at the Fermi level. It should be mentioned
that the pure CDW state is metallic in this range.

(f) For h, & X & )). p (X g
= 2.46tp in Fig. 3) the

CDW induces a (semiconductor) gap in the quasipar-
ticle spectrum, but superconductivity does exist and
the ground state of the system is SC. In this range of
A, values, 5 decreases drastically with increasing A..
We expect in this case to have a transition as a func-
tion of increasing temperature between a SC and a
semiconducting CD%' state; this is discussed in
Sec. V.

(g) For X,q & X no SC state is stable, and the
ground state of the system is an insulating CD%
state.

(h) In Fig. 3(c) we give the minimum quasiparticle
excitation energy (one half of the pair excitation en-

ergy) as a function of A.. For h, & h. this energy
corresponds to the breaking up of a Cooper pair; for
A. & A.,~ it is the excitation across the CDW gap; at in-

I

termediate values A. & A. & ),~ it is a combined ef-
fect. Comparison of the gaps in Fig. 3(c) with the
various gaps in Fig. 3(a) is instructive.

V. SUPERCONDUCTOR TO SEMICONDUCTOR
TRANSITION

Of the cases reported in Sec. V, the most interest-
ing one is that corresponding to large enough values
of X, very close to the values where the SC state be-

comes unstable: A. & X & A,,~. In this range, in the
absence of SC, the system is a semiconductor of
electron-hole pair excitation gap 2G. At first sight it
might seem unlikely that a system with no electron

states at the Fermi level can produce a SC state with
infinite conductivity and a Meissner effect. We ex-
plore this situation here in greater detail.

A semiconductor of energy gap 2G is such that
each electron-hole pair requires an energy of the or-
der of and greater than 26. Since in order to pro-
duce a current j we must excite approximately nj
pairs (nj = 2 [ j [/) e [ [ v ~, where v is a typical band
velocity), the minimum excitation energy necessary
to produce a current j is -2nJG, i.e., the total ener-

gy of the system is a linear function of
~ j ~

and there-
fore has a cusplike behavior at j 0. The energy gap
26 is a consequence of the self-consistent lattice (or
CDW) potential which couples two points in k space
separated by a vector of the reciprocal lattice Q and
opens gaps wherever 6g = 6g+g the equation for the
generalized Bragg surfaces (planes).

In a superconductor, on the other hand, a super-
current is established by forming Cooper pairs of
wave-vector 2n, i.e., by coupling states (k + n) [ with

(—k +n) [ in the BCS ground state. The state thus
obtained yields a supercurrent j,(n) such that the to-
tal energy of the system is proportional to (j, j,)
and gaps in the quasiparticle spectrum appear at
points on the displaced Fermi surface k such that

+ , [(ek+.—+ek-. —2e„)'+4k']' ' (5.1)

have no common values.
The anomalous situation we want to examine has

four states coupled by two different mechanisms:
(k + K) [, ( i( 7+tt Q+) [, (—k + t() [, and
(—k+t(+Q) [. The relevant Hamiltonian for a given
V is

X ekttk a ttk cr G X tt (k+Q) uttk e

(+(k+ ) ttt(-k+ )t
k

+ tt(-k+ ) ttt (k+ ) t)

Here we have taken G to be a fixed parameter, since
the fact that it originates from a CDW correlation is
of no relevance for the present purposes. We also
take ~~=0, ~g+g= &g, and

(tt (-k+ ) ttt(k+ )t)
k

(5.3)

in agreement with Eq. (2.11). For t(=0 we find that

k-» 6F

The resulting "supercurrent" state is metastable as
long as quasiparticle energies inside and outside the
Fermi distribution have no overlapping range, i.e., as
long as the two branches of the quasiparticle spec-
trum

Evk(K) =
p

(2eF+ek+g ek-a)
1
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the quasiparticle energies are given by

+(k2+ g2)1/2 (5.4)

given by

h(~-0) =(b, ' —G')' ' (5.7)

=2 ho)ae (5.6)

The energy gap parameter 6, defined in Eq. (5.3), is

valid for

G &4„, (5.5)

and where 6 is the BCS gap parameter for Eq. (5.2)
when Gis put equal to zero, i.e., in the metallic case E =+(e'+ G')'i' (5.8)

For x W 0 the equation that determines the energy
gap parameter is

For G ) b there is no superconducting solution,
h(~ =0) -0, and the quasiparticle spectrum is that
typical of a semiconductor

~2(E4k E3k)~ ((E4k +k+Kek KG— ~ (+)~E4k (E3k ak+Kek Ir G — ~ (+)~E3k I
k

(5.9)

where the quasiparticle energies E„k(v =1,2, 3, 4 in order of increasing energy E~k «E2k E3k E4k) are

E„k(x) =+(-, akp„+-, ak „+6'(K)+G'+ ~eke„—ak „~[-, (ek,„-ak „)'+5'(~)]' 'I' ' . (5.10)

It is a good approximation to take

ek+„= ak + (7kek) ' K (5.11)

~, = h(~, )/ iruF, (5.12)

from which we obtain a critical value of K given by

VI. DISCUSSION

The theory presented here treats SC and COW's
on the same footing. According to our model the
phonon-mediated attrac'tive electron-electron interac-
tion leads to both CD% and SC states. There are
four possible states: (i) a normal paramagnetic state

where 9F is the average value of the metallic Fermi
velocity we would have obtained if G is put equal to

zero.
In Fig. 4 we show the solution of Eq. (5.9) in units

of 6, given by Eq. (5.6), as a function of ~ in units
of 5 / f~z The re. sults can be summarized as fol-
lows:

(i) The condition for a critical current j, or,
equivalently, for a critical K, is given by Eq. (5.12),
as in the metallic BCS-like SC state. However in this
case 4 is a strong function of K,

1.0

0.5

h(K, ) ( 5 (~ =0) ( 5 (5.13)

and therefore ~, is smaller than the corresponding
value for the metallic SC.

(ii) The critical ~, decreases rapidly with increasing
semiconducting gap G and vanishes for G =4, .

(iii) As a consequence of this a Meissner effect is
present as long as G & 4 and the induced currents
are smaller than the critical value.

(iv) A semiconductor to superconductor transition
is possible for semiconductors of small enough gap;
more explicitly the semiconductor gap G must be
smaller than the energy gap 4 that the system
would have in the superconducting state if it were
metallic.

0
I

0.5
K' VF/b~

FIG. 4. The SC order parameter 5 as a function of
~9~/h, ~. This quantity is proportional to the intensity of the
supercurrent. The various values of G/h~ in these
semiconductor-superconductors are indicated. The values at
which 6 drops discontinuously to zero correspond to criticaI
currents.
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6 =0, G =0; (ii) a SC state with uniform charge dis-
tribution 5 A O, G =0; (iii) a CDW state 6 =O, G %0
which may be either (a) metallic or (b) semiconduct-
ing; and (iv) a metallic SC and CDW state, with a
modulated charge distribution 5 ~ 0,6 ~ 0. The sta-
bility of each of these states depends sensitively on
the temperature, the strength of the interaction, and
the details of the electronic spectrum and Fermi sur-
face.

In general terms the order parameters interfere
destructively, with CDW tending to suppress SC and
vice versa. A large enough CDW which produces a
semiconductor state may completely destroy SC. But
all metallic CDW states become SC at low enough
temperatures. Not all semiconducting CDW's on the
other hand show a lack of SC at low temperature: if
the CDW gap is small enough, smaller than an "ideal"

SC gap, as the temperature decreases the system
makes a transition from a nonuniform semiconductor
to a nonuniform SC. This semiconducting-SC state
shows persistent currents and a Meissner effect, but
the dependence of the SC parameters on the total

current is different and more pronounced than in the
metallic SC state.

Experimental data4 ' on the SC properties of the
transition-metal dichalocogenides show that (i) all

metallic CDW systems are SC at low enough tem-
perature; (ii) those layered compounds which exhibit
no SC show a nonlinear low-temperature specific
heat, i.e., a lack of ordinary metallic properties; (iii)
it has been reported, ' although uncertainties still
remain unsolved, that some systems which are SC at
low enough temperature are probably semiconducting
at temperatures higher than Tsc.

All these findings are in agreement with our
theory.
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