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The sine-Gordon chain (SGC) is used as a model of the solid-on-solid (SOS) model of a

two-dimensional interface. In the SGC model the energy scale for creation of edges (solitons)
differs from the energy scale for the creation of disorder. The roughness of a surface and the

melting of a surface occur at controllably different temperatures. The SOS and SGC models are

compared.

I. INTRODUCTION

Recently there has been a good deal of interest in
the properties of the interfacial layer which separates
the phases in a two-phase system. ' In this context
the Ising models, among others, have been exten-
sively studied. ' Although the study of these models
has led to substantial agreement as to the nature of
the interface in two-dimensional systems, ' there are
ambiguities as to the properties of the interface in
three-dimensional systems. The reason is that the in-
terface of a two-dimensional system is a one-dimen-
sional system, while the interface of a three-
dimensional system is a two-dimensional system.
The purpose of this paper. is to describe the prop-
erties of the interface of a two-dimensional system
using the sine-Gordon chain. 4 Both the static and
dynamic properties of the sine-Gordon chain have
been extensively studied. 4 ~ By using the sine-
Gordon chain as model of the two-dimensional (2-D)
interface we confirm much of what is known and
gain some insight into the behavior of the interface
that is of interest and that may be helpful in provid-
ing some understanding of the three-dimensional in-
terface.

In Sec. II the column model (the solid-on-solid or
SOS model') of the interface is described. In Sec. III
we describe the sine-Gordon model of the interface
and compare its properties to those of the column
model.
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where n& is the height of column i above the fiducial
height 0. This expression measures the departure of
the interfacial energy from (N +1)Jp, its value when
the interface is fiat (see Fig. 1), due to the relative
motion of neighboring columns. The surface free en-
ergy is the energy required to create the flat surface
(fiducial surface) plus the free energy associated with
the thermal fluctuations permitted by
IE(rl ] ... ,nd'+t), I.e.,

f(T) = (N + 1)Jp —ka T InAZ

where

PdE(n)nlr+-)) ,...,
( )~,, 0~.

8 fp ~ ~ ~ yNpI +]

In writing b Z as in Eq. (3) we have chosen to fix the
ends of the interface at 0 and M From Eq. (1) it is
clear that the energy of a configuration depends only
upon the perimeter of the configuration, see Fig. 1(b).

II. COLUMN MODEL OF A TWO-
DIMENSIONAL INTERFACE

The column model is considered in the context of
a two-dimensional near-neighbor Ising system. ' In
this model the interface of up and down spins has no
overhangs (see Fig. 1) so that the energy of the sys-
tem is given in terms of the relative height of neigh-
boring columns of spin

N

aE(n, , ,n„))=..X. J,~n, „n,~, —

FIG. 1. Fiducial interface, f'rom which energies are mea-

sured, is horizontal at column height O for all columns (a).
The interaction across the top of a column is J0. %'hen the
surface is disordered, perimeter is created (b). Each unit of
perimeter costs energy J2. At T WO it is energetically favor-

able to create some perimeter in order to recover the free
energy of "mixing". From Eqs. (17) and (18), f/W -Jp+ J2p
+kg T ln[(1+p)' 2 —p], p =P/&.
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%e define the perimeter

W

P(nl " nN+1) x I nl+1
f am]

are

/(T)
N

= Jo —ks T ln(tanh-x)1

2 (15)

it is a measure of the length across which pieces of
Up-spin and down-spin material face one another.
The average value of P is

P =- ln4Z8
9x

where x =PJ2. A measure of the average size of the
surface at site I +1 is given by

u(T) 2

N slnhx"+ 0

Ts (T) J2 — —ks T ln(tanh-, x)1

N sinhx

For the perimeter (energy/J2) we have

P 1

N sinhx

(16)

(17)

(18)

((nl+1 (nl+1)) ) (~nl+1 ) (6) and since (nl+1) =0

X T(n2n3) ' ' ' T(ltNnn+1) (7)

T(n2n1) = exp( —x ~ n2 —n1~ )

Upon introducing the complete set of states generat-
ed by T(mn),

X T(nm) ill„(m). = ) „1il„(n)

(n)11 „(n)-8„„,

The partition function 4Z is found in terms of the
solution to a transfer matrix problem,

hZ = X s„os„~T(n1n1)
N]& ~ ~ ~ VNg

X 4
sinhx, =1+

2 (e ' —1) (20)

where a =1 —Jo/J2.
(ii) From comparison of Eqs. (16) and (18) we

have

(~ 2
)

I(N —I) 1

N
2

These results are the same as those of Leamy, Gil-
mer, and Jackson' who discuss them at length. In
addition, there are other notable features:

(i) As pointed out by Zittartz and Mueller-
Hartman' the condition f(T)/N =0 leads to
sinhx, =1 or kq T, equal to the Ising-model transition
temperature, for Jo= J2. The 2-D surface free energy
vanishes at T = T„ the transition temperature for the
2-0 Ising model. More generally

Xy„(n)y„(m) =8„ u(T)/N =J2P(T) + Jo (21)

we obtain

aZ(N;x) = Xy„"(M)y„(0))„" (Io)

(F(n„,)) = Xy„'(m) y„(0)F„„z~-'z„',
gkV

F„„=X 1il„"(n) F(n) 1'„(n)

The solutions to Eq. (9) are the wave functions

(n) elva

—m ~ v ~ m, with eigenvalue

sinhx
coshx —cosv

For the M -0 case, d Z is dominated by the v =0
eigenvalue and the free energy, energy, and entropy

i.e., the internal energy is that associated with the
production of new surface or perimeter.

(iii) The phase transition at which f (T,)/N =0 (at
T, it costs no free energy to mix regions of up and
down spin) is effected because the positive energy
expended to produce perimeter, J2P(T), in turn pro-
duces a region of disorder in which a free energy of
"mixing" works to lower the total free energy. At
fixed T & T, the interface achieves a size determined
by the balance between these two competing contri-
butions to the free energy. Finally at T, the free en-
ergy of "mixing" drives the total free energy below
zero and the interface becomes unstable.

(iv) In Fig. 2 we show the profile of the surface
(with the ends fixed at 0) given by Eq. (19). At
I =.

2
N the surface fluctuates over a distance of or-1

der JW;

(hn2) =—N 1
4

sinh —x
2

In terms of the perimeter the surface profile is given
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FKf. 3. Qualitative appearance of the interface as a func-
tion of temperature. At T && T, there are very fe~ edges
per unit of surface, P (& N. At T = T, there is essentially

one edge for each unit of surface, P = N. At T && T, there
is lots of edge per unit of surface. Of course at T &) T, the

configuration of the system (melting) differs markedly
from those admitted by the SOS model.

SOLI D

FIG. 2. Location of interface as a function of position.
The interface is pinned at n =0 at i =0, N +1. Thermal
Auctuations permit it to reside in a region of space of size
W x WN (within the dashed "football" ) at T,. However a
disordered region, intensive in size, is found in the vicinity
of the average position of the interface {cross hatched re-
gion).

by (x, =i/N)

{dnt'pt ) =Nxl(1 xt) [P/(P'+N')'I' P]—. (23)—
Upon averaging {hnt'+ t ) over the length of the sur-
face, we find

{An'),„=$—{b,nt ) = —, N . . t), . (24)

At T„P(T)=N, {bn')„=0.4024N; at T « T, the
perimeter is small compared to N, P = exp —PJ2, and
Ln2 = I'; at T && T, the perimeter is large compared
to N, P —NT/T„and {An ),„—P2/M. At T, there
is approximately one unit of perimeter per unit length
along the surface [see Fig. 3(b)]. At T « T, there

are large regions of smooth surfaces between edges
bee Fig. 3(a)]. At T )) T, the surface is rough [see
Fig. 3(c)], i.e., the surface behaves as if it random
walked from 0 to Nin N steps each of length P/N.

(v) Although the description above is of an inter-
face which occupies a region of size ( {4n'),„)' 'xN
=W' 2, this is not the region over which disorder oc-
curs in the crystal [otherwise s(T) ~N l. A locally
disordered region accompanies the chain as it moves
back and forth between the extremes measured by
{3nP+t ) (illustrated in Fig. 2); a properly extensive
entropy is associated with the locally disordered re-
gion.

(vi) The notion of "rough" and "smooth" are well
defined for this two-dimensional model and have
meaning with respect to the relative motion of
columns separated by distance h. A measure of the
correlation in the height of nearby columns is given
by

Ct(d) =—{nf+tnt+a+t) —{nl+t )

=xt4(sinh' —,'x) ' .

In the middle of the surface, xI = —,, at T &( T, the
1

columns are correlated over 6 = exp +PJ2, at T = T,
the columns are correlated at most over a distance of
order 1. The surface has properties at T & T, and
T & T, that are reasonably described by "smooth" and
"rough. " There is no "roughening" transition but
rather a rapid change in the length scale over which
column height correlations occur for T near T,.

The results we described here are for a two-
dimensional system with finite but large ¹ For a 1-
cm long interface N =10s, ({hn')) =104. (Correc-
tions to the results are of order 10 . )

One might imagine measuring some of the prop-
erties described here in the 3He on Grafoil system
using NMR techniques.
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III. SINE-GORDON MODEL OF THE
T%0-DIMENSIONAL INTERFACE

where

F„,=„dey„(e)F(e) 4„(e) . (32)

Ei cosH(] (25)

where 81, the phase of pendulum i, is a continuous
variable identified with the column height,
n& 8,/2n, and the cos 8; potential causes 8, to prefer
value 2mn, The torsion spring, of strength E2, at-
tempts to keep 8;+ ~ equal to 8; and plays a role quali-
tatively similar to J2 in Eq. (1). The sine-Gordon
model of the interface permits. an alternative picture
of the statics and dynamics of the interface, ' ' e.g. ,
the dynamics of the advance of the interface maps
onto the phase evolution of the sine-Gordon chain. 6

Equation (25) corresponds to a discrete Gaussian
model, 2 3 in which the discreteness is enforced pre-
ferentially but not exactly. In analogy with Eq. (2)
the surface free energy is

f(T) = (1V+ I)Jp —ks T inZso

~here

aZso=
2 ~+, J de]" derv+)5(8))5(HN+) —qb)

(26)

x exp[ —pE(et, ..., 8~+i)], (27)

where qh is the total phase evolution along the chain.
In place of the transfer-matrix techniques used
above, transfer-integral techniques are employed. tn-
stead of Eqs. (8)—(12) we have

-(A.2/2) (e2 -e, )
Tj828~ j = e e (28)

where X~ =pE~ and X2=pE2. This transfer-integral
problem involves a Fredholm equation of the second
kind with polar kernel and generates the complete set
of states

For the sine-Gordon model of the two-dimensional
interface we take the energy to be given by

N

E(ei""em+i) = X [—' E2(e; i
—8 )'

i~1

Equations (28)-(32) have been studied extensively
both analytically' ' and numerically. '0 For purposes
of describing the essential elements of the physics the
sine-Gordon model can be treated in the continuum
approximation in which analytic methods are more
readily applicable. " In the continuum approximation
we replace the discrete chain by a continuous line of
uniform density. Then, the transfer integral reduces
to &he differential equation

-E, cose y„(e) = p„y„(e), (33)1 d
2p E2 de

where e„=e„——, In(2mk2), @„=Q'„,and the partition

function is

Zso =Xy„(4)y„(0)e (34)

f(T) -J,+;=0, (35)

By describing the interface by the sine-Gordon equa-
tion in the continuum approximation we have done
away with discreteness in the second dimension.
(The use of Et cose removes discreteness in the mo-
tion of each column; the continuum approximation
replaces the column to column discreteness by a con-
tinuous interface. ) We have gone to the continuum
approximation to be able to use the analytic descrip-
tion of the transfer integral provided by the Mathieu
equation, Eq. (33). It is known. that the basic
features found in the description of the physics in
this approximation are retained as one goes away
from it.~'0

The results of a sine-Gordon chain description of
. the interface are [although it is not necessary we

again work at @=0 (Ref. 9)]:
(i) The Helmholtz free energy vanishes at T, given

by

„de,T(e,e,)y„(e,) =e "4„(e,),
dey„(8) 4„(e)=8„„,

Xy„(e)y.(e') =8(e-e'),

where qb„(8~) is the left-hand eigenfunction of
T(828~). We obtain

(29)

where pp 8p —
2 [ks Tin(2mh2)] and ep is the
1

ground-state eigenvalue of Eq. (33). In Fig. 4 we

plot ep as a function of p'. For the choice Jp = n'E2
we have f(T) =0 for ks T, =1.88Jp which is in rea-
sonable agreement with the Ising model (2.27Jp) and
discrete Gaussian model (1.74Jp).""

(ii) At low temperatures where the tight-binding
approximation is vahd for P„ in Eq. (33) we have

Zso (¹X~ X2) -Xg„(4)P„(0)e

(F(Hi+i)) -Zso XAv(@»4„(0)F„.~

(30) (H~+&)
—(81~&) =

2 W(T)I (1 —N)

I

where

W(T) -Ar p(rp~ exp( —pE,),

(36)

—IP(~ -~ )xg (31) [I rpl =4(E&/E2) ' ' and Ep =8(E~E2)'1']; the number
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FIG. 4. Ground-state energy eigenvalue as a function of
temperature. The ground-state energy eigenvalue of Eq.
(29), in units of E~ is plotted as a function of P' = PE&.
For E2= Jp/e the free energy in Eq. (35) vanishes at

6p/E~ =—n . This occurs at P' =0.05. The heavy line la-

beled (2 =1 is from numerical solution to the transfer-
integral equation. The dashed lines are analytic asymptotes
from solution to the corresponding Matthieu equation, Eq.
(33). At (2 & 1 the Mathieu equation becomes a better and
better approximation to the exact transfer integral (in the
relevant P' range the Mathieu equation is already very good
at (L'2 1.0}. For 1 ~ (L' ~1.00($ =E2/Et) the behavior of
~p/E~ is relatively insensitive to ( .

P =N(T)g, (37)

where g = (E2/Et)' is a measure of the size of a
"kink. " The entire chain is covered with perimeter at
N(T) such that

N(T) is the number of thermally activated kinks or
solitons on the chain. 6 In the column model the in-
terface fluctuates and advances in a gradient by the
creation and motion of edge; in the sine-Gordon chain
model of the interface fluctuations correspond to the
creation of pairs of kinks and the interface advances
through the motion of these kinks (or solitons). The
solitons are the sine-Gordon chain equivalent of an
edge. The total perimeter on the chain is

Ep/Ei

FIG. 5. Melting temperature [from Eq. (35}]and the
temperature that separates smoothness from roughness,
ksT=S(E,E2)'/, as a function of E2/Et.

I

antisoliton pairs) and their motion. We identify E&
with the temperature at which smooth to rough
behavior occurs. We can compare this to the melting
temperature [the temperature at which f(T)/N 0,
and at which the notion of a surface fails]. This is
done in Fig. 5 as a function of E2/Et We note. from
Fig. 5 that melting and roughness are characterized
by two different temperatures. In the latter, rough-
ness occurs before melting for E2/Et & 0.20.

Certainly this result is a consequence of the physics
- we have used. The discrete Gaussian model
corresponds to E2/Et 0. In the limit E2/Et 0 the
kink in our model becomes meaningless and the
model should be replaced by the DG model. By
keeping E2/Et finite we maintain that there are two
energy scales: (i) Ee, the energy to create an edge
and thus the energy that determines the temperature
at which enough edges are present to cause rough-
ness and (ii) E2, the energy required to move neigh-
boring columns with respect to one another and thus
the energy that determines the melting temperature.

We may gain further insight into the nature of the
behavior of the surface in a growth process by exa-
mining the response of the interface to an external
field that drives it forward. ' In the column model
such an external field is a chemical potential gradient2

N(T) f =N (38) N+1

or at ks T =Ee=8(E2Et)'/'. The energy Ee, the en-
ergy of kink formation, is a measure of the energy
required to form an edge (or one unit of perimeter).
At AT & & E& the number of kinks on the chain is
large [N(T)( )NI so that the kink concept, useful
in a description of low-temperature behavior, be-
comes useless. At k~ T )& E~ the surface has no
edgelike features because the energy to create these
is much less than k~ T. In this limit the interface
should be termed "rough. " At kgb ((E~ the inter-
face is smooth; there- are few kinks on the chain.
The growth and fluctuations of the interface are
governed by the creation of kink pairs (soiiton-

-(5p, X n( . (39)

In the sine-Gordon chain model such an external
field is a constant torque on each pendulum '

N+1
-Ep Xe(. (40)

The response of the sine-Gordon chain to an external
field given by Eq. (30) has been described in the
heavy damping limit using the Smolouchowski equa-
tion. 7 The behavior of the "current" ("current" is the
phase evolution in the sine-Gordon chain model;
"current" is the rate of column motion in the column
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model) as a function of temperature is shown in Fig.
6. The notable features of the results are: (a) At
T= 0 no current flows (the interface does not move)
until Ep=E~. (b) At T AO, E, && E, , ksT && E~
the current is due to spontaneous kink pair creation
and subsequent kink motion along the chain (the in-
terface advances by edge creation and edge motion).
See Fig. 7. (c) At ks T )E& the current is due to
large regions of the chain of no particular size or
structure moving forward as a unit.

It is the qualitative difference between this case
and (b) above that is described by Burton and Ca-
brera' and to which the notion of smoothness and
roughness are applied.

The roughening temperature, the temperature at
which the current is one-half of its high-temperature
value for a given Eo, is a measure of the temperature
at which the interface motion evolves from domina-
tion by edge motion at lower T to domination by
gross motions at higher T (see Fig. 6). As EplE&
this temperature approaches E~. This is in agree-
ment with previous discussion of the sine-Gordon
chain; the qualitative properties of current evolution
are characterized by the energy required to create a
kink. Thus the surface responds smoothly or roughly

to an external field at k~T ~ E and k& T & E&.

FIG. 6. Current as a function of temperature and external
field. The current (as a ratio of its value at T to its value at
very high temperature) is plotted as a function of field,

Ep/E~, for several values of temperature (measured in units

of P' =PE~). This plot follows from the demonstration by
Guyer and Miller (Ref. 7) (that the current as a function of
field and temperature on the SGC is essentially the same as
that which flows in a single-particle system with a field-
dependent barrier) and use of the results of V. Amegaokar
and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

FIG. 7. Interface evolution as a function of time. Surface
evolution is due to kink creation, motion, destruction, etc.
(a). The size of the edges (kinks) is set by the ratio E2/E~
(b).

. I

IV. CONCLUSIONS

We have used the sine-Gordon chain (SGC) as a
model for the interface between a liquid and solid (as
a model of the SOS model). In the SGC model the
column height discreteness of the DG model is re-
placed by continuous (but preferentially integral)
height and the column to column discreteness is re-
placed by a continuous interface. The role of edges
in the SOS model is played by the solitons of the
SGC. In the SGC model the energy scale for edge
creation (soliton creation) differs from the energy
scale for column to column disorder. It is the con-
centration of edges on the interface that determine
the qualitative properties of the interface, e.g., its
smoothness or roughness, its response to a chemical
potential gradient, etc. It is the column to column mo-
tion that leads to the disorder which finally makes it
energetically preferable for the system to create more
surface, i.e., for the interface to breakup and for the
solid to "melt. "

Use of the SGC model of the two-dimensional in-
terface permits one to think about edge and interface
dynamics in the way in which one thinks about the
dynamics of the SGC. For example, is it possible
that the t ' time evolution observed by Schneider
and Stoll will occur in a physical system~
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