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In the above-named paper, a simplified form of the nonlinear Poisson equation for the impurity-ion
potential has been solved approximately by making use of an equivalent variational principle. The difference
between the exact and the simplified nonlinear Poisson equations is a term involving the derivative of the
potential and the derivative of the spatially variable dielectric constant. The purpose of the present paper is
the presentation of a more general variational principle, by which one might obtain an approximate solution

of the exact nonlinear Poisson equation.

I. INTRODUCTION

A linearized theory of the screening of (point)
impurity ions in semiconductors characterized by
a spatially variable dielectric constant x(») has
been given in a recent paper.! This was followed
by another work?, in which the nonlinear theory
of the screening of impurity ions has been estab-
lished.?

In Refs. 1 and 2, a simplified form of Poisson’s
equation for the donor-ion potential ¢(») has been
solved approximately by making use of an equiva-
lent variational principle. The difference between
the exact and the simplified (linear or nonlinear)
Poisson equations is a term which involves the
derivative of the potential and the derivative of the
spatially variable dielectric constant. In another
recent paper,* a more general variational prin-
ciple than the one presented in Ref. 1 has been
arrived at by which the exact linearized Poisson
equation might be solved approximately. The
purpose of the present paper is the generalization
of the variational principle used in Ref. 2, by
which one might obtain an approximate solution
of the exact nonlinear Poisson equation.

II. THEORY

Poisson’s equation for the potential of a charged
donor ion has been found® to be of the form
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where p(7) is the density of the screening charge
(composed of mobile electrons), and » is the dis-
tance from the fixed point charge.

In the nonlinear theory,? p is related® to ¢ by
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where e, is the magnitude of the electron charge,
m* is a scalar effective mass,” £, is Boltzmann’s
constant, 7T is the absolute temperature, and

the Fermi-Dirac integral §,,, is defined® by
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with 7, denoting the reduced Fermi level, which
is related to the Fermi level ¢, by
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Expanding F,,,(n, +e,¢/k,T) in powers of
e,®/k T, and making use of the relation®
F.(n,)=5,_.(n,), (5)
one finds that Eq. (2) becomes
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where k, is the static dielectric constant of the medium, "and adopting Cartesian coordinates, substitution

of Eq. (6) into Eq. (1) leads to
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where the subscripts on ¢ and k refer to the appropriate partial derivatives of these quantities.

Defining
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one can express Eq. (8) as
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Equation (10) represents the exact nonlinear
Poisson equation in Cartesian coordinates. The
difference between Eq. (10) and the simplified
nonlinear Poisson equation discussed in Ref. 2 is
the last three terms in Eq. (10). ’

The next task consists now in finding a varia-
tional principle by which Eq. (10) might be solved
approximately. To this end, one can consider
the variational principle

L{¢}=f f IG(¢,¢,,¢y,¢,,x,y,2)dxd:vdz,
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where the limits of integration will be discussed
later.

As is known, ? the function ¢ which makes L{¢}
stationary must satisfy the Euler-Lagrange equa-
tion
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To proceed, one has to find an expression for
G in such a manner that, upon substituting G into
Eq. (12), one obtains Eq. (10). A little reflection
shows that this requirement is achieved if G is
chosen as

G=—3k(p2+ 2+ ¢2)
—KoR32(G2+506,03+ 15,0 4+ ). (13)

Passing now to spherical polar coordinates, and
considering that in the case of spherical symmetry

Vo=9¢2,, (14)

where the prime on ¢ denotes the derivative of
¢ with respect to », with 2, denoting a unit vec-
tor, and considering the relation

Vo Vo= ¢+ ol+ 02, (15)
one can cast Eq. (13) into the form
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Considering that
dx dy dz = 4mvidr , (17)

substitution of Eq. (16) into Eq. (11), upon use
of Eq. (17), results in
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where an appropriate choice for the lower limit
‘of integration 7, has been discussed in detail in
Ref. 4.

Equation (18) is the variational principle in
spherical polar coordinates by which Eq. (1)
might be solved approximately. To see this, one
only has to substitute (G?) into the appropriate
Euler-Lagrange equation®
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and find that the result is
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which is Eq. (10) in spherical polar coordinates.
To complete the discussion, the spatially vari-
able dielectric constant k(r) has yet to be defined.
In Refs. 1 and 2, this quantity has been taken equal
to the spatial dielectric function of a particular
semiconductor. It has, however, been shown
elsewhere® that such an identification of the spa-
tially variable dielectric constant with the spatial
dielectric function is permissible only in the im-
mediate vicinity of the impurity ion and at large
distances from it. In the intermediate distance
region, the spatially variable dielectric constant
can be expressed® in terms of the spatial dielec-
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tric function €(») by
N1
l=l 1,(5.) - (21)

where the prime on € denotes the derivative of €
with respect to 7.

III. CONCLUSIONS

It is hoped that the variational principle pre-
sented in this paper might find application in ob-
taining an approximate solution of the nonlinear
Poisson equation for the donor-ion potential. A
variational solution to this problem appears to be
advantageous in light of the fact that it has recent-
ly been shown® that nonlinear Poisson equations
[both in a medium characterized by «, or in a

medium characterized by «(»)] in the vicinity of

a donor ion reduce to the Thomas-Fermi (TF)
equation. The solution of the TF equation for
small values of 7 is known.!! The large-» solution
of the nonlinear Poisson equations is also known.
It is the Dingle® result, an exponentially screened
Coulomb potential. This can be seen from Eq.
(20). At large distances from the donor ion ¢*< ¢,
¢3< ¢?, etc., and k’=0. In this case, Eq. (20) re-
duces to the Poisson equation discussed by Dingle.
What is not known is the behavior of the donor-ion
potential between the small-» and the large-»
limits. It is hoped that by making use of the var-
iational principle advocated here (and in Ref. 3),
one might construct a trial potential which incor-
porates both the required small-» and the large-»
behavior of the potential.
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