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Temperature dependence of the structure factor in Nb-Ni glasses

Soumen Basak, Roy Clarke, and S. R. Nagel
Department of Physics, The University of Chicago, Chicago, Illinois 60637

and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637
(Received 26 December 1978)

Using the results of x-ray scattering experiments, the structure factor S(k), the radial distribution

function, and the coordination number have been determined at room temperature for two Nb-Ni glass

samples (of composition Nb04Nio& and NbogN105). Furthermore, the height of the first peak in the structure
factor, S(k ), has been measured as a function of temperature for these two samples in the range 4-675 K.
S(k ) remains approximately constant from 4 to —100 K, after which it decreases linearly with increasing

temperature until the glass crystallizes at -675 K. This behavior is in excellent agreement with a recent
calculation which expresses the temperature dependence of S(k) of an amorphous metal in terms of the
Debye-%'aller factor. According to the Ziman theory for the resistivity of amorphous metals, a decrease of
S(k ) with increasing temperature may lead to a negative temperature coefficient of resistivity as has been

observed in these glasses. The observed change of S{k~) is large enough to account for the observed change
in resistivity at room temperature and above. Possible reasons for the discrepancy between the Ziman theory
and the structure-factor data below room temperature are discussed.

I. INTRODUCTION

Metallic glasses are amorphous alloys of metals,
with either other metals or with metalloids, which
are prepared by rapid quenching of the melt to an
amorphous solid. These materials often exhibit
anomalous transport properties; for example, the
temperature coefficient of resistivity p—= (1/p)dp/dT
is negative in many of these glassy alloys, ' where-
as it is large and positive in most normal metals.
Also, the thermoelectric power is positive in many
of these glasses, "instead of negative, as simple
theories would suggest. Various attempts have
been made to explain these phenomena. Qne
model which has been proposed is based on the
tunneling of atoms in a disordered solid between
two sides of a double potential well and predicts
a negative value of P for a metallic glass. This
model was originally proposed to explain the linear
term in the low-temperature specific heat observed
in insulating glasses. ' The concentration of such tun-
neling levels in a glass is expected to be dependent on
the alloy composition, ' whereas a series of experi-
ments on Nb-Ni glasses' has shown that the low-
temperature behavior of p is essentially indepen-
dent of composition. Also thermoelectric-power
measurements' on a Be-Ti-Zr glass do not appear
to be consistent with this model. A second theory' "
relates the resistivity behavior in glasses contain-
ing transition metals to the scattering of valence
s electrons into unoccupied d-band states of the
transition metal. This model is also inconsistent
with the thermoelectric-power data mentioned
above, since the sign of the thermoelectric power
should change upon going from a nearly empty
d band to a nearly filled d band. This has not been

observed experimentally. A third alternative deals
with the normal electron-phonon contribution to the
resistivity as modified by the absence of periodic
order in a glass. This theory was originally pro-
posed by Ziman" to explain the negative values of
P observed in such divalent liquid metals as Zn.
Subsequently, it was extended and modified to
treat liquid transition metals" and metallic
glasses. ' For a transition-metal system it gives
the following express ion for the r es istivity":

p = (30m'k '/me'kzE~A) s in'[q, (Ez)]S(2k~), (l. 1.)

S (k) =1+[S(k) —1]e '«&» «O1~ (1 2)

where .S,(k) is the structure factor at T =0 K and
e ' is the Debye-%aller factor at temperature

At low T the resistivity will vary slightly
slower than the static structure factor. "

A different approach than that employed here
was described some years ago in an x-ray study"
of amorphous selenium at two temperatures. In

where 4„and EF are the Fermi wave vector and

energy, respectively, and 0 is the atomic volume,
ri, (Ez) is the d-wave phase shift describing the
scattering of the conduction electrons, of energy
EF, by the ion cores which are assumed to carry
a muffin-tin potential. Information about the struc-
ture of the material enters the expression through
the structure factor S(k).

According to Eq. (1.1), the temperature depen-
dence of p is determined by that of S(2k~) which
has recently been calculated for an amorphous
metal. "The result for the temperature dependence
of the static structure factor is
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that work the pair distribution function g(r) was
fit to the data by using a different coupling coef-
ficient for each separate peak. Vsing 18 free
parameters, the authors fit the temperature de-
pendence of their structure out to 7.6 A. In the
case of selenium this procedure is perhaps the
best alternative because the molecular structure
of this solid is quite complex and different shells
of neighbors will have quite different vibrational
amplitudes. For selenium the large-r behavior
will determine the low wave-vector peaks in S(k).
In our case the situation is quite different from that
in selenium and in many ways more simple. For the
metallic glasses the Ehrenfest relation is quite well
satisfied, as we will show later in this paper. This
implies that not only the large -v correlations contri-
bute to the fi rst peak inS (k), but that the nearest-
neighbor distances are reflected in this peak as well.
Since for the metallic and other close-packed
glasses a large part of r space is reflected in
each peak in S(k}, it becomes much less impor-
tant to invoke different coupling constants for
each shell of neighbors. In effect, we go aver to
a case in which each peak in S(k) is affected by
an averaged Debye-Wailer factor. Thus we find
that we need only one adjustable parameter to
describe the temperature dependence of S(k), in-
stead of the many necessary for selenium. As we
shall see from the present x-ray study, this sim-
ple model is in excellent agreement with our data.
By measuring the temperature dependence of more
than one peak in S(k} for a metallic glass, we are
able to show that the approximations made in using
one average Debye temperature for all peaks are
physically justified.

In this paper we report the result of measure-
ments of the temperature dependence of S(k} of

Nb„Ni, „glasses carried out over a wide range of
temperatures (4-675 K) and for samples whose
compositions span much of the glass-formation
range of this alloy (x=0.4 and 0.5). The purpose
of this experiment was twofold: first, to verify
Eq. (1.2) for the temperature dependence of the
structure factor, specifically at 0=k~, where S(k}
has its first andhighestpeak; and second, taking
2k~= k~, to compare the temperature dependence
of S(k~) with that of p [given by Eq. (1.1)], which
has been measured previously in these Nb-Ni
glasses. ' To date, very little has been done"
to investigate the temperature dependence of S(k)
of metallic glasses or, to relate the results of such
investigations in a detailed, systematic manner to
the temperature variation of p in these materials.
Our work represents the first investigation of S„(k)
over such a wide range of temperatures and com-
positions, as well as a direct test of the validity of
Ziman's theory in the case of metallic glasses.
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FIG. 1. Ratio, for liquid metals, of the value of S(k&)
at temperature T to its value close to the melting point
T&, plotted as a function of the reduced temperature.
This is the universal curve found by Wagner (Ref. 17)
in his st1idy of the four liquid Inetals, Ga, Sn, Cd, and
Zn.

Metallic glasses are of interest because they
offer us an opportunity to probe structurally dis-
ordered metallic systems in the solid phase, i.e. ,
at temperatures lower than those at which such
systems have been available heretofore. Liquid
metals, pure or alloyed, also have disordered
structures, but cannot be observed at low tempera-
tures. These have been many investigations, by x-
ray or neutron diffraction, of the temperature de-
pendence of the structure factor of liquid metals.
Wagner" has found that Zn, Cd, Sn, and Ga all
show a decrease in the height and a general broad-
ening of the first peak of S(k) with increasing tem-
perature. He finds that the variation of S(k~) with
temperature for all these metals follows a uni-
versal behavior, as shown in Fig. 1. Vsing the
results of such measurements and Ziman's theory
of electrical resistivity, the temperature coef-
ficients of resistivity (P) have been calculated for
these liquid metals and were found to agree rea-
sonably well (within 50%) with the measured values
of P. We will compare the results we found for the
metallic glasses with those found for the metallic
liquids.

Another reason why the results of the experiment
described here are of interest relates to a theory"
of glass formation in metallic al.loys. According
to this model, one effect of alloying is to alter the
effective valence so that 2k~ changes in relation to
k~. When 2k~= k~, a minimum is produced in the
density of electronic states at the Fermi surface
which makes the system stable against any pertur-
bation of the spherically symmetric S(k) due to the
development of long-range order, i.e. , stable
against crystalization. The stability of the glass
structure is thus dependent on the position of the
minimum in the electronic density of states through
the condition 2k~= k~, which is also assumed in
applying Ziman's theory of resistivity to a metallic
glass with a negative value of P. This assumption
can thus be tested by checking whether S(k~} has
the same variation with temperature as does the
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resistivity p which, according to Eq. (1.1), is
proportional to S(2k+).

The paper is arranged as follows: In Sec. II we
give details of the experimental setup and describe
how the radial distribution function was calculated
from the observed x-ray count rate as a function
of the scattering angle. In Sec. III the results are
presented and compared with the theory of tem-
perature variation of S(k) mentioned earlier. The
results are then used to predict the temperature
dependence of p on the basis of Z iman's theory
and the predictions are compared with the results
of experiments on p of these samples. Section IV
discusses the validity of Ziman's theory of resis-
tivity in the context of the present work.

II. EXPERIMENTAL

A. X-ray diffraction arrangement

The samples used in this experiment were
quenched amorphous alloys of Nb and Ni of com-
positions Nb, 4Ni, , and Nbo SNlp 5 A study of a
third sample, Nb, ,Ni „was reported elsewhere. "
These three compositions span almost the entire
range of glass formation of these two metals. The
samples were prepared by rapid arc furnace
quenching of the melt. " Above room temperature
the samples were mounted directly on the tip of a
thermocouple in a Picker x-ray diffractometer.
Mo Ko. radiation mas used for the diffraction ex-
periments. The sample temperature was raised by
blowing heated nitrogen gas over it; the temperature
was stable to within +5 K. For mea. surements below
room temperature the sample was placed in a I,T-
3-110 Heli-Tran eryostat and the temperature mas
regulated to within +5 K in the range from 4 to
300 K with a model 3630-A temperature Controller.
Both instruments were manufactured by Air Pro-
ducts and Chemicals, Inc. The sample was sur-
rounded by a. vacuum shroud with 250-p, m Mylar
windows to allow passage of the x rays.

The x-ray diffraction profiles were taken in
transmission on a Syntex diffractometer. At the
first peak k~ of Nb, ,Ni, , the count rate was 700/s.
In order to be able to calculate the radial distribu-
tion function (RDF) the room-temperature profiles
of Nb, ,Nio, and Nb, 4Ni, , were scanned between
scattering angles 20 = 3 and 120 at intervals of.

approximately 0.2', with 100 s of data. collection
at each point. To obtain good statistics in the
measurement of S(k~) as a function of temperature
the region around the first peak at k~ was scanned
in finer steps of 0.04' a,nd a total, of 10 counts
were eolleeted at the peak at each temperature at
intervals of 50 K from 4 K (liquid-helium tempera-
ture) up to about 675 K, where the samples began
to crystallize. This number of counts enabled us

to determine Sr(k~) to within 0.1%. The major
source of error was not the statistics but the
stability of the x-ray source over long periods of
time. It was also observed that the scattering
angle corresponding to the position of the first
peak for the Nbo, Ni, , sample shifted from 19.26'
at room temperature (300 K) to 19.19' at 625 K.
This corresponds to a decrease in k~ from 2.961
to 2.950 A '. Assuming 4& cc V '~', where V is
the volume of the sample, one can calculate
the thermal coefficient of linear expansion from
the relation o.'= (4k lk )hT. . o. was calculated
to be -1.0x10 ' K ', which compares well with
the value calculated" for the Nb, ,Nio ~ sample.
This shift in the position of Sr(k~) was tracked
carefully and x-ray counts for Sr(k~) at each
temperature were collected at the value of 28 cor-
responding to the correct position for the peak.
Below room temperature the thermal expansion
of the sample became very small and it was not nec-
essary to vary 20 with temperature. The data
from the high- and low-temperature runs were
matched at room temperature, which was the
common point in these two temperature ranges.
The second peak of Nbp 4Nip 6 mas similarly scan-
ned every 50 K from room temperature up to 550
K. During the high-temperature measurements
the samples were cycled back to room tempera-
ture several times to ensure that the x-ray source
was stable and that no irreversible structural
changes had occurred in the -sample.

In order to gain intensity sufficient to enable an
accurate determination of Sr(k~), the angular reso-
lution of the spectrometer had to be reduced from
the value used to record the full S(k) data for the
RDF analyses (--,") to approximately 2'. This in-
troduced a small systematic error in the measure-
ment of the temperature dependence of the struc-
ture factor. We can correct for this effect in two
ways. (i) We measured the room temperature
S(k) with both good resolution and the low resolu-
tion needed to obtain the temperature dependence
of S(k), and found a 10% difference between the
two values of S(k~) so obtained. Using Eq. (1.2),
we calculate that this difference leads to a 14%
change in the slope of S(k~) vs T. (ii) We also
measured Sr(k~). for one sample with good resolu-
tion over a more limited range of temperature
(300-500 K) and found an increase in the slope of
13%, in good agreement with the calculation.

8. Ana1ysis of room-temperature x-ray spectra

Before being normalized to electron units, the
measured x-ray intensities had to be corrected
for the absorption in the sample, the experiment-
ally measured background due to air scattering,
and the polarization effects of the monochromator.
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A unified method of doing this has been developed
by Ergun et al."and was used by us with certain
modifications. For the symmetrical-transmission
geometry used in this experiment the following
quantities were calculated:

f(k)I (k)

[p~ f~2(k)]exp(-I(, t cos8)sec8 '

Q,C, (k)(l —exp[-[B(k) —1]p, tsec8] )
P~ f~(k)[B(k) —1]pt sec8

(2.1)

where I(k) is the measured intensity, minus air
scattering, at the wave vector k=4w sin8/X, 28 is
the scattering angle, and X is the wavelength of
the radiation (X =0.71 A for Mo &u( radiation), P(k)
is the polarization correction factor, B(k) the
relativistic Breit-Dirac correction to Compton
scattering, p. the linear-absorption coefficient, t
the thickness of the sample, and Q~C~(k) and

P~f~2(k} are respectively the weighted sums over
the different atomic species in the sample of the
Compton (or incoherent) and coherent atomic scat-
tering factors (expressed in electron units). The
structure factor S(k) is obtained from:

oscillations in i(k) are large and where the back-
ground corrections are relatively uncertain.

These two conditions uniquely specify the straight
line to be drawn through the data for each value of
pt. This analysis gives the value of gt and the
slope D of the line with equal slope and intercept,
which in turn yielded the structure factor from Eq.
(2.2). 'I'he radial distribution function (RDF) can
then be expressed by relation"

4mr*n(r)=4wr'n, +—"J d(, (S((,) —(((,sinkr,
0

(2.4)

where np is the mean atomic density of the sample.
The area under the first peak of the HDF, that

is, the integral of the function 4wr'n(r) between
zero and. the first minimum, gives the mean near-
est-neighbor coordination number. This number
was calculated from the RDF curves for the sam-
ples Nb, ,Ni, , and Nbp 4Ni, ,

III. RESULTS

4 (k, gt) = =D[g(k, p, t) + I]+Dt(k), (2.2)

where D is the normalization factor for converting
the measured intensities into electron units and
i(k}=S(k) —1 is the interference function that oscil-
lates around zero. For each value of IJ. t, 4(k) is
plotted against g(k) and a best-fit straight line is
drawn through the data points. The method is to
vary p. t until the straight line has equal slope and
intercept (each equal to D). In obtaining the best-
fit straight line, we modified the procedure of
Ergun et g3."by introducing two necessary criteria
to be satisfied by that line. Since the data points
differ from the line due to the term Di(k), we em-
ploy the sum rule satisfied by the static structure
factor:

A. S(k) and RDF at room temperature

Figure 2 shows the structure factor S(k} for the
glass compositions Nb, 4Nip, and Nb, ,Ni, „ob-
tained by the method outlined in Sec. II. For each,
S(k) has a slightly asymmetric sharp first peak,
while the second peak has a shoulder on its high-
angle side. The subsequent peaks become smaller
and for large values of k only weak modulations
about the horizontal line S(k) =1 are observed.
The maximum value and the positions of the first
few peaks of S(k) are given in Table I.

Figure 3 shows the computed RDF curves for the two
samples. Each curve oscillates about the average-
density curve 4nv2np. The value ' of np was taken
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Sk —1k'dk= i kk dk=o.
0 0

(2.3)

In practice, the upper and lower limits in the
integral were replaced by k,„and k;„, that is,
the points in k space between which the data were
collected. The other condition was that of a modi-
fied least squares, whereby the deviation of each
point from the fitted straight line was weighted by
the corresponding k' and the sum total of weighted
deviations was made a minimum. 'The reason for
imposing this condition was that the oscillations of
t(k) aroundzero are smallfor largek. Hence the
desired linear correlation between @ and g should
be more accurately determined from the data points
at large k than from those at small k, where the

S(k)
.6

Nb5 Ni5

l I l i l I l I l I l

2 4 6 8 IO t2 l4

k(A )

FIG. 2. Structure factor of the two Nb-Ni samples,
Nbp 5Nip 5 and Nbp ~Nip 6. The curve for the second sam-
ple has been displaced vertically by + 2.
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TABLE I. Structure results for amorphous Nb-Ni alloys.

Alloy
composition S(k&)

Positions of maxima~ in
S(k)

kq (A ~) k2(, (A~) kqq (A ~) rg (A) ~'(A) k~
Mean coordination

number

Nbp. 5»p. s
Nbp 4Nip 6

3.49
3.49

2.94
3.00

4.89
5.03

5.79
5.92

2.74
2.65

4.62
4.54

5.41
5.44

8.06
7.95

13.5
13.5

k2p and H2 denote the positions of the subsidiary maxima associated with the second peaks of 8{k) and HDF, respec-
tively.

to be 2% less than the weighted average of the
atomic densities for Nb and Ni. Table I also
shows the positions of the first few maxima in the
HDF's and the mean coordination number obtained
from these RD F curves. 7hese coordination
numbers are larger than 12 for both samples,
which implies that the alloy structure is close-
packed and remains so over the composition range
spanned by these samples.

It is interesting to note the similarities between
some qualitative and quantitative features of the
results on S(k) and RDF for Nb-Ni glasses and
similar results reported for other amorphous
alloys such as Fe-P-C,"Pd-Ni-P, "and Pd-Fe-P. "
For example, the shoulder on the high-angle side
of the second peak of S(k) and a double peak be-
yond the first maximum of the RDF are features
common to the structural data on all these alloys.

The data in Table I for the Nb-Ni glasses show
that (a) the ratio of the second to the first nearest-
neighbor distance, x, /r, is about 1.7 (in most"
liquid metals the value for this ratio is 1.85);

IIO-

I00—

(b) the positions of the first peaks in S(k) and
RDF satisfy the relation k~x, = const (-8.Q). This
value is close to that given by the, Ehrenfest rela-
tion" for a close-packed hard-sphere system
(7.72). Both these quantitative observations are
also in agreement with the findings from the other
alloys mentioned above. On the other hand, the
x-ray scattering data on amorphous Ni-Pt-P
samples" over a wide range of compositions show
no subsidiary maxima associated with the sec-
ond peak of S(k) or the RDF, whereas the ratio
x,/r, is -1.86 a,nd the product k r, varies between
7.5 and 8,0 with the composition of the alloy. Such
results indicate a difference in the microscopic
structures, i.e. , short-range order, of these two
groups of amorphous alloys.

8, Temperature dependence of structure factor

and resistivity of glasses

The calculated temperature dependence of the
structure factor in an amorphous solid is given
in Eq. (1.2), where Sr(k) is expressed in terms of
its value at zero temperature and the Debye-%aller
factor e '~'. In the Debye model of a solid, one
has"
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FIG. 3. Radial distribution function for the two Nb-Ni
samples, obtained from the structure factors shown in
Fig. 2. The curve for the Nbp 4Nip 6 sample has been
displaced vertically by + 20.

where (9 is the Debye temperature, M is the atomic
mass, and jp~ is the Boltzmann constant.

In this experiment Sr(k~) has been measured for
temperatures from 4 to 675 K. One can compare
the observed ratios S„(k~)/S, (k~) with the ones cal-
culated from Eq. (1.2), using the values of the inte-
gral in Eq. (3.1) tabulated by Zener. " In doing
this we must emphasize that there is only one
parameter 0 which may be adjusted to fit the pre-
diction of Eqs. (1.2) and (3.1) to the data.

Figure 4 shows the ratio Sr(k~)/S, (k~) for the two
samples of Nb-Ni plotted against the temperature.
The data have been corrected for the finite resolu-
tion of the spectrometer. Also included in this
figure are the high-temperature data, which were
reported earlier, "on a third composition
Nb, ,Ni, 4. The solid lines represent the fit of Eq.
(1.2) to the data with the value of () indicated in
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FIG. 4. Ratio of the value of S{k&) at temperature & to
its value at &= 0 for the three Nb-¹i samples. The sol-
id lines represent the predictions of Eqs. (1.2) and (3.1),
with only one adjustable parameter, 8. The values 8
used are given in Table II. The data points shown have
already been corrected for the finite resolution of the
spectrometer, as discussed in the text.

Table II. As one can see, the fit is excellent.
By our analysis of the temperature dependence

of the first peak we have determined the one ad-
justable parameter in the theory, 8. The prediction
for the temperature dependence of the structure
factor at any other value of 4 is now completely
determined. %e have, for the Nb, 4Ni, sample,
measured the temperature dependence of the
height of the second peak in the structure factor.
In Fig. 5 we show the results, along with the pre-
diction of the theory. The agreement between data
and theory (with no adjustable parameters left} is
excellent. This helps confirm the quadratic de-
pendence on k of the Debye-Wailer factor [Eq.
(3.1)], as well as the dependence of Sr(k) on the value
of So(k) —1 inEq. (1.2). Of perhaps more importance
is that this result on the second peak indicates that
the assumptions which were made in deriving. Eq.
(1.2}, specifically the use of one average Debye
temperature for all the peaks in S(k), were physi-
cally justified.

As mentioned above, a principal motivation be-
hind this investigation of the T dependence of S(k)
is the attempt at explaining the behavior of the
resistivity of metallic glasses as a function of 7'.
Figure 6 shows the resistivity of Nb-Ni glasses as
a function of T from 4 to 340 K, as was reported in
an earlier paper. ' From Eq. (1.1) we obtain

1 hp 1 ES(2k~)
p ht S(2k~) b, T (3.2)

if Er, k~, 0, and q, (Z~) are assumed to be ap-
proximately temperature independent. Taking
2k„= k~, we can calculate the right-hand side of
Eq. (3.2) from the present data and compare it with
the measured p=(I/p)b, q/r T. This is done by (a)
considering the entire temperature range spanned
by the resistivity data in Fig. 6 and (b) considering
only the portion of the resistivity curves between
300 and 340 K, where the curves start flattening
out. The calculated values of the two sides of Eq.
(3.4) are presented in Table II. It will be seen
that the temperature variation of S(k~) is large
enough to explain the resistivity variation above
room temperature, but falls short by 27% when
one considers the entire range of the resistivity
data. The high-temperature resistivity has been
measured' up to 875 K for the sample Nba 4Ni, „
and has been found to decrease linearly in the
range from 300 to 800 K at a rate given by P =5
x10 ' K ', which is smaller than the slope of the
linearly decreasing [Sr(k~)/S, (k~)] vs T curve for
Nb, 4Ni, , in this temperature region.

It is also of interest to compare the values of
the Debye temperature 8 used to fit the low-tem-
perature-resistivity' data and the structure-factor
data. A comparison of the Debye temperatures in
Table II shows that the resistivity data imply a 30%
smaller value of 8 than do the S(k) data. One can
observe that the values of 8 we derive from the
x-ray data are very close to the average value of
8, weighted by their concentrations in the alloy,
of the two pure elements. This value, 8,„, is given
in the last column in Table II.

TABLE II. Comparison of resistivity and structure-factor data.

Alloy
composition

1hp
~-~ for

T=4 K 340 K T=300 K 340 K
(K-') (K-')

aS(k, )
s(kp) AT

T=4 K 675 K T=300 K 675 K
(K-') (K-') 8, (K)' 8, (K)' 8 (K)

Nbp, 4Nlp 8

Nbp, swip, s

~o.6Nio. 4

-11.1 x 10
-10.0 x 10
-8.4 x 10

7.0 x 10-
7.0x10 &

7.0 x 10

-8.1 x 10&
-7.2 x 10&

-9.0 x 10
7.9 x 10-5

8.9 x 10

248 + 5 370+10
248 + 5 370 + 10
248+ 5 340+ 10

380
363
345

'8~ and 8~ are the Debye temperatures obtained from the resistivity and structure-factor data, respectively. 8~ is
the value of the Debye temperature found by averaging the values of 8, weighted by their concentration in the alloy, of
the two pure elements [8 (Ni) = 450 K and 8 (Nb) = 275 Kj. Values of 8 for the pure elements are taken from C. Kittel,
Introduction to Solid State Physics, 5th Ed. , (Wiley, 5ew York, 1976) p. 126.



SOUMKN BASAK, ROY CI ARKK, AND S. 8, . XAGEI,

IV. . DISCUSSION

The results on the temperature dependence of
the structure factor of metallic glasses presented
in this paper agree well with some qualitative fea-
tures observed in similar measurements on liquid
metals: the height of the first peak of S(k) de-
creases and the peak itself broadens as the tem-
perature is increased. Wagner" has plotted the
experimentally observed ratio Sr(k~)/Sr (k~)
against T/T~ for the four liquid metals Sn, Ga,
Cd, and Zn, where T~ is the melting point of the
metal. He found that a universal curve could be
drawn through all the experimental points, as
shown in Fig. 1. The behavior of the data for
glasses shown in Fig. 4 is markedly different
from that for the liquids. The curve is linear over

I.04—

I.03

Oo
(.02

l.OI

I.00

I
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T( Kj
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I.QO

9 (k )0,99
T 2P 09S

SO(k& ) 097'-
0.96—
0.95—
P94
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FIG. 5. Ratio of the value of S(k2&) at temperature T to
its value at ~=0 for the Nbo gNlo 6 sample. The solid
line represents the prediction of Eqs. (1.2) and (3.1),
with no adjustable parameters. The value of 0 has al-
ready been determined by the data taken at the first
peak.

most of the temperature range, becoming constant
at the lowest temperatures. In the liquid, how-
ever, S(k~) drops fastest at the lowest tempera-
tures and begins to flatten out at high tempera-
tures. These results suggest a qualitative differ-
ence in the temperature dependence of the struc-
ture factor in the liquid and the glassy states.

The measured temperature dependence of the
intensity at the first peak, Sr(k~), agrees well with
the theory represented by Eq. (1.1). The fitting
was done with only a single adjustable parameter,
namely the Debye temperature 8 for the alloy.
The temperature dependence of the intensity of
the second peak for the Nb, ,Ni, , sample also
agrees with the prediction of the theory as given
by Eq. (3.4). This serves as a further confirma-
tion of the theory. It has been proposed" that a
negative temperature coefficient of resistivity, as
observed in Nb-Ni glasses, may be related on the
basis of Ziman's theory, to the decrease of S(k~)
with increasing temperature. Above room tem-
perature the magnitude of this decrease is about
30'/~ larger than the magnitude of the decrease of
the resistivity, while below room temperature the
resistivity decreases faster than the structure
factor. Using Ziman's theory, Knoll" has found
from an analysis of the temperature-dependent
structure-factor data on liquid Zn a negative tem-
perature coefficient of resistivity which is 25%
less than the experimentally measured value.
From a similar analysis for the liquid metals Zn,
Cd, Sn, and Ga Wagner has found" temperature
coefficients of resistivity in fair agreement with
the observed values.

There has not been any direct measurement of
the temperature dependence of S(k~) for liquid
alloys (as distinct from pure metals). Guntherodt
et al."have speculated that the different tempera-
ture coefficients of the resistivity in the glassy
and liquid alloys of PbgySi» are due to a different
temperature dependence of S(k) in these two states.
The results presented earlier in this section on
the behavior of the structure factor in different
liquid metals and glassy alloys of varying compo-
sitions seems to corroborate this idea.

In comparing our results for Sr(k~) with the
resistivity data we have tacitly assumed that
2AF =k~ for the alloy concentrations. In a real
binary alloy three partial structure factors are
necessary to describe the scattering of both x rays
and electrons. The resistivity in this case has
the following form":

FIG. 6. Resistivity as a function of temperature for
the three Nb-Ni samples. The resistivity is normalized
to its value at room. temperature. The data are taken
from Ref. 8.

20'
p = C(Z, ) iu(k) i'k'dk,

0

where

(4.1)
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[u(k) ['=c„[f„['(I—c„+c„s»)+c,[f, [

x (1 —cs+ csSss)+cgcs(fgfs+ f"fs)(S"s—1),
(4.2)

and where C(E') is a factor containing a function
of E~; c„and c~ are the concentrations of elements
A and B; t„and I~ are the single-site t matrices
for scattering of electrons from the two types of
atoms, and S», S», and S» are the partial
structure factors of the alloy. The expression for
the resistivity given in Eq. (1.1) is obtained by'

assuming. that (a) the three partial structure fac-
tors can be replaced by a single structure factor
(b) [t„[=[t'[, each being proportional to
sin[q, (E')], and that (c) the integral in Eq. (4.1)
can be replaced by the value of the integrand at
the upper l™t,k =2&~. The x-ray diffraction
provides only a weighted average of the three
partial structure factors. In order to yield a nega-
tive value for the temperature coefficient of
resistance P, 2k~ may be near the peak of any
one of these three structure factors. The value of
[P [ can therefore be larger than that expected from
our x-ray measurements if one of the partials has
a significantly larger temperature variation than
the average value measured by x rays [which
weights strongly the structure factor S„bN; (k)]. By
setting 2kF near the peak of the x ray S(k) we only
obtain an estimate of how large (1/pg p/dT can be.
For a more accurate calculation one should extract
all three structure factors, by performing three
different scattering experiments, and compute the
integral in Eq. (4.1). We are presently involved in
combining neutron scattering experiments with

. our x-ray studies in order to get additional in-
formation about the temperature dependence of the
various partial structure factors in another amor-
phous alloy.

Besides making the above approximations, we
have also neglected the temperature dependences
of O', E', and q, (E') in calculating P from Eq.

(1.1). Inclusion of these additional sources of
temperature dependence may improve the agree-
ment between our experimental results and the
predictions of the Ziman theory. However, it is
not at all clear according to this theory whether
the magnitude of P should be larger at low tem-
peratures than at high temperatures, as is found
experimentally. Various possibilities may be con-
sidered to explain this observation: (a) there
could be additional high-temperature scattering,
perhaps electron-electron scatter ing;' (b) the
long-wavelength phonons could become ineffective
at scattering electrons;" and (c) there could be
additional scattering at low temperatures, perhaps
caused by electrons scattering from the two-level
tunneling states mentioned earlier. "' The
measurements reported here cannot distinguish
between these poss ibilities.

However, the extent of agreement we find in the
glasses between the temperature dependence of the
structure factor and the temperature dependence
of the resistivity is very similar to that found in
the liquid metals. Although the variation with tem-
perature of the structure factor is somewhat smal-
ler than that of the resistivity, the discrepancy is
not very great. In our calculations we have made
a number of simplifying assumptions which may
have underestimated the predicted value of P.
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