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The indirect-exchange interaction between two localized magnetic moments is calculated in-
zero-gap semiconductors. The virtual interband transitions between the valence and conduction
bands give rise to an indirect-exchange mechanism which is ferromagnetic if the band degenera-
‘cy is accidental. -If, however, the band degeneracy is symmetry induced, the indirect interaction
is antiferromagnetic. A discussion of the magnetic susceptibility of zero-gap Hg,_,Mn,Te alloys

is given.

I. INTRODUCTION

In metals or degenerate semiconductors, two local-
ized magnetic moments interact predominantly
through the polarization of the electron gas. That
mechanism, the RKKY (Ruderman-Kittel-Kasuya-
Yosida) interaction,! is significant only for large
numbers of carriers and leads to an interaction which
oscillates as a function of the distance between the
localized moments. In insulators such a mechanism
is inefficient and the localized moments interact ei-
ther directly, if they are close enough, or through the
superexchange mechanism? which leads to antifer-
romagnetism. The zero-gap semiconductors, being
the border between metals and insulators, are of in-
terest to investigate in detail which is the indirect-
exchange interaction produced by virtual electron
transitions from the (filled) valence band to the al-
most empty conduction band. At this point, we al-
ready want to stress the crucial part which will be
played by the symmetry of the band-edge Bloch func-
tions.

Besides, there exists a whole class of "semimagnet-
ic" zero-gap semiconductors: the Hg;_,Mn,Te alloys.
Magnetic-susceptibility measurements®* performed
on these ternary random alloys revealed that even for
low Mn content, the Mn?* jon magnetization departs
considerably from the noninteracting spin behavior.
At high temperature, a Curie-Weiss law was found,
X! = T + @, displaying an antiferromagnetic interac-
tion between localized moments, which proved im-
possible to interpret by accounting only for isolated
or nearest-neighbor paired Mn?* moments.

Low-temperature oscillatory interband magnetoab-
sorption,’ as well as magnetotransport phenomena,®
lead to similar results. Antiferromagnetic interaction
between localized spins was also evidenced, which

was not possible to relate to single, pair, or triplet

- Mn** ions. All the previous interpretations postulat-

ed the impossibility of long-range interactions
between spins. Then, only direct exchange between
closely spaced moments was presented as a possible
explanation of the observed phenomena.

The purpose of the present paper is to investigate
the problem of indirect-exchange interaction in zero-
gap semiconductors, and to compare two physical sit-
uations of interest: accidental band degeneracy or
symmetry-induced degenerate band edges. Despite
the small free-carrier concentrations (electrons and
holes), we will show that there nevertheless exists a
strong interaction, which is long range, between lo-
calized spins. This interaction originates from the
virtual transitions across the zero gap between the
valence and conduction bands. A similar mechanism

" has already been investigated by Bloembergen and

Rowland’ in open-gap semiconductors. These au-
thors, considering two bands separated by a finite en-
ergy gap, have shown that the effective indirect-
exchange interaction was exponentially decreasing
with the interspin distance. Their calculations are not
applicable to the present situation, which is character-
ized by a symmetry-induced zero-gap structure for
HgMnTe alloys.

The paper will be organized as follows: in Sec. II,
we compare the wave functions and effective Hamil-
tonians in the two situations of interest, accidental or
symmetry-induced band degeneracy. We also recall
the low-temperature electrical properties of zero-gap
Hg chalcogenides. In Sec. III, we calculate the effec-
tive interaction between the localized moments. Sec-
tion IV will be devoted to a comparison between the
Curie temperature calculated from our model, and
the experimental results of Savage et al.> and Andri-
anov et al.*
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II. BAND STRUCTURES, ELECTRON WAVE
FUNCTIONS, AND LOW-TEMPERATURE
ELECTRICAL PROPERTIES

There exists a whole class of semiconducting ma-
terials for which the thermal gap is exactly zero.
These zero-gap semiconductors may be divided into
two groups.

A. Accidental band degeneracy

In the first group, the band degeneracy is acciden-
tal and may occur at an arbitrary point in the Bril-
louin zone. Among other substances, Bi;_,Sb, alloys
display such phenomena (although the zero gap is in-
direct). For such materials there exist a priori no
symmetry relations between the valence and conduc-
tion bands. Any perturbation, even displaying the

- lattice symmetry, destroys the zero-gap structure. In
the following, we will deliberately assume that both
valence and conduction bands are of the simplest
type (for instance, we will neglect any spin-orbit in-
teraction and assume that the band extrema occur at
the center of the Brillouin zone). These drastic ap-
proximations, already widely used for open-gap semi-
conductors,’ will help to analyze the various contribu-
tions to the indirect-exchange mechanisms and to
compare their orders of magnitude.

If the conduction and valence bands are fortuitous-
ly degenerate at the center of the Brillouin zone, they
may be considered as being uncoupled for any value
of the electron wave vector, provided k is small
enough. The wave functions for electrons in both
bands are

"‘c. v, ,,(—r') =uc:,u,O.a'_e_x'rz\/_l;—(_l;—;L (1)

corresponding to the dispersion relations

- 242 - 2,2 ’

e(®) =LK (&) =-EK @
2m, 2m,

U, v,0 are the periodic parts of the Bloch functions at

k =0 and Q is the volume of the crystal.

B. Symmetry-induced zero-gap semiconductors

1. Band structure

The symmetry-induced zero-gap semiconductors
are, besides a-Sn, the cubic Hg chalogenides HgTe,
HgSe, B-HgS, and some of the ternary random alloys
Hg;-,Cd,Te, Hg,—Mn,Te, etc. They have an invert-
ed band structure as compared to InSb-like materials
(Fig. 1). The two I's bands (p symmetry, =%) tied

up by symmetry at k =0 form the conduction and the
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FIG. 1. Band structure of symmetry-induced zero-gap
semiconductors (e.g., HgMnTe alloys).

valence bands, whereas a I'; doublet (p symmetry,
J=73), a split-off valence band, lies below the Tg

edges at an energy distance A = €ry — €r,. Between

the I's and I'; bands, the [s band (s symmetry) inter-
calates. The thermal gap is exactly zero and the
lowest-lying optical gap equals || where €, = €r,

—er, In Hg,,Mn,Te alloys | 0| depends on the

composition x. At T=4.2 K, |¢| decreases with in-
creasing x from 0.3 eV (x =0) down to 0 (x =7.5%)
where a zero-gap—semiconductor transition takes
place (Fig. 1); whereas A remains constant A =1 eV.

The I's valence mass depends on remote bands,
and is almost insensitive to a change in €. The con-
duction mass is always very light (m, =3x1072m, in
HgTe), and decreases proportionally to || for small
|e]. Despite nonparabolicity phenomena, which may
be quite important in the conduction band of zero-
gap alloys with small | €|, we will restrict our purpose
to parabolic dispersion relations and use the Lut-
tinger® approach to calculate the eigenfunctions of
valence and conduction levels. Such a procedure will
enable us to get an exact estimate of the p symmetry
of the band-edge Bloch functions, and of the effect
of spin-orbit coupling. This parabolic approximation
will be valid for Hg;_,Mn,Te alloys of x < 1%.

Neglecting the warping, the Luttinger effective
Hamiltonian reads

2 2
S & +.1_-ﬁ_]k2

)=l
m°(k)—8 2m 2 m,

112 L g7y
2[2m.,+2m¢](k 2. 3)
It is of interest to note that the K IIZ conduction

M; =1 %) and valence (M; =+ %) eigenstates are
no longer eigenstates for arbitrary k. The diagonali-
zation of 3¢o(k) depends on the direction of k,*°
whereas in the case of accidental band degeneracy,
the effective Hamiltonian is diagonal, whatever the
direction of the electron wave vector.
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.When projected on the basis |%,-;—>; % - %);

%,—;-), % - %), the eigenstates corresponding to

positive eigenvalues €. (k) = k2k%/2m, read
[k=(k 0, ¢)]

- —]2-\/5 sinfe”'¢
~ '
expik-F| 7sinfe”
""e"’ \/ﬁ COOSG s
v _= expi kT ?os() ei¢ ()
- _ 1 —2i¢
e Ja > sinf e
- %\/5 sinf
whereas the wave functions of valence-band elecirons
corresponding to €,(k) =— k2k%/2m, are
~ cosf e3¢
W= expik T 0
* Ja —;—\/gsino Paid
Lae
> sin
- % sing e3¢
.= |- +V3singe ¢
"’r - ex\/_g:(l; T 2 " ) . (5)
cosf

In other words, the wave functions of conduction and
valence electrons can still be expressed as

b=, 22T O
but the periodic parts of the Bloch functions now
depend explicitly on K. Note also that subscripts in
Egs. (4) and (5) take care of the Kramers degeneracy
of both bands. They should be confused neither with
the bare-electron spin o, nor with J;, the z com-
ponent of the total angular momentum. Again these
complications arise from the I's symmetry of the
band edge.

2. Free-electron and free-hole concentrations
at low temperatures

As before we restrict our analysis to parabolic
zero-gap Hg,_,Mn,Te alloys (x <1%). For these
materials only the low-temperature properties are of
relevance, the temperature range 0—30 K being
enough to observe the Curie-Weiss behavior. At
these low temperatures the free-electron and -hole
concentrations are dominated by impurity effects.
They are quite peculiar in zero-gap materials'®!!: the
acceptor levels fall in the continuum of the conduc-
tion band, whereas the donor levels occur in the

3
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FIG. 2. Density of states [p(e)] and band filling of
symmetry-induced zero-gap semiconductors with Np < N,
T <10 K.

valence-band background. Therefore, strictly speak-
ing, bound acceptor (or donor) states do not exist.
However, owing to the marked difference between
the valence and conduction masses (m./m, << 1), it
has been established!®!! that acceptor impurities may
give rise to quasidiscrete resonant acceptor levels,
whereas the donor resonances are always overdamped
and the donor levels ionized at any temperature.  As

a consequence, even if the number of acceptors N,

exceeds the number of donors Np, the materials
behave at low temperatures as n-type semiconductors:
the electrons are free whereas the holes are trapped
on the acceptor levels. For the 4, acceptor level,
corresponding to Hg vacancies, € = 2.2 meV and
with Np/Q ~2x10" cm™, N,/ Q =10 cm™ the
concentration of free electrons is n ~ Np/Q

= 2x10" cm™. As for the Fermi level, it is close

to the acceptor level for T <10 K (Fig. 2).

For higher temperatures, typically 10 < 7 <30K,
two mechanisms compete!®: thermal activation of
electron-hole pairs and thermal hopping of electrons
on the unoccupied acceptor levels. A minimum ap-
pears in the curve n (T), whereas the number of free
holes is nonvanishing. Let us however note that the
holes remain statistically nondegenerate, whereas the
electron gas is degenerate. Besides the holes have
also a much lower mobility (u, ~5x10? cm?V's)
than the electrons (u, ~10°—10° cm?V's).

'III. INDIRECT-EXCHANGE HAMILTONIAN

The mobile (in T's bands) and localized d electrons
(which form the magnetic moments) are assumed>:®
to interact via the Heisenberg-type Hamiltonian

HKin = 2-](?— l-i,) §i o, @)
K

i

where §,- are localized spins located at Ti,» and & the

bare-electrog spin. J(T—R)) is an exchange integral

centered at R; and varying rapidly over a unit cell.
The first-order energy shift produced by 3C;, van-
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ishes, since it is proportional to the localized spin
magnetization, which we assume to be zero
(paramagnetic state).

The second-order energy shift reads

2 f(Eik)[l "f(eﬂ")]

i, €Eix — Egx’
v

A£(2)= l(il—(.lscimlfl—(’IHZ ’

which, owing to the rotational invariance of the un-
perturbed Hamiltonian, may be rewritten in the form
of the effective spin-spin Hamiltonian. By restricting
ourselves to isotropic terms we get

Ae? =3 I(R)S; S, . 9)

i>]

1(R ;) may be decomposed into interband and intra-

conduction-band and intra-valence-band contributions.

Ililmer 2 2 f(evk)[l f(fck)]

ﬂ i Xp[l(E_EI) 'iu]

€yk' — €ck

X ‘E | ckcrl‘,(r)o-zluvk v)lz (10)

where the isotropic assumption has been again used
to express all the required matrix elements in terms
of those involving o,. Similarly the intra-
conduction-band term becomes

D (o) 2 Jear) i (R~ Ry
ck — €ck'

X 2 | (uckoi"(r)o'z|uck'a’) |2 . (11)

o,0'=1

The intra-valence-band contribution is given by a
similar expression.

The main problem is now to evaluate the matrix
elements appearing in Eqs. (10) and (11). Hence the
symmetries of the band-edge Bloch functions play a
crucial part. In the case of fortuitous degeneracy,
these matrix elements are independent of the elec-
tron wave vector k and K’ because the uqko(r) are
themselves independent of k. For symmetry-induced
band degeneracy this is not the case, and the required
matrix elements will depend on k/k and kK'/k'. Such
an angular variation will not affect the R; depen-
dence of Ij" (kr=0) (kr is the Fermi wave vector),
which is actually imposed by the double summation
over K and X' in Eq. (10). It will however sensitively
alter the strength of this interaction, leading even to
a change of its sign, as will be seen below.

We will now analyze more precisely both cases of
accidental or symmetry-induced band degeneracy.

Slmter(k #0) = .,013., s 1

3”2R4

aQ+s)? 2

—>e¥ —‘Lz(cosy +ssiny) +
1+s

A. Accidental band degeneracy

We will'assume: (i) that the bare electron spin &
is a good quantum number; (ii) that the Fermi level
in the conduction band is finite [e; = (#2k2/2m.)].
The intra-conduction-band contribution then reduces
to the usual RKKY formula

aimki
327K

Ijmra,c =

y4

—sin2y +2y cos2y ! 12)

where
o= (Ueo|J(r)|ue0), R=Ry, y=keR .

The intra-valence-band term is discussed in Appendix
A; we recall here only its expression

2m,R*k5T "
) exp(—Ber)

—am,

16752 #2R*

I‘imra, v

13)

2m R%gT
2 ‘

X exp [-—

We may cast the interband term into the form
et = I, (kp =0) + 81, (kp #0) , 14)

which exhibits the contribution for kr =0 and the
correction 8/ due to a finite Fermi level.
The former contribution reads

2
myoeey s

Iinler kr=0) =— )
e =0 == AR (457

(15)

with ac, = (Ul J(r) |u ) and s =(m,/m.)'2. Its sign
arises directly from the negative value of the denomi-
nator in Eq. (10) and thus gives a ferromagnetlc con-
tribution.

Contrarily to the case of open-gap semiconductors,’
we obtain a power-law variation of I;(kr=0) with
the distance R: [[™(kr=0) =R™", n =4. This
power law is imposed by the zero-gap structure and
will be the same for the case of symmetry-induced
band degeneracy. As may be seen in Eq. (10), the
value of the exponent (n =4) is a direct consequence
of the parabolic dispersion law and of the dimen-
sionality.

IjM* (kp =0) vanishes when s — oo, but keeps a
constant sign. It decreases in both lnmnts s —0,
s — oo, i.e., when the bands are strongly asymmetric.
This behavior is due to the decreasing part played by
the k =0 range of the spectrum: it is in the case of
nearly symmetrical bands that the virtual transitions,
occurring at vanishing or small energies, extend over
the largest k range providing /™ (ky =0) with its
maximum value. As for 81} (kr % 0), it is given by

1

m[(ﬁ —1)siny +2s cosy]]] . (16)
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In the presence of a finite Fermi energy, the inter-
band contribution ;" (kp =0) + 31" (kr # 0) shows
its R~* dependence multiplied by exponentially de-
creasing and oscillating functions. The exponential
decrease is due to the presence of the Moss-Burstein
gap between the uncoupled valence and conduction
levels, whereas the oscillations are due to the finite
kr. These oscillations would be absent if a true gap
existed between both bands (virtual creation of
electron-hole pairs at k =0).

In order to compare the intraband and interband
contributions, we have inserted the total exchange in-
tegral into a molecular-field-type approximation (see
Appendix B). This calculation shows that the inter-
band term provides a much larger contribution to the
Curie-Weiss temperature than the intraband terms (f
¢, = a. = a,) for usual electron concentrations
(10" < n < 10" cm™). Of course if the electron
concentration becomes very large, the RKKY interac-
tion prevails over interband terms: the zero-gap ano-
maly becomes irrelevant, and the material behaves
like a metal.

—

> [(cKo|lJ(T)a,lck'a)|2=

o,0=1%

2
38

+
12

o,0=%

B. Symmetry-induced band degeneracy

In the actual case of symmetry-induced band de-
generacy, some of the above conclusions will still be
valid, for instance the intraband terms will remain
negligible with respect to the interband contribution.
Nevertheless we will discuss in detail the intra-
conduction-band contribution since (a) heavily doped
n-type zero-gap materials can be easily prepared (e.g.,
Hg,_.Mn,Se alloys or doped Hg,_,Mn,Te alloys®);
(b) there is an academic interest in examining the mod-
ifications of RKKY formula due to I's wave functions.

To calculate 7" and /"¢ we have to evaluate
the matrix elements of J(T) o, between the k =0
and k' # 0 valence and conduction Bloch functions
accounting for the Kramers degeneracy of each band.
The presence of a large spin-orbit coupling leads to
nonvanishing matrix elements between states of dif-
ferent pseudospin. Denoting by 8 the matrix
(X|J(T)| X)), replacing o, by ;—Jz (valid in the T'g

. multiplet), and expressing wave vectors in spherical

coordinates, one obtains

2
~1g2- (—39cos?0 — 39 cos29' +45 cos?6 cos26' +41)
[cos(¢ — ¢') sin205in26' —sin?@ sin?6’ cos2(¢ — d)] , an

3 [cKol/()o,lvk o’y |2 =g— - cos?d cos?’ + 2 — 7c €08%0 + 4 c0s%6’

- 11_5 sin20sin26' cos(¢ — ¢') + % sin?0sin?0’ cos2 (¢ — ¢)] . (18)

Owing to the cylindrical symmetry around the R; axis, the terms involving ¢ — ¢’ do not contribute to the effec-
tive interaction /;. The intra-conduction-band term is symmetrical with respect to the interchange of 6 and ¢,
whereas the interband term does not show such behavior owing to the asymmetry between valence and conduc-
tion wave functions. Both interband and intraband contributions are the sum of a spherically symmetric term,
which will give rise to effects exactly similar to the ones previously calculated [Eqs. (12)—(16)], and to angular
dependent terms which will lead to new and important features. After straightforward (and tedious) calculations

it becomes

2 oo T
I (kp=0) =— £ meimy J; xdx J:) sinf d g e~ 08

47*K2R*

2dt

met? + mx?

o
s Ap! pitcost (S 2 2904 5 1 2 13 29"
xj; sinf'df'e ( 16 COS ()cosl)-&-48 e C0s“6 + 28 COS 9,

2
3 mV
1ty =0 == e ).
where
s 1 13 1 2
= — + = —_ - —_ .
f(s) 42 717 arctans + 35 T4 s 3s’arctans |

(19)

(20)

Q@1
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; B m, 6s 13 1 . 3e~v .
S (kp 7 0) = +o= 1—e™ - - i
i (kp % 0) o R | |{TxsD? 35 1552 [1 —e @ (cosy + s siny)] T+ (v cosy —siny +2y siny)
13 ;. . . .S o 5 -
— =5 [si(y) — Esi(p) 1+ (y cosy —siny) [3e¢™ + —e™¥ — ——(1 —e™)
3s : sy 522
. _ . Ts 6s’ 352 . _
—siny e™¥(1 —3sy) + Esi(y) — + + v
ad Y sily 1452 (1+sH)? 1452 sy e
+ e ¥(cosy +.s siny). __6s _ 3shy 5 (2)
| (1+sH?  1+5?
e M B2 . . . 90 45 . .
Ijpie = m% [78[s1(y) —si(2y)] —7sin2y +2y cos2y +7(cosy —cos2y) + 7(sm2y —2siny)|, (23)
/
with

12 ' .
_ R . * sint dt ooy [T sint g
y=kpR, s [—-—m ] , si(x) j:) = Esn(x)—j; = ¢ vdt .

Let us first examine the kr-dependent contributions
[Egs. (22) and (23)]. Their behaviors are compared
in Tables I and II to the results obtained in the case
of accidental band degeneracy for both limits

krR —0 and krR — oo. [P behaves asymptotically
like the usual RKKY interaction, but the numerical
factors when kxR —0 or krR — oo do not coincide,
due to the angular dependence of the electron wave
functions. A sketch of Ij""¢ is presented in Fig. 3,
together with the RKKY curve.

As for 81 (kr #0) contributions, they are in
both cases antiferromagnetic near the origin and al-
ways prevail over the intraband term (m,/m. >>1).
However, the behaviors of [J™(kr=0)
+81{,‘“°‘(kp #0) at large kxR sharply contrast in the
two cases of interest. For accidental band degeneracy
one finds an exponential decrease, whereas for

r
symmetry-induced band degeneracy a power-law de-
cline is obtained: I} = R~ coskzR. Its origin may
be traced back to the interband matrix elements of
J(R) o, which are not spherically invariant. On Fig.
4, we show the variations of 1,}'“‘*r vs y, obtained in
the two cases mentioned above.

Actually, owing to the very small kr value existing
in zero-gap materials, the limit kR = oo is of no
great practical significance. For instance, at T=4.2K
in Hg;-,Mn,Te alloys with x < 1%, m, ==3x1072
X my, m,=0.4m,, €x =2 meV one gets krR =1 for
R =200 .&, i.e., of the order of the mean free path
of valence electrons. As shown by de Gennes,'? for
interspin distances much larger than the mean free
path /g, it is meaningless to use unperturbed (by im-
purities) electron states in the second-order energy
shift: qualitatively all the interactions become

TABLE 1. Comparison between the kxR dependences of Il}““"" for accidental and symmetry-induced band degeneracies.

y =kFR.
ll}“'“-‘ Accidental degeneracy (RKKY) Symmetry-induced degeneracy
2

. . m, « 7 m, gl

lim Zintra.c —_—— _‘n L B
kpr—0 ¥ 4mh? R 72 ap R

2

lim I‘}"""‘ M y cos2y ___"_lf__z___ y cos2y

kgR = 1673 #2R* 14473 52R4
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TABLE II. Comparison between the kxR dependences of aliji“‘e'(kF #0) for accidental and symmetry-induced band degen-

eracies. y =kpR, tann= s~

81 (k7 0)

Accidental degeneracy

Symmetry-induced degeneracy

lim 87" (kp#0
N

lim 8/ (kp =0) — It (e =0) 1
krR — o

F

2
myQey

———n
47 K2R

2)3/2
- _L(l_+s__)__ye—sy sin(y +7)

Bm,
—Tn
24w 2R

_limer(k =0) 29
v 3s2f(s) ¥

1+ 58 cosy]

I iﬂt

1L aaoﬁh . 103 (a)

osL 109 054073

VA

kFR
qutra
Sl ud 2:104, (v)
os| 10-? 04

_osl. _0d 104

"FIG. 3. Intraband contributions to I for s =4. (a) Plot
of —(1673 #%/a2k#m ) 1P vs kR in the case of acciden-
tal degeneracy. (b) Plot of —(1673 #%/82k2m ) IjM< vs
kgR in the case of symmetry-induced degeneracy.
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FIG. 4. Interband contributions to /; for s =4. (a) Plot
of —(16m°k 2/ a2 kfm I (kp =0) +81i™] vs kpR in
the case of accidental degeneracy. (b) Plot of (16#3#2/
BPkpm I (kg =0) +81)"*] vs keR in the case of
symmetry-induced degeneracy.
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screened by an exponential term exp(—R /lp). In
any case, at low temperature (say T < 40 K) for
Hg;-xMn,Te alloys with x < 1%, the kr-dependent
terms may be safely approximated by their limit

krR —0 owing to the very low values of Fermi ener-
gy (er <20 meV).

These limiting values have to be compared with
1" (k;=0): from Table II and Eq. (20), it is obvi-
ous that these terms are negligible compared to
IjM" (kg =0) for all reasonable distances. We may
thus conclude that at low temperature, for zero-gap
materials which are not intentionally n-type doped,
the dominant indirect-exchange term is I (kr =0)
characterized by the R™* power-law variation.

We will now examine further Eq. (20), the main
feature being its dependence upon s. The variation
of f£(s) upon s is shown on Fig. 5. Contrary to
zero-gap materials with accidental band degeneracy,
the symmetry-induced zero-gap semiconductors
display, in the limit of infinite spin-orbit coupling, an
indirect-exchange mechanism whose sign depends on
the ratio between valence and conduction masses.
f(s) shows a sign reversal near s =0.5. However,
for all existing materials s > 3: the indirect-exchange
mechanism due to the virtual interband transitions is
then antiferromagnetic.

This sign reversal again arises from the angular
dependence of the interband matrix elements. At
large s, the dominant term in f(s) is —(137/6)s72, a
contribution which originates from the cos26' term
appearing in Eq. (19). The latter leads, after integra-
tion over @', to the second derivative of (sint)/t. The
integral over ¢t shows two poles: one on the ima-
ginary axis which leads to exponentially decreasing
terms in x, and the other at ¢ =0 which arises from
the term in ¢=>. Such a pole leads to a power-law de-
cline in x [see Eq. (19)], which in turn gives rise to
the —(137/6)s™? term.

2 1
fi) , , f(s)
15

FIG. 5. Dependence of the effective exchange integral at
kr=0 upon s in the cases of accidental degeneracy (f,) and
of symmetry-induced degeneracy (f).
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To conclude this discussion, we have attempted to
separate the relative influence of our two assump-
tions: (a) symmetry-induced band degeneracy, (b)
infinite spin-orbit coupling. Hence we have exam-
ined in Appendix C the case of a symmetry-induced
zero-gap semiconductor with A =0. It just so hap-
pens that Ij"(kr=0) is always positive if A=0. We
may then conclude that in the case of existing zero-
gap materials (s > 1), the antiferromagnetic exchange
interaction entirely originates from the symmetry-
induced band degeneracy. In fact, the two I's bands
behave like two halves of the same band, and for in-
stance the interband-term behavior (R~ cosksR) re-.
calls the intraband one [R3cos2krR (Ref. 13)] (see
Tables I and II).

IV. DISCUSSION: THE MAGNETIC SUSCEPTIBILITY
OF ZERO-GAP Hg;_,Mn,Te ALLOYS

The indirect-exchange mechanism due to virtual
interband transitions is not weak: for a matoerial with
band parameters similar to HgTe, R =6.4 A (second
nearest neighbor), and No8=1.5 eV,>® where N, is
the number of unit cells per unit volume, one finds
I;=0.2 meV. The interband mechanism provides a
natural explanation of the observed>* antiferromag-
netic interaction between Mn?* localized moments al-
ready reported in the high-temperature susceptibility
measurement. In the molecular-field approximation
[high T (Ref. 14)] one finds for dilute alloys

X1'=a(T+0®), >0,

where
4

35x B2my|f(s)]

ao
ks® = Nl R
BT 12 16min2ad 2

24
Rys (24)

x is the Mn content and the summation runs over all
the sites of an fcc lattice with lattice parameter ao. If
we calculate © for an alloy with x =1%, and assum-
ing that the summation over lattice sites is of the
order of 94, we get ® =6.9 K in agreement with ex-
periments (Og, =6 K).

However, we would like to stress that the composi-
tion dependence of the Curie temperature can be
quite complicated for alloys with larger x. In fact, let
us transform Eq. (24) into a more convenient expres-
sion

45 SXBZEQ(X, 7 my
76871'3Ep fiz j#=0

ag

ky® =— =L
B Rj()

4
], €0<0, (25)

where E, is Kane’s matrix element. To derive Eq.
(29), we have retained the dominant term in f(s) at
large s and use Kane’s model" to express m. in
terms of € and E, (mo/m.=—2E,/3¢). We may
first note that the composition dependence of ® upon
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x may not be linear, since besides the explicit linear
in x variation expressing the probability that an Mn
atom occupies a given site and contributes to the
molecular field at the origin, there exists an implicit x
dependence included in the variation of € with x. It
is however premature to make a detailed comparison
between Eq. (25) and the experimental results al-
ready reported in alloys with x >>1%, since the
band parameters (€,s,...) of Hg;—.Mn,Te alloys are
known only for T =4 K, whereas the determination
of Curie temperature in alloys of large x requires a
study of X(T) at high temperature. At T=4.2 K
€y(xg) =0 for xo=7-7.5%. A comparison with
Hg;-xCd,Te of similar zero-gap structures gives
€(xg) =0 for x =4—5% at room temperature. In
any case, ®/x may vary sensitively with x. It was also
noted by Savage et al. that the experimental ® could
depend on the temperature scale at which x(7) is
measured. This may be related to the large tempera-
ture dependence of € in zero-gap materials [e.g., €
(HgTe) varies by nearly a factor of 2 between 77 K
and room temperature].

The last difficulty, which precludes a quantitative
comparison between our model and the experiments,
is due to the nonparabolicity effects which are entire-
ly absent in our description. With a decrease of ¢,
the conduction band becomes severely nonparabolic
as one easily reaches electron kinetic energies com-
parable or larger than |e&|. One part of the indirect-
exchange integral over conduction-band states is
made convergent by an exponential function of the
argument kRs. The parabolic approximation will then
be meaningful only if the k range of interest in this
integral is smaller than
2meleol |

ko= 7

i.e., if R 2 R, where

1/2
| |
wo = Tl

For alloys with x < 1% at T=4.2 K, i.c.,

200 < | &| <300 meV, R, =6 A: the parabolic ap-
proximation is fair for almost all the interspin dis-
tances. For Hg;_.Mn,Te alloys with x =4% and
high temperature, i.e., vanishing €, the overall pro-
cedure becomes dubious since the summation ap-
pearing in Egs. (24) and (25) is essentially controlled
by closely separated spins (say third or fourth nearest
neighbor). Another consequence of nonparabolicity
phenomena is the admixture of I's with I'qc wave
functions. This in turn decreases the proportion of p
levels into conduction-band wave functions (because
of normalization) and could lead to a decrease of the
effective interaction between localized spins. On the
other hand, the I's — I's nonparabolicity induced in-
terband contribution to the indirect-exchange
mechanism may become significant. Its exponential
decrease (due to the finite €) with distance allows it
to be neglected in alloys with large ¢ (i.e., in "para-
bolic" alloys). For alloys with low €, it should be
taken into account. Clearly such effects need a de-
tailed investigation.

The susceptibility measurements have also shown a
marked departure from the Curie-Weiss behavior at
low temperature: X' curve tends to extrapolate to
zero rather than to —®. Such behavior can definitely
not be interpreted by the molecular-field formulas
Egs. (19) and (24). We do not believe this invali-
dates our model which, in the respect of, e.g., parabol-
ic approximation, retains its maximum relevance (the
lower T, the larger |€]). A possible spin-glass for-
mation may be credited to interpret these features,
although there is no characteristic cusp in the x(7)
curves. Actually, nearest-neighbor antiferromagnetic
interactions taking place on a random alloy were
shown to lead to such a spin-glass phase owing to the
frustration phenomena.!6

V. CONCLUSION

The indirect-exchange interaction between localized
magnetic moments has been investigated in zero-gap
semiconductors. The results are summarized in
Table III. The virtual interband transitions were

TABLE Ill. Comparison between the results obtained for zero-gap semiconductors with accidental band degeneracy (ABD)

and symmetry-induced band degeneracy (SIBD). tann=s"1.

kg =0, Ij7*°T(R) kg =0, sgn of I,

ke =0, [jpuse ke %0, I +81, (R — c0)

ABD R ferromagnetic
A =0 antiferro
magnetic
SIBD R~ A = co antiferro
magnetic

if s >0.5

RKKY R3exp(—kgR) sin(kgR +m)

complicated

oscillations R™3coskgR
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shown to play a decisive part and to lead to ferromag-
netic interaction between localized spins if the degen-
eracy is accidental, and to antiferromagnetic coupling
if the zero gap is due to symmetry-induced degen-
erate band edges.

Whereas the power law /™ = R~* originates only
from the absence of energy gap between valence and
conduction bands and is the result of simple dimen-
sionality arguments, the sign of the indirect-exchange
interaction is crucially dependent on the details of the
band structure. Besides, for I'y band edge, the sym-
metry coupling between valence and conduction
bands leads to departure from the usual RKKY for- =
mula. Our model of indirect-exchange interaction
provides a plausible explanation of the temperature
dependence of the magnetic susceptibility observed in
Hg;_xMn,Te zero-gap alloys with low x. A more
complete interpretation is still lacking because of the
unknown high-temperature band parameters of these
alloys. The influence of nonparabolicity phenomena
needs to be elucidated.

Note added in proof. Recent calculations'® have
shown that besides the isotropic indirect-exchange
interaction I,-,§,- -§,, there also exists a pseudodipolar
term. This term, as well as other anisotropic
corrections, will be discussed in a separate
publication.
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APPENDIX A: RKKY CONTRIBUTION FOR
A NONDEGENERATE HOLE GAS

In this Appendix we calculate the intravalence con-
tribution to indirect-exchange mechanism and prove
that it is negligibly small in the hole freeze-out re-
gime. We have

Sew) — f(er)

€k — €y’

. 1 i(k—-kDR
I&ntra,v= expl(k—k')RU
‘Q2_k'.2k'

X 2[ | (uvkall(’)vzluvk'a') |2 .

Let us for simplicity assume: a single parabolic
spherical valence band: e, =— k*k%/2m,; that spin is
a good quantum number; that the hole gas is nonde-
generate:

1 — f (&) =exp(— Beg) expl— B(#*k2/2m )]

er > 0: at T =0 holes are frozen onto acceptor lev-

els. Then
. —aim °
Ijptray = # exp(— ﬂep) J; X sinx cosx
#2x?
xexp|— dx ,
PI=AZm.R?
with R =RU, |
oy = (Uy k=0l |ty i =0) -
Finally 32
X a%mv 2muR2kB T
Il;nimra,v = — 16.".5/2 PR ﬁ'2 EXP(_BEf;)
2m R**gT
X exp [__ _"h_i_”_ , (26)

which has to be compared with the RKKY formula
for a degenerate hole gas

am,

lintra —_—
¢ 167 i*R*

(— kgR cos2kgR + 5 sin2kgR) .

n

Equation (26) shows that the lack of a sharp-hole
Fermi surface kills the oscillatory behavior of /"™ at
large distance. Moreover the R~ power-law decline
at infinity [Eq. (27)] is replaced by an exponential
cutoff. Finally at very low temperatures Ber — oo, I
vanishes exponentially due to the absence of any free
hole to interact elastically with localized moment (it
is clear that the contributions of trapped holes are
completely negligible at moderate doping).

APPENDIX B: COMPARISON BETWEEN
@inter AND e@intra

In order to get an insight of the order of magnitude
of the different contributions to the Curie-Weiss tem-
perature we write!*

X'=a(T+0),
where

kg@=%S(S +1) 3 (iptac 4 gnav 4 pintery

J>i

(28)

To obtain analytical results, we restrict our calcula-
tions to zero-gap materials with accidental band de-
generacy. Furthermore we replace the discrete sum-
mation in Eq. (28) by an integration

~ 1
3 ¢(Ry) ~ k>0, TR OR) .

J>i

ay is of the order of the lattice spacing. Then we get
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from Eqgs. (12), (13), and (15)

—alm.kp sin2krag
am*r? 2krag

S(S+1)

ad

h®=%

1/2
2moksT)"

h-2

aym,
T 82 g2

To enable a simple comparison between intraband
and interband contributions we have neglected
317" (kp #0) in Eq. (29). We have then

@inter 16 s3

- 1 o,
@ntrac (1 +5%)? sin2kray o?

If o, = a, and 10" < n <107 cm™ then

O 9.4x10? . (30)

@mtra ,C

2.4x10! <

As for the ratio @i“"‘*"/@)i“"“"’ it is equal to
@mtra ,C
@mtra v

At very low temperature say 7 =4.2 K, e =2.2
meV and

(BEF) 2 expBer . (31)

@intm, c

=30, (32)

@intra, v

whereas in the intrinsic regime Ber =3 and

@imra,c

@intra.v =08 . (33)
Equations (30)—(33) clearly shew that the intraband
contributions are negligible with respect to the inter-
band term. At low temperatures, in the hole-freeze-
out regime the RKKY contribution [Eq. (12)] greatly
prevails over the intravalence term [Eq. (13)]. As far
as we are interested in low x alloys with ® <7 K, the
hole contribution can be safely neglected. Moreover
the very high hole damping will even increase the ra-
tiO @inlra.c/@)intm,v.

APPENDIX C: INDIRECT-EXCHANGE INTERACTION
IN A SPIN-ORBITLESS ZERO-GAP MATERIAL

In this Appendix we calculate the interband contri-
bution to the indirect-exchange interaction in the case
of symmetry-induced zero-gap materials assumed to
be spin orbitless. This will help to separate the

" respective influence of symmetry-induced degeneracy
and infinite spin-orbit coupling on the sign of the in-
direct interaction. We want however to stress the

exp(—BeF)exp[—

2myakgT
h—2

zmvagv S
w2k (1 +s5%)%a,

29)

¥
fact that there exists no zero-gap semiconductor ful-
filling both assumptions A =0 and symmetry- -induced
degenerate band edges. Since the spin-orbit energy
A= €ry —€r, almost entirely originates from the

atomic spin-orbit coupling of the anion, it is exceed-
ingly large in Te compounds (in HgMnTe alloys
A=1eV, |e| <0.3 eV);itis weaker in Se materials
(in HgMnSe, A =0.4 eV,!” | &| <0.27 eV); A could
be small enough in HgS or HgO but for these materi-
als the cubic phase is unstable compared to the hex-
agonal one. For instance under usual conditions HgS
is a hexagonal insulating material (cynabar) and the
zero-gap B-HgS can hardly be obtained. Besides
HgS is always a degenerate n-type material as HgSe.

Let us however derive [j™ for a symmetry-
induced zero-gap material assumed to have A=0. In
that case there are two identical effective Hamiltoni-
ans corresponding to the two directions of the free
spin @,

2m, . ?

- 2,2
Heff(k)=[iﬁ— —ip
m.  m,

1,1 (E-ty]a,,,,.,

where L =1. If KIIZ the solution corresponding to
L, =0 is the electron band and those corresponding
to L, = +1 describe the two heavy hole bands.

Proceeding as in the main body of the paper we get

2 | (an’lJ(r,lc_lE’ a')|?
oo’

=2B(1 +cos?0 +cos’0'— 3 cos?0 cos?0')

and finally

inter — —_ my
17 (ep = 0) =~ 352-1@—4;;(.9)

where

g(s) =

n =

1 1
-5 +arctans — —yarctans .
s

As g(s) <0 for all s, we are led to the conclusion
that the interband contribution to the indirect-
exchange interaction is always antiferromagnetic.

Thus the sign of the interaction at large s (realistic
case) is entirely a consequence of a symmetry-
induced degenerate band edge (whereas depending
on A=0 or A=oo, one finds I; 2 0 at small s).
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