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Exact solution for the resolvent matrix of a generalized tridiagonal Hamiltoman
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The exact solution for the resolvent matrix of a generalized tridiagonal Hamiltonian whose elements are
themselves block matrices is obtained. The capability of the method is demonstrated by applying it to study
the electronic structure on the surface of semiconductors. Some interesting insights regarding the difference
between the Shockley states and Tamm states are also discussed.

I. INTRODUCTION II. RESOLVENT MATRIX

The tridiagonal Hamiltonian
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In this section, we present the generalization of
the diagrammatic techniques of Wu and Taylor' to
calculate the resolvent matrix R(z). We divide the
matrix R(z) into blocks so that each element R„„,
of R is a block matrix with the same dimensions
as the blocks in & (i.e., V,.~ or h«). The ele-
ments P„„,can be expressed by the series

R i = Ro(n)6„„+Ro(n)T„„RO(n')

has many applications in physics. For example,
it has been used to study the excitations in several
one-dimensional systems such as random alloys,
biopolymers, and mixed crystals. It has also been
used to study surface states, interface states, and
defect states in a linear chain of atoms.

The basic calculation involved in these applica-
tions is the solution of the eigenvalue problem

+ R, (n) g T„„„R,(n")T„„„,R, (n')+ ~ ~ ~,

where

R,(n)=(z-h„„) '

and

nn' Vn, n+ I ~n+ I,n' Vn. a-l ~n- l, n'

(4)

(6)

IIu =EN,

or equivalently, the determination of the resolvent
matrix

R(z)=(z-H) '.
A simple diagram technique was first formulated
by Wu and Taylor' and later extended by Wu, Tung,
and Schwartz' to calcultate exactly the resolvent
matrix. In this paper, we shall extend the method
to the cases where each of the "elements" V,.~ and

h«of II are n&& n submatrices. For the most gen-
eral treatment, we shall neither require that any
of these submatrices commute nor require that
they be nonsingular. This generalization is of
great significance because it increases the applic-
ability of the method tremendously. For example,
when applied to calculate the surface electron
states of a real solid, the genera'hization not only
opens the door to solving problems in three di-
mensions, it also allows one to include as many
neighbor interactions and as many states per atom
as needed for an adequate description of the elec-
tronic structure.

We shall represent each term in Eq. (4) by a dia-
gram using the basic symbols as defined in Fig.
l(a). It should be noted that here, each of the ele-
ments introduced is a matrix. Since these ma-
trices do not commute in general, the order of
multiplication must be maintained.

Gonsider the diagonal elements 8„„.These ele-
ments can be expressed by a series of diagrams
represented in Fig. 1(b). The series contains par-
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FIG. 1. (a} Diagrams for Ro(n) and V„„i.(b) Diagram-
matic expansion of 8„„.
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FIG. 2. Diagrammatic expansion of (a) D+„, (b) A „.
tial sums of the type &„' and ~„defined by Figs.
2(a) and 2(b). 6„' (6„) includes all terms that start
from n and returning to z after journeys to all n'
~n(n'~n). The series for R„„can be regrouped
in terms of these partial sums as shown in Fig. 3.
The series is now a geometric series which can
be summed to give

R„„=[R (n) —V„„,A„+, V„,

FIG- 4. Diagrammatic expansion of & „and &„.
trated in Fig. 5(a). We have

Equations (7)-(10) plus the boundary condition
mentioned earlier completely determine R. From
the diagram shown in Fig. 5(b), we also derive a
useful recursion relation for R„„:

l-l
~n, n-1+n-1 n- l, n j

The only problem that remains is the solution of
In Fig. 4, we grouped the terms in the series

for ~„' in terms of L„'„. These series are again
geometric and can be summed to give the recur-
sion relations:

6„= [R (~) —V„„,~h„'~~ V„~~ „] ' .

or

+ + +
Rnn +n +n Vn, n-l n-l, n-1Vn-l, n~n

Rnn +n ++n Vn, n+~Rn+z, n+&~n+& &n +n

III. APPLICATION TO SURFACE PROBLEMS

A. Hamiltonian

(10)

Once a starting ~„' is determined by a boundary
conditions imposed on the problem, the rest of the
~'s can be computed using the recursion relations
(8).

We now consider the off-diagonal elements A„„,.
These can be expressed in terms of ~„' as illus-

n n n n+I n- I n

As an example of the possible application of our
method, we shall study the electronic structure on
the surface of semiconductors. We shall base our
method on the tight-binding theory partly because
of its simplicity and partly because when used in a
semiempirical way, it gives bulk band structures
in good agreement with those derived from a pseu-
dopotential theory. For a semi-infinite solid, the

n n+I n+2 n -I n'

R„, = ~ RX D
n
X——

n+ I n-I n
X

n' n'+ I
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FIG. 3. Diagrammatic expansion of R„ in terms of
A„+g and ~ „

FIG. 5. (a) Diagrammatic expansion of R~ ~ . (b) Dia-
grammatic expansion of R« in terms of Rn $ n f or
Rn+g n+g ~
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translational symmetry in the direction parallel
to the surface is preserved. Using a set of local
orbitals

~ P„,), where n labels each state at a
given site /, we construct a two-dimensional Bloch
wave for the nth plane paralle1 to the surface: R =6+62 R I'6, (17)

'The rest of the diagonal blocks of the resolvent
matrix can be calculated using the recursion form-
ula (10) which simplifies to

~k„n, pg) = (I/~f)f} Q e'"~'"«
~ y„,) . (12) R„„„„=h+ikcA„„CE (n40). (18)

Here k, is a w'ave vector parallel to the surface,
and 8„, is the position of the atom on the 1th site in
the nth plane. The Hamiltonian of the system rep-
resented by matrix elements (n, ok, ~H~k„n', n.")
will in general have the form

Likewise, the off-diagonal elements A„„,are de-
rived from Eq. (9),

z,„,=z„rz(c~)"' ' (n'&0),

R„„,=H„„(ca)"' " (n'&no 0),

r
r' I C

e' a C (13)

z„„,(~) =z +,„(z*) (n' & n) .
Note that the resolvent matrix is completely de-
termined by ~.

~ ~

where A.„h, I', and C are submatrices with di-
mensions determined by the number of orbitals

, ) per atom. h, can be interpreted as the
Hamiltonian for the surface layer which we labeled
by z =O. I' is the coupling of the surface layer to
the bulk layer described by the Hamiltonian h. , and

C is the coupling between bulk layers. More com-
plicated situations can also be described in this
spirit by allowing a series of h, 's and/or I"s dif-
ferent from the bulk h and C.

B. Resolvent matrix

V„„„=C
V~+i,.= C ~

From Eq. (8), we get therefore,

(14)

The periodicity of the Hamiltonian (13) beyond z
= i.suggests further simplification of our method
to calculate the resolvent matrix. From Fig. 2(a),
we see that ~,'=~' = ~ ~ ~ —=~, because for n

0 % ~ j

Z, (n)=(z-I) '

C.' Density of states

The density of states can be calculated directly
from the diagonal blocks of R. The local density
of states is given by

D„(E)=-(v) 'lm Trx„„(x+f0'). (2o)

The set of recursion formulas (16)—(18) allows one
to study how the local density of states changes
systematically from the surface into the bulk. Re-
peated application of the formulas gives

R„„„„= aC~ 'a Ca '

+ (~c')"(~r')z„(r ~)(c~)". (21)

The last term results from the presence of the
surface. It gives rise to a change in the local den-
sity of states,

6D„(E)=-(v) 'Im Tr (ac )" '(Er )8 (rh)(cd, )" '.
(22)

The rest of the terms in Eq. (21) give the bulk con-
tributions to the local density of states, which in
the limit n-~ becomes the bulk density of states.

)),(E)=-(w) ')m» Q(~c')'~(c~)') .
A=O

~ =(z- h -c~c') '. (15)
Using the cyclic invariance of the trace, we can
rewrite this equation as

The solution of the above equation for & is the most
difficult part in the application of our method. 'We

shall discuss a rapid method of solution in Sec.
III D. For now, we shall derive the resolvent ma-
trix in terms of ~. On the surface of the crystal,
the boundary condition requires that V„„+,= V„+, „
=0 for n negative. Therefore, from Eq. (7),

(16)

D (E) =-(m) 'Im TrAA, (24)

where

The series for A. is trivially summed if C~ and
~Ct commute. Otherwise, the summation is only
slightly more complicated as A. satisfies
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A —(c~)A(z c') =1. (26)

D, (E)=—[D,(E)-D (E)]++ 5D„(E).
g=-1

(27)

Again using the cyclic invariance of the trace the
summation can be carried out:

We can also calculate the total surface correction
to the density of states:

Equation (33) is a X-matrix problem, ' defined in

general by

(C, A."+C„,X" '+ ~ ~ ~ + C, A. +C,)x=0, (34)

where the C's are n & n matrices and x is a column
vector. The equation can be solved by forming the
generalized block companion matrices. This pro-
cedure transforms Eq. (33) into the form

Dg(E) = —(v} 'ImTr[(1+r~bI"' )R«] —Ds(E) . Ax= XBx, (35)

(28)

Equation (28) gives for the first time, an exact
closed form solution to the total surface correc-
tion. The factor 1+I'~~I' normalizes the sur-
face states, i.e., if E~ is the energy of the surface
state, D~(E) becomes 5(E —E~). [Note Ds(E) =0
outside the band where Ez occurs ]M.ore import-
ant, this factor enables one to calculate the exact
shape of resonances mhen energies in the bulk band
region are considered. Finally the poles of g~,
calculated using Eq. (16), give the energies of the
surface states. The position of the poles can be
determined from

ff
E —I.—r~r'fl = 0. (29

The term I'gI' can be considered as an effective
or coherent potential arising from the coupling of
the surface to the bulk.

where 01)S I
ct 0J ~l-~ c j

Equation (35) is a generalized eigenvalue problem
which can be solved by standard programs in the
computer. y,. is simply the eigenvalue of this equa-
tion and q,. is simply the first n component of the
corresponding eigenvector x. In general, Eq. (33)
will have a solution only if

ll cy'+ (I —~)y+c'll = o.
If C is a nx n matrix, Eq. (36) gives 2n solutions
for y out of which only z are physically allowed.
It turns out that the solutions for y have a unique
form which simplified the selection of the appro-
priate value. Equation (36) has the symmetrical
form

Q~y + Q~ ly + '''+ QPy

D. Solution of 6 +~,y" '+ ~ +a „=0, (37)

~=(z-I -cY) '. (3o)

Multiplication by C on the right-hand side and z
—h —CF on the left-hand side gives

cY'+(a ~)Y+c'=0 (31)

Equation (31) belongs to a class of mathematical
equations known as the unilateral equations and
their solutions were reviewed by Both.' lt turns
out that Eq. (31) has many solutions among which
only one is a physically acceptable solution. We
outline below the method for finding the solution.

Using a similarity transformation Q, we can
write Y as Y=Q YQ ', where Y is diagonal. Then
substitution into Eq. (31) and multiplication on the
right-hand side by Q gives

CQY + (h —g)QY+C Q =0. (32)

Expressing Q in terms of its columns q„, i.e., Q
=(q, ~ ~ ~ q„) and Y,j=y,.5,.J, we get

[Cy'&+(h —z)y, +C ]0,.=0.

As noted previously, 4 plays a central role in
the determination of the resolvent matrix. The sol-
ution of Eq. (15) for g can best be done by defining
F=~C~ so that

where g,. =g,*. and gp is real. If all the g,.'s are
real, the equation is a reciprocal equation. In gen-
eral, if y,. is a solution of Eq. (37), 1/y,* is also a
solution. Thus, Eq. (37) factors as

(A, y + 2B,y+ A f }= 0 . .
i=1

Consider the solutions of

Ay +2By+ A* =0.

Let A = lA fe'e and p =-B/fA l, then

(38)

ei8y2 2Py + eie 0

The typical solutions for y are therefore

y [p ~ (p2 1)l/2]etc

(38)

(40)

For z =E+gp', one of the solutions mill be inside
a unit circle in the complex y plane and the other
will be outside the unit circle. Convergence of the
series from which Eq. (30) is derived requires
that only solutions inside the unit circle be allowed.
'The trajectories of the allowed values of y, in the
complex y plane as a function of E provides valu-
able information about the bulk bands. For ener-
gies in the bulk bands, the trajectory of one or
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more of the y,. falls on the unit circle (~ y, ~

=1 —0').
For energies in the band gap, all the trajectories
are inside the unit circle (~ y, ~

& 1). These facts
are best presented by a simple one-dimensional
example which we shall publish shortly.

E. Micon (111)surface

For the purpose of demonstrating the applicabil-
ity of our method, we consider a nontrivial exam-

pie, the unrelaxed (111) surface of silicon. For
convenience, we shall use Hirabayashi's Hamilton-
ian. We calculated the density of states D~ s(E)
for a specific wave vector k, parallel to the sur-
face. We present here only the k, ;-0 results be-
cause this result can be compared directly with the
bulk band structure in the (111)direction. For k,
=0, h„h, 1", and C are the following matrices in
Hirabayashi's model:

and

h =h=-
S

8.40 0.90 0.90 0.90 0.889 0.889 0.889 0.228
I

0.90 8.40 0.90 0.90 1.10 1.10 2.35 0.889

0.90 0.90 8.40 0.90 1.10 2.35 1.10 0.889

0.90 0.90 0.90 ' 8.40 2.35 1.10 1.10 0.889 (10 ' By)

0.889 1.10 1.10 2.35 8.40 0.90 0.90 0.90

0.889 1.10 2.35 1.10 0.90 8.40 0.90 0.90

0.889 2.35 1.10 1.10 0.90 0,90 8.40 0.90

g 0.228 0.889 0.889 0.889 0.90 0.90 0.90 8.40

0 0000000
0 0 0 0000
0 0 0 OOOO
0 0 0 0 0 0 0 (10'Ry).

0.437 0.226 0.226 0.076 0 0 0 0

0.437 0.226 0.076 0.226 0 0 0 0

0.437 0.076 0.226 0.226 0 0 0 0

2.198 0.437 0.437 0.437 0 0 0 0

In Fig. 6, we show the density-of-states curve as
well as the bulk band structure from F to L in the
neighborhood of the fundamental gap. The bulk
band structure was calculated by the direct diagon-
alization of the bulk Hamiltonian. It can be seen
that the band edges and the band gaps calculated
with our method agree exactly with the band-struc-
ture calculation. The effect of the overlapping
bands shows up clearly in the bulk density of
states. The result for the surface state at -O.V66

By also agrees with Hirabayashi's result. Actually
our method determines the energy much more ac-
curately as we do not truncate the Hamiltonian like
Hirabayashi. A major portion of the computer time
went into the solution of F. For each value of the
energy, the solution takes about 0.1 CPU (central
processor unit) seconds on an IBM 3VO/165 com-
puter.

-0.60

-0.64

-0.75— SURFACE STATE

-0.78—
~ -0.85 —r25'

C9

LLI

w -0.90

-0.95

L 0
I I I I I I I I I I I

50 IOO
DENSITY OF STATES (Ry" )

FIG. 6. Bulk band structure and density of states for
k~ = 0 along the (111)direction of Si. The & function at
'-0.766 Ry is the surface state and the rest are the bulk
density of states.
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The surface state derived in this example was
first suggested by Shockley. ' For some time there
has been some confusion regarding the precise
definition' of the Shockley states and another type
of surface states known as the Tamn states. '
Shockley states are said to appear when there is no
surface perturbation, i.e'. , Pg, =h. and I" =C, and
when the energy bands cross. From Eqs. (16},
(26), and (28} we see that Ds (E) = 0 when a, = a and
I' =C, i.e., there are no surface states. The non-
existence of the surface states seems to contradict
Shockley's theorem. One explanation of the disap-
pearance of the surface states is that Shockley
based his theory on a finite system; as the system
becomes semi-infinite, the surface states move to
infinity. This explanation is only partly correct
because only one of the surfaces has moved to in-
finity. To resolve the paradox, we study the condi-
tion for the surface states I'Eq. (29}]:

lated but nonsimple singularity at E =E,. It was
found that in the limit g, =h, the surface-state en-
ergy E,'=E, . The nonanalytical nature of S(E) is a
result of treating the solid as semi-infinite from
the very outset. The singularity can be avoided if
we redefine the blocks in the Hamiltonian by adding
a rom and column of null matrices,

0 0 0 0

0 h C 0
etc.,

0g~ h

0 0 Ct h

so that

a'-
!

a'-
0 aJ

50—

40—

30—

IO—

(0
I -IO—

Es
/

Es

-30—

-50—
I

-0.76620
I

-0.766 I 5 -0.76610
ENERGY (Ry)-

I

-0.76605

FIG. 7. S{E)curve defining the Shockley state at E~.

Consider the S(E) curve for Hirabayashi's Hamil-
tonian. In Fig. (7) we show S(E) with a, =a and I
=C (dashed line). This curve has no zero, so there
should be no surface state. However, if we per-
turb one of the values in a, very slightly (say from
a» =-0.84 to a» =-0.8399 in a, ) so that a, ga, we
then find the other set of curves (solid line) for
S(E). It is seen that now a surface state is re-
covered at energy E,'. In addition there is an iso-

and h,' wh'. This procedure, however„would double
the size of the block matrices. %hichever method
one chooses is mainly a matter of preference.

IV. CONCI. USION

In this work, we have developed a method for
calculating the resolvent matrix of a generalized
block tridiagonal matrix. 'The method has the fol-
lowing important features.

(i) The method allows one to calculate the resol-
vent matrix exactly without the need to truncate
the Hamiltonian or set other arbitrary boundary
conditions.

(ii) The method allows one to calculate both
"local" density of states as well as total density of
states.

(iii) The method allows one to calculate the exact
shape of resonances.

(iv) The method allows one to incorporate as
many neighbor interactions and as many states per
atom as needed for an adequate description of the
system.

(v) The method is computationally simple. In
many cases, the solution has simple mathematical
form so that it can be studied analytically.

As a demonstration of the capability of this meth-
od, we have applied the method to study the elec-
tronic structure on the surface of semiconductors.
There exist a large body of references in the field
of surface physics for solving Hamiltonians of the
type given by Eq. (13). We have not attempted to
review them here, instead we cite a few refer-
ences"' '~ mainly to point out that in these works
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the methods of computation are very inefficient be-
cause many bulk states have to be included in the
calculations. In contrast, the present method in-
corporates all the- bulk information into ~, which
can be solved rapidly. The speed and accuracy of
this method, we hope, would provide a better hand-
le in solving the more difficult problems of recon-
struction and many-body effects on solid surfaces.
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